Bachelor- und Masterarbeiten

Themen

Viele Aufgabenstellungen beschäftigen sich mit der Implementierung verschiedener Komponenten in eines der Websysteme, die am Fachgebiet betrieben werden, oder mit der Analyse der in solchen Systemen vorhandenen Daten. Darüber hinaus werden weitere Themen angeboten, die in der Regel einen inhaltlichen Bezug zu aktuellen Forschungsprojekten des Fachgebiets Wissensverarbeitung haben.

Die Themenstellung erfolgt in Absprache mit den Studierenden; die Ausrichtung und der Umfang der Arbeit richten sich nach dem jeweils angestrebten Anschluss. Prinzipiell liegt der Schwerpunkt bei Abschlussarbeiten auf der Methodik, während er bei Projektarbeiten auf der technischen Umsetzung liegt.

Zu folgenden Themengebieten können wir Arbeiten anbieten; zu konkreten Themen können die jeweiligen Betreuer*innen genauere Auskunft geben:

Core Numbers in Bipartite Networks

Core numbers are efficient valuations for nodes in networks. They are a measure to describe the structural integration of nodes. In this work, you should characterize and study core numbers for bipartite graphs.

Informationen: Johannes Hirth

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit

Intrinsische Dimension und Knoteneinbettungen

In dieser Arbeit soll untersucht werden, wie hoch die intrinsische Dimension von Datensätzen ist, welche mit verschiedenen Knoteneinbettungsverfahren aus Graphen erstellt wurden.

Informationen: Maximilian Stubbemann

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Methodischer Schwerpunkt

Stabilität der intrinsischen Dimension

Es gibt mehrere Maße, um die intrinsische Dimension von Datensätzen abzuschätzen. In dieser Arbeit soll untersucht werden, inwieweit diese Maße stabil gegenüber „kleinen“ Manipulationen/Fehler in den Datensätzen sind.

Informationen: Maximilian Stubbemann

Kategorien: Bachelorarbeit, Masterarbeit

Operationen aus der Relationalen Algebra in der Begriffsanalyse

Operationen (Joins etc) aus der Relationalen Algebra werden häufig verwendet um Daten zu verbinden oder zu kombinieren. Dadurch ergeben sich neue Zusammenhänge zwischen Objekten oder deren Eigenschaften. Eine Methode, um solche Zusammenhänge zu analysieren, kommt aus der Begriffsanalyse. Hierbei werden Veränderungen in der Begrifflichen Struktur analysiert und herausgearbeitet. In dieser Arbeit studieren Sie, wie sich die Begriffliche Struktur eines Datensatzes unter Verwendung von Operationen aus der Relationalen Algebra verändert.

Informationen: Johannes Hirth

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Methodischer Schwerpunkt

Community Detection in WikiData zur Datensatzgenerierung

Knowlegde Graphs wie WikiData enthalten sehr viel Wissen, das im Bereich der künstlichen Intelligenz in vielen Anwendungen eingesetzt werden kann. Der Umfang an Informationen ist aber auch ein Problem für viele Anwendungen. Ihre Aufgabe besteht darin, Methoden der Community Detection in sozialen Netzwerken auf die Struktur von WikiData zu übertragen. Des Weiteren sollen Sie untersuchen, wie diese Methoden genutzt werden können, um kleinere Teil-Datensätze aus WikiData zu extrahieren.

Informationen: Johannes Hirth

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Methodischer Schwerpunkt, Technischer Schwerpunkt

Evaluierung von Graphzeichnungen

Ziel dieser Arbeit ist es, zu evaluieren, welche „weichen“ Kriterien für Graphzeichnungen in der Praxis wie stark mit als „schön“ wahrgenommenen Zeichnungen korellieren. Außerdem soll untersucht werden inwieweit die „wichtigen“ Kriterien sich beim Zeichnen von Graphen und Ordnungsdiagrammen unterscheiden.

Informationen: Maximilian Stubbemann

Kategorien: Allgemein, Masterarbeit, Technischer Schwerpunkt

Invarianten für Formale Kontexte

Es ist nicht einfach zu erkennen, ob zwei (reduzierte) Formale Kontexte isomorph sind, bzw. gegeben eine Menge Formaler Kontexte zu erkennen, wie viele verschiedene Formale Kontexte dort enthalten sind. Ein Hilfsmittel sind Invarianten, also abgeleitete Größen, die nicht von der konkreten Darstellung des Formalen Kontexts abhängen, beispielsweise die Anzahl der Attribute des Kontexts oder auch die Anzahl der Begriffe des Kontexts. Haben zwei Kontexte unterschiedliche Werte für eine Invariante, so sind die Kontexte nicht isomorph. Ziel ist es, Formale Kontexte hinsichtlich möglicher Invarianten zu untersuchen. Formale Kontexte können als bipartite Graphen dargestellt werden, daher sollen insbesondere bekannte Graph-Invarianten in Betracht gezogen werden.

Informationen: Maximilian Felde

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Methodischer Schwerpunkt

Concept Neural Networks

Bei der Klassifikation in Graphen ist es üblich, mittels Graph Neuronalen Netzen (GNNs) die Struktur des Graphen zu nutzen, um die Klassifikation von Knoten zu verbessern. Ziel dieser Arbeit ist es, diesen Ansatz auf die Formale Begriffsanalyse zu übertragen indem die „Faltungsoperation“ anhand von Konzepten durchgeführt wird. Vergleichen Sie dieses Verfahren mit anderen Verfahren, die neuronale Netze basierend auf Begriffsverbänden nutzen!

Informationen: Maximilian Stubbemann

Kategorien: Bachelorarbeit, Masterarbeit

Erklärbarkeit von Klassifikatoren durch Surrogate

Viele der gegenwärtig genutzten Lernmodelle zur Klassifikation erzeugen sogenannte Blackbox-Funktionen/Relationen, z.B. Random Forests oder Neuronale Netze. Diese entziehen sich einer direkten Erklärbarkeit und sind daher für Nuetzer*innen schwer nachvollzieh- und überprüfbar. Es gibt verschiedene numerische / kategorische/ statistische Ansätze um diesen Problem zu begegnen. Ein besonderer Ansatz ist Surrogatlernen, d.h., das Trainieren eines erklärbaren Klassifikators basierend auf einer Blackbox. Je nach Ausrichtung (Projekt/Bachelorarbeit/Masterarbeit) soll versucht werden bestehende Surrogat-Ansätze praktisch zu evaluieren oder theoretische Ansätze fortzusetzen.

Informationen: Tom Hanika

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Methodischer Schwerpunkt

PCA auf formalen Kontexten

Principal Component Analysis dient dazu Datensätze zu vereinfachen. Hierbei wird eine große Menge an (möglicherweise) korrelierten Variablen in eine möglichst aussagekräftige kleinere Menge transformiert. Dieses Vorgehen soll auf formale Kontexte übertragen werden, um die ihre Merkmalsmenge einzuschränken.

Informationen: Maren Koyda

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Methodischer Schwerpunkt, Technischer Schwerpunkt

Sprechen Sie uns gern zu weiteren Themen an. Informationen zu den einzelnen Themen geben Ihnen gerne vorab die Betreuer*innen.

Aufgabenstellung und Termin

Nach Absprache mit der/dem jeweiligen Betreuer*in.

Vorkenntnisse

Informatik Grundstudium bzw. 30 absolvierte Credits des Masterstudiums

Angesprochener Hörer*innenkreis

Informatik Bachelor und Master, Math. NF Inf. Hauptstudium

Umfang

9 Wochen für Bachelor und 6 Monate für Master

Leistungsnachweis

In der Regel Implementierung, schriftliche Ausarbeitung und Vortrag

Veranstalter

Prof. Dr. Gerd Stumme, Dr. Tom Hanika, Dominik Dürrschnabel, M.Sc.Maximilian Felde, M.Sc., Johannes Hirth, M.Sc., Maren Koyda, M.Sc.Bastian Schäfermeier, M.Sc., Maximilian Stubbemann, M.Sc.