University of Kassel
Knowledge & Data Engineering Group

Fachgebiet Wissensverarbeitung (KDE), EECS, Universität Kassel

“So wie sich Landkarten für die Navigation in Landschaften etabliert haben, untersuchen wir den Einsatz diskreter und algebraischer Strukturen für die Navigation in Wissenslandschaften.”

Das Fachgebiet Wissensverarbeitung des Fachbereichs Elektrotechnik/Informatik forscht an der Entwicklung von Methoden zur Wissensentdeckung und Wissensrepräsentation (Approximation und Exploration von Wissen, Ordnungsstrukturen in Wissen, Ontologieentwicklung) in Daten als auch in der Analyse von (sozialen) Netzwerkdaten und damit verbundenen Wissensprozessen (Metriken in Netzwerken, Anomalieerkennung, Charakterisierung von sozialen Netzwerken). Dabei liegt ein Schwerpunkt auf der exakten algebraischen Modellierung der verwendeten Strukturen und auf der Evaluierung und Neuentwicklung von Netzwerkmaßen. Neben der Erforschung von Grundlagen in den Gebieten Ordnungs- und Verbandstheorie, Beschreibungslogiken, Graphentheorie und Ontologie werden auch Anwendungen – bspw. in sozialen Medien sowie in der Szientometrie – erforscht.

Das Fachgebiet Wissensverarbeitung ist Mitglied im Wissenschaftlichen Zentrum für Informationstechnik-Gestaltung (ITeG) der Universität Kassel, im Wissenschaftlichen Zentrum INCHER der Universität Kassel, im Forschungszentrum L3S und im Hessischen KI-Zentrum (hessian.AI).

Unsere neusten Publikationen

  • 1.
    Draude, C., Engert, S., Hess, T., Hirth, J., Horn, V., Kropf, J., Lamla, J., Stumme, G., Uhlmann, M., Zwingmann, N.: Verrechnung – Design – Kultivierung: Instrumentenkasten für die Gestaltung fairer Geschäftsmodelle durch Ko-Valuation, https://www.forum-privatheit.de/wp-content/uploads/Forschungsberichte-1-2024-WP-Fairdienste.pdf, (2024). https://doi.org/10.24406/publica-2497.
    URLBibTeXEndNoteDOI
  • 1.
    Hirth, J., Horn, V., Stumme, G., Hanika, T.: Ordinal motifs in lattices. Information Sciences. 659, 120009 (2024). https://doi.org/https://doi.org/10.1016/j.ins.2023.120009.
    URLBibTeXEndNoteDOI
  • 1.
    Hanika, T., Hirth, J.: Conceptual views on tree ensemble classifiers. International Journal of Approximate Reasoning. 159, 108930 (2023). https://doi.org/https://doi.org/10.1016/j.ijar.2023.108930.
    URLBibTeXEndNoteDOI
  • 1.
    Ganter, B., Hanika, T., Hirth, J.: Scaling Dimension. In: Dürrschnabel, D. and López-Rodríguez, D. (eds.) Formal Concept Analysis - 17th International Conference, {ICFCA} 2023, Kassel, Germany, July 17-21, 2023, Proceedings. pp. 64–77. Springer (2023). https://doi.org/10.1007/978-3-031-35949-1\_5.
    URLBibTeXEndNoteDOI
  • 1.
    Stubbemann, M., Hille, T., Hanika, T.: Selecting Features by their Resilience to the Curse of Dimensionality. (2023).
    BibTeXEndNote
  • 1.
    Hirth, J., Horn, V., Stumme, G., Hanika, T.: Automatic Textual Explanations of Concept Lattices. In: Ojeda{-}Aciego, M., Sauerwald, K., and Jäschke, R. (eds.) Graph-Based Representation and Reasoning - 28th International Conference on Conceptual Structures, {ICCS} 2023, Berlin, Germany, September 11-13, 2023, Proceedings. pp. 138–152 (2023). https://doi.org/doi.org/10.1007/978-3-031-40960-8_12.
    URLBibTeXEndNoteDOI
  • 1.
    Stumme, G., Dürrschnabel, D., Hanika, T.: Towards Ordinal Data Science, (2023).
    BibTeXEndNote
  • 1.
    Dürrschnabel, D., Hanika, T., Stumme, G.: Drawing Order Diagrams Through Two-Dimension Extension. Journal of Graph Algorithms and Applications. 27, 783–802 (2023). https://doi.org/10.7155/jgaa.00645.
    URLBibTeXEndNoteDOI
  • 1.
    Dürrschnabel, D., Stumme, G.: Maximal Ordinal Two-Factorizations. In: Ojeda-Aciego, M., Sauerwald, K., and Jäschke, R. (eds.) Graph-Based Representation and Reasoning. pp. 41–55. Springer Nature Switzerland, Cham (2023).
    BibTeXEndNote
  • 1.
    Budde, K.B., Rellstab, C., Heuertz, M., Gugerli, F., Hanika, T., Verdú, M., Pausas, J.G., González-Martínez, S.C.: Divergent selection in a Mediterranean pine on local spatial scales. Journal of Ecology. n/a, (2023). https://doi.org/https://doi.org/10.1111/1365-2745.14231.
    URLBibTeXEndNoteDOI
  • 1.
    Hirth, J., Horn, V., Stumme, G., Hanika, T.: Ordinal Motifs in Lattices, https://arxiv.org/abs/2304.04827, (2023).
    URLBibTeXEndNote
  • 1.
    Stubbemann, M., Hanika, T., Schneider, F.M.: Intrinsic Dimension for Large-Scale Geometric Learning. Transactions on Machine Learning Research. (2023).
    URLBibTeXEndNote
  • 1.
    Felde, M., Koyda, M.: Interval-dismantling for lattices. International Journal of Approximate Reasoning. 159, 108931 (2023). https://doi.org/10.1016/j.ijar.2023.108931.
    URLBibTeXEndNoteDOI
  • 1.
    Stubbemann, M., Stumme, G.: The Mont Blanc of Twitter: Identifying Hierarchies of Outstanding Peaks in Social Networks. In: Machine Learning and Knowledge Discovery in Databases: Research Track - European Conference, {ECML} {PKDD} 2023, Turin, Italy, September 18-22, 2023, Proceedings, Part {III}. pp. 177–192. Springer (2023). https://doi.org/10.1007/978-3-031-43418-1\_11.
    URLBibTeXEndNoteDOI
  • 1.
    Felde, M., Stumme, G.: Interactive collaborative exploration using incomplete contexts. Data & Knowledge Engineering. 143, 102104 (2023). https://doi.org/10.1016/j.datak.2022.102104.
    URLBibTeXEndNoteDOI
  • 1.
    Schäfermeier, B., Hirth, J., Hanika, T.: Research Topic Flows in Co-Authorship Networks. Scientometrics. 128, 5051–5078 (2023). https://doi.org/10.1007/s11192-022-04529-w.
    BibTeXEndNoteDOI
  • 1.
    Dürrschnabel, D., Stumme, G.: Greedy Discovery of Ordinal Factors, http://arxiv.org/abs/2302.11554, (2023).
    URLBibTeXEndNote