University of Kassel
Knowledge & Data Engineering Group

Fachgebiet Wissensverarbeitung (KDE), EECS, Universität Kassel

“So wie sich Landkarten für die Navigation in Landschaften etabliert haben, untersuchen wir den Einsatz diskreter und algebraischer Strukturen für die Navigation in Wissenslandschaften.”

Das Fachgebiet Wissensverarbeitung des Fachbereichs Elektrotechnik/Informatik forscht an der Entwicklung von Methoden zur Wissensentdeckung und Wissensrepräsentation (Approximation und Exploration von Wissen, Ordnungsstrukturen in Wissen, Ontologieentwicklung) in Daten als auch in der Analyse von (sozialen) Netzwerkdaten und damit verbundenen Wissensprozessen (Metriken in Netzwerken, Anomalieerkennung, Charakterisierung von sozialen Netzwerken). Dabei liegt ein Schwerpunkt auf der exakten algebraischen Modellierung der verwendeten Strukturen und auf der Evaluierung und Neuentwicklung von Netzwerkmaßen. Neben der Erforschung von Grundlagen in den Gebieten Ordnungs- und Verbandstheorie, Beschreibungslogiken, Graphentheorie und Ontologie werden auch Anwendungen – bspw. in sozialen Medien sowie in der Szientometrie – erforscht.


Das Fachgebiet Wissensverarbeitung ist Mitglied im Wissenschaftlichen Zentrum für Informationstechnik-Gestaltung (ITeG) der Universität Kassel, im Wissenschaftlichen Zentrum INCHER der Universität Kassel und im Hessischen KI-Zentrum (hessian.AI).

Unsere neusten Publikationen

  • 1.
    Draude, C., Engert, S., Hess, T., Hirth, J., Horn, V., Kropf, J., Lamla, J., Stumme, G., Uhlmann, M., Zwingmann, N.: Verrechnung – Design – Kultivierung: Instrumentenkasten für die Gestaltung fairer Geschäftsmodelle durch Ko-Valuation, https://plattform-privatheit.de/p-prv-wAssets/Assets/Veroeffentlichungen_WhitePaper_PolicyPaper/whitepaper/WP_2024_FAIRDIENSTE_1.0.pdf, (2024). https://doi.org/10.24406/publica-2497.
    URLBibTeXEndNoteDOI
  • 1.
    Hirth, J., Hanika, T.: The Geometric Structure of Topic Models, (2024). https://doi.org/10.48550/arxiv.2403.03607.
    BibTeXEndNoteDOI
  • 1.
    Dürrschnabel, D., Priss, U.: Realizability of Rectangular Euler Diagrams, (2024).
    BibTeXEndNote
  • 1.
    Hirth, J.: Conceptual Data Scaling in Machine Learning, (2024). https://doi.org/10.17170/kobra-2024100910940.
    BibTeXEndNoteDOI
  • 1.
    Draude, C., Dürrschnabel, D., Hirth, J., Horn, V., Kropf, J., Lamla, J., Stumme, G., Uhlmann, M.: Conceptual Mapping of Controversies, (2024).
    BibTeXEndNote
  • 1.
    Abdulla, M., Hirth, J., Stumme, G.: The Birkhoff Completion of Finite Lattices. In: Cabrera, I.P., Ferré, S., and Obiedkov, S. (eds.) Conceptual Knowledge Structures. pp. 20–35. Springer Nature Switzerland, Cham (2024).
    BibTeXEndNote
  • 1.
    Hanika, T., Jäschke, R.: A Repository for Formal Contexts. In: Proceedings of the 1st International Joint Conference on Conceptual Knowledge Structures (2024).
    URLBibTeXEndNote
  • 1.
    Horn, V., Hirth, J., Holfeld, J., Behmenburg, J.H., Draude, C., Stumme, G.: Disclosing Diverse Perspectives of News Articles for Navigating between Online Journalism Content. In: Nordic Conference on Human-Computer Interaction. Association for Computing Machinery, Uppsala, Sweden (2024). https://doi.org/10.1145/3679318.3685414.
    URLBibTeXEndNoteDOI
  • 1.
    Hirth, J., Horn, V., Stumme, G., Hanika, T.: Ordinal motifs in lattices. Information Sciences. 659, 120009 (2024). https://doi.org/https://doi.org/10.1016/j.ins.2023.120009.
    URLBibTeXEndNoteDOI
  • 1.
    Hille, T., Stubbemann, M., Hanika, T.: Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research. Transactions on Machine Learning Research. (2024).
    URLBibTeXEndNote
  • 1.
    Hanika, T., Hille, T.: What is the intrinsic dimension of your binary data? -- and how to compute it quickly, (2024).
    BibTeXEndNote
  • 1.
    Schäfermeier, B., Hirth, J., Hanika, T.: Research Topic Flows in Co-Authorship Networks. Scientometrics. 128, 5051–5078 (2023). https://doi.org/10.1007/s11192-022-04529-w.
    BibTeXEndNoteDOI
  • 1.
    Felde, M., Stumme, G.: Interactive collaborative exploration using incomplete contexts. Data & Knowledge Engineering. 143, 102104 (2023). https://doi.org/10.1016/j.datak.2022.102104.
    URLBibTeXEndNoteDOI
  • 1.
    Hirth, J., Horn, V., Stumme, G., Hanika, T.: Ordinal Motifs in Lattices, http://arxiv.org/abs/2304.04827, (2023). https://doi.org/10.48550/arXiv.2304.04827.
    URLBibTeXEndNoteDOI
  • 1.
    Stubbemann, M., Stumme, G.: The Mont Blanc of Twitter: Identifying Hierarchies of Outstanding Peaks in Social Networks. In: Machine Learning and Knowledge Discovery in Databases: Research Track - European Conference, {ECML} {PKDD} 2023, Turin, Italy, September 18-22, 2023, Proceedings, Part {III}. pp. 177–192. Springer (2023). https://doi.org/10.1007/978-3-031-43418-1\_11.
    URLBibTeXEndNoteDOI
  • 1.
    Felde, M., Koyda, M.: Interval-dismantling for lattices. International Journal of Approximate Reasoning. 159, 108931 (2023). https://doi.org/10.1016/j.ijar.2023.108931.
    URLBibTeXEndNoteDOI
  • 1.
    Stubbemann, M., Hanika, T., Schneider, F.M.: Intrinsic Dimension for Large-Scale Geometric Learning. Transactions on Machine Learning Research. (2023).
    URLBibTeXEndNote
  • 1.
    Koyda, M., Stumme, G.: Factorizing Lattices by Interval Relations. Int. J. Approx. Reason. 157, 70–87 (2023).
    URLBibTeXEndNote
  • 1.
    Dürrschnabel, D., Hanika, T., Stumme, G.: Drawing Order Diagrams Through Two-Dimension Extension. Journal of Graph Algorithms and Applications. 27, 783–802 (2023). https://doi.org/10.7155/jgaa.00645.
    URLBibTeXEndNoteDOI