University of Kassel
Knowledge & Data Engineering Group

Fachgebiet Wissensverarbeitung (KDE), EECS, Universität Kassel

“So wie sich Landkarten für die Navigation in Landschaften etabliert haben, untersuchen wir den Einsatz diskreter und algebraischer Strukturen für die Navigation in Wissenslandschaften.”

Das Fachgebiet Wissensverarbeitung des Fachbereichs Elektrotechnik/Informatik forscht an der Entwicklung von Methoden zur Wissensentdeckung und Wissensrepräsentation (Approximation und Exploration von Wissen, Ordnungsstrukturen in Wissen, Ontologieentwicklung) in Daten als auch in der Analyse von (sozialen) Netzwerkdaten und damit verbundenen Wissensprozessen (Metriken in Netzwerken, Anomalieerkennung, Charakterisierung von sozialen Netzwerken). Dabei liegt ein Schwerpunkt auf der exakten algebraischen Modellierung der verwendeten Strukturen und auf der Evaluierung und Neuentwicklung von Netzwerkmaßen. Neben der Erforschung von Grundlagen in den Gebieten Ordnungs- und Verbandstheorie, Beschreibungslogiken, Graphentheorie und Ontologie werden auch Anwendungen – bspw. in sozialen Medien sowie in der Szientometrie – erforscht.

Das Fachgebiet Wissensverarbeitung ist Mitglied im Wissenschaftlichen Zentrum für Informationstechnik-Gestaltung (ITeG) der Universität Kassel, im Wissenschaftlichen Zentrum INCHER der Universität Kassel und im Forschungszentrum L3S.

Testen Sie unser Social-Bookmark-System BibSonomy sowie unsere Namens-Suchmaschine Nameling!

Unsere neusten Publikationen

  • 1.
    Dürrschnabel, D., Hanika, T., Stubbemann, M.: FCA2VEC: Embedding Techniques for Formal Concept Analysis. In: Missaoui, R., Kwuida, L., and Abdessalem, T. (eds.) Complex Data Analytics with Formal Concept Analysis. pp. 47–74. Springer International Publishing (2022).
    URLBibTeXEndNoteDOI
  • 1.
    Hanika, T., Hirth, J.: Knowledge cores in large formal contexts. Annals of Mathematics and Artificial Intelligence. (2022).
    URLBibTeXEndNoteDOI
  • 1.
    Felde, M., Koyda, M.: Interval-Dismantling for Lattices, https://arxiv.org/abs/2208.01479, (2022).
    URLBibTeXEndNoteDOI
  • 1.
    Hanika, T., Schneider, F.M., Stumme, G.: Intrinsic dimension of geometric data sets. Tohoku Mathematical Journal. 74, 23–52 (2022).
    URLBibTeXEndNoteDOI
  • 1.
    Schäfermeier, B., Stumme, G., Hanika, T.: Mapping Research Trajectories, https://arxiv.org/abs/2204.11859, (2022).
    URLBibTeXEndNoteDOI
  • 1.
    Schäfermeier, B., Hirth, J., Hanika, T.: Research Topic Flows in Co-Authorship Networks. Accepted for publication in Scientometrics. (2022).
    URLBibTeXEndNote
  • 1.
    Felde, M., Stumme, G.: Attribute Exploration with Multiple Contradicting Partial Experts. In: Braun, T., Cristea, D., and Jäschke, R. (eds.) Graph-Based Representation and Reasoning. pp. 51–65. Springer International Publishing, Cham (2022).
    BibTeXEndNoteDOI
  • 1.
    Schäfermeier, B., Stumme, G., Hanika, T.: Towards Explainable Scientific Venue Recommendations, http://arxiv.org/abs/2109.11343, (2021).
    URLBibTeXEndNote
  • 1.
    Schaefermeier, B., Stumme, G., Hanika, T.: Topological Indoor Mapping through WiFi Signals. (2021).
    URLBibTeXEndNote
  • 1.
    Koopmann, T., Stubbemann, M., Kapa, M., Paris, M., Buenstorf, G., Hanika, T., Hotho, A., Jäschke, R., Stumme, G.: Proximity dimensions and the emergence of collaboration: a HypTrails study on German AI research. Scientometrics. (2021).
    URLBibTeXEndNoteDOI
  • 1.
    Draude, C., Gruhl, C., Hornung, G., Kropf, J., Lamla, J., Leimeister, J.M., Sick, B., Stumme, G.: Social Machines. Informatik Spektrum. (2021).
    URLBibTeXEndNoteDOI
  • 1.
    Dürrschnabel, D., Koyda, M., Stumme, G.: Attribute Selection Using Contranominal Scales. In: Braun, T., Gehrke, M., Hanika, T., and Hernandez, N. (eds.) Graph-Based Representation and Reasoning. pp. 127–141. Springer International Publishing, Cham (2021).
    BibTeXEndNote
  • 1.
    Dürrschnabel, D., Stumme, G.: Force-Directed Layout of Order Diagrams Using Dimensional Reduction. In: Braud, A., Buzmakov, A., Hanika, T., and Le Ber, F. (eds.) Formal Concept Analysis. pp. 224–240. Springer International Publishing, Cham (2021).
    BibTeXEndNote
  • 1.
    Koyda, M., Stumme, G.: Boolean Substructures in Formal Concept Analysis. ICFCA: International Conference on Formal Concept Analysis. pp. 38–53. Springer (2021).
    BibTeXEndNote
  • 1.
    Hanika, T., Hirth, J.: Quantifying the Conceptual Error in Dimensionality Reduction. In: Braun, T., Gehrke, M., Hanika, T., and Hernandez, N. (eds.) Graph-Based Representation and Reasoning - 26th International Conference on Conceptual Structures, ICCS 2021, Virtual Event, September 20-22, 2021, Proceedings. pp. 105–118. Springer (2021).
    URLBibTeXEndNoteDOI
  • 1.
    Hanika, T., Hirth, J.: Exploring Scale-Measures of Data Sets. In: Braud, A., Buzmakov, A., Hanika, T., and Ber, F.L. (eds.) Formal Concept Analysis - 16th International Conference, ICFCA 2021, Strasbourg, France, June 29 - July 2, 2021, Proceedings. pp. 261–269. Springer (2021).
    URLBibTeXEndNoteDOI
  • 1.
    Dürrschnabel, D., Hanika, T., Stubbemann, M.: FCA2VEC: Embedding Techniques for Formal Concept Analysis. Presented at the (2021).
    BibTeXEndNote
  • 1.
    Stubbemann, L., Dürrschnabel, D., Refflinghaus, R.: Neural Networks for Semantic Gaze Analysis in XR Settings. ACM Symposium on Eye Tracking Research and Applications. ACM (2021).
    URLBibTeXEndNoteDOI
  • 1.
    Stubbemann, M., Stumme, G.: The Mont Blanc of Twitter: Identifying Hierarchies of Outstanding Peaks in Social Networks. arXiv preprint arXiv:2110.13774. (2021).
    BibTeXEndNote
  • 1.
    Dürrschnabel, D., Stumme, G.: Force-Directed Layout of Order Diagrams using Dimensional Reduction, http://arxiv.org/abs/2102.02684, (2021).
    URLBibTeXEndNote