Bachelor- und Masterarbeiten

Themen

Viele Aufgabenstellungen beschäftigen sich mit der Implementierung verschiedener Komponenten in eines der Websysteme, die am Fachgebiet betrieben werden, oder mit der Analyse der in solchen Systemen vorhandenen Daten. Darüber hinaus werden weitere Themen angeboten, die in der Regel einen inhaltlichen Bezug zu aktuellen Forschungsprojekten des Fachgebiets Wissensverarbeitung haben.

Die Themenstellung erfolgt in Absprache mit den Studierenden; die Ausrichtung und der Umfang der Arbeit richten sich nach dem jeweils angestrebten Anschluss. Prinzipiell liegt der Schwerpunkt bei Abschlussarbeiten auf der Methodik, während er bei Projektarbeiten auf der technischen Umsetzung liegt.

Zu folgenden Themengebieten können wir Arbeiten anbieten; zu konkreten Themen können die jeweiligen Betreuer*innen genauere Auskunft geben:

Temporal Ordinal Motifs in Topic Models

Topic models are, often, dimension reduction techniques for large corpora of textual documents. A central aspect to these models is that they allow for text based explanations of the dimensions in the reduced space. A novel technique, called ordinal motifs, interpret and visualize these dimension hierarchically with respect to (ordinal) substructures of standard shape. With your work, you extent this technique towards ordinal motifs over time, develop visualization techniques, and show their applicability in a practical setting.

Informationen: Johannes Hirth

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Methodischer Schwerpunkt, Technischer Schwerpunkt

Ordinal Motifs in Hierarchical Topic Models

Topic models are, often, dimension reduction techniques for large corpora of textual documents. A central aspect to these models is that they allow for text based explanations of the dimensions in the reduced space. A novel technique, called ordinal motifs, interpret and visualize these dimension hierarchically with respect to (ordinal) substructures of standard shape. With your work, you extent this technique towards hierarchical topic models, define hierarchical motif structures, develop visualization techniques, and show their applicability in a practical setting.

Informationen: Johannes Hirth

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Methodischer Schwerpunkt, Technischer Schwerpunkt

Network Motifs in Topic Flow Networks

In scientometrics, scientific collaboration is often analyzed by means of co-authorships. An aspect which is often overlooked and more difficult to quantify is the flow of expertise between authors from different research topics, which is an important part of scientific progress. With the Topic Flow Network (TFN) a graph structure for the analysis of research topic flows between scientific authors and their respective research fields was proposed. With your work, you identify and interpret substructures that are integral to this network.

Informationen: Johannes Hirth

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Technischer Schwerpunkt

Formal Concept Analysis mit Attribut und Objektordnungen

In dieser Arbeit untersuchen Sie, inwiefern sich die Theorie der formalen Begriffsanalyse auf den Fall übertragen lässt, dass wir eine lineare Ordnung auf den Attributen und den Objekten vorliegen haben.

Das Ziel ist es, die in der FCA üblichen Ideen (Begriffe, Implikationen etc.) auf solche Datensätze zu übertragen und die Theorie mit Echtwelt-Datensätzen zu evaluieren.

Informationen: Dominik Dürrschnabel

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Technischer Schwerpunkt

Invariants of Formal Contexts

It is not easy to recognise whether two (reduced) formal contexts are isomorphic, or given a set of formal contexts, how many different formal contexts are contained there. One aid are invariants, i.e. derived quantities, that do not depend on the concrete representation of the formal context. Simple examples are the number of attributes of the context or the number of objects of the context. If two contexts have different values for an invariant, the contexts are not isomorphic. The aim is to examine formal contexts with regard to possible invariants. Formal contexts can be represented as bipartite graphs, therefore, known graph invariants in particular are to be considered.

Inquiries: Tobias Hille

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Methodischer Schwerpunkt

Detecting Graphs in Images

The project aims to develop a machine learning model that can detect (simple) graphs in images. This involves not only an extensive literature review but also gathering useful training data. Moreover we need to train the model to recognize and segment images containing graphs. The project will use image classification algorithms and techniques to achieve this goal. Completing individual parts may already be enough for a successful conclusion. You will build upon work done by previous participants.
Most (if not all) of the programming will be done in Python.

Inquiries: Tobias Hille

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Methodischer Schwerpunkt, Technischer Schwerpunkt

Generators for and Properties of random bipartite Graphs

In this project, we will conduct a practical investigation into the random generation of bipartite graphs. We will build upon previous works in the field and analyze the properties of the produced distributions. Additionally, we will simulate real-world data, potentially using approaches like GAN training.
Most (if not all) of the programming will be done in Python.

Inquiries: Tobias Hille

Kategorien: Allgemein, Bachelorarbeit, Methodischer Schwerpunkt, Technischer Schwerpunkt

Implications in Conceptual Scaling

One way of computing dependencies in data set are implications. To extract implications from data sets, we first have to interpret the data on the ordinal level via a method called conceptual scaling. The implication that we find in the scaled data set can have two origins. The first are dependencies in the many-valued data set and the second are artifacts from the scaling process. With your work you develop a method to analyze these sets of implications separately.

Informationen: Johannes Hirth

Kategorien: Allgemein, Bachelorarbeit, Technischer Schwerpunkt

Decomposition of Concept Lattices

Conceptual structures are great hierarchical tools to analyze complex relations between data point. Recent approaches focus on identifying ordinal sub-structures of concept lattices that have specific shape, e.g., chains, cubes, cycles etc. The sub-structures are then used to derive highler level relations between data point or to explain the hierarchical structure. With your work, you study how this approach can be used to decompose concept lattices into sub-structures.

Informationen: Johannes Hirth

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Technischer Schwerpunkt

Stabilität von Formalen Kontexten

Wir nennen einen formalen Kontext stabil, wenn sich beim Setzen oder Entfernen jedes Kreuzes die Größe des Begriffsverbandes nicht verkleinert. Untersuchen Sie Echtweltdaten auf Stabilität und untersuchen Sie, inwiefern sich die Stabilität als Bewertungsmaß für intrinsisch sinnvolle Daten eignet.

Informationen: Dominik Dürrschnabel

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Technischer Schwerpunkt

Author Identification based on Paper Citations

Several venues use the double-blind review process to evaluate submitted research articles. We would like to understand how the citations used in the new paper give access to the identity of the anonymous author(s). An important part of your work would be the evaluation of previously proposed techniques [1] on new raw [2] or processed [3] datasets. Of course, there is also the possibility to apply newer approaches and your own ideas.
Most (if not all) of the programming will be done in Python.

Inquiries: Tobias Hille

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit, Technischer Schwerpunkt

Sanity Checks for Conceptual Views on Neural Networks

Conceptual views provide a new method to interprete the latent representations of a neural network. In this work, you compare the sensitivity of conceptual views to weight randomizations for different architectures.

Informationen: Johannes Hirth

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit

Intrinsic Triangulation of Loss Landscapes of Neural Networks

Recent work investigating geometry and topology of loss landscapes of neural networks revealed interesting properties regarding connectivity of clusters of local minima [1], [2]. In this work you will try to apply advances in computation intrinsic triangulation for 3d rendering [3] towards those surfaces (or reasonable hyperplane projections). One possible motivation for this is the change for an ability to construct geodesic paths on the constructed approximation.
Most (if not all) of the programming will be done in Python.

Inquiries: Tobias Hille

Kategorien: Allgemein, Masterarbeit, Methodischer Schwerpunkt, Technischer Schwerpunkt

Extracting Hypergraphs from Traffic Networks

Hypergraph datasets are well known in the context of author networks and knowledge graphs. However, hypergraphs can also be found in other domains, such as traffic networks. In this work, you should search for existing datasets from this domain and provide tooling to collect data from public web endpoints. A second part will deal with characterising different ways of interpreting and formatting the data as hypergraphs.
Most (if not all) of the programming will be done in Python.

Inquiries: Tobias Hille

Kategorien: Allgemein, Bachelorarbeit, Technischer Schwerpunkt

Core Numbers in Bipartite Networks

Core numbers are efficient valuations for nodes in networks. They are a measure to describe the structural integration of nodes. In this work, you should characterize and study core numbers for bipartite graphs.

Informationen: Johannes Hirth

Kategorien: Allgemein, Bachelorarbeit, Masterarbeit

Sprechen Sie uns gern zu weiteren Themen an. Informationen zu den einzelnen Themen geben Ihnen gerne vorab die Betreuer*innen.

Aufgabenstellung und Termin

Nach Absprache mit der/dem jeweiligen Betreuer*in.

Vorkenntnisse

Informatik Grundstudium bzw. 30 absolvierte Credits des Masterstudiums

Angesprochener Hörer*innenkreis

Informatik Bachelor und Master, Math. NF Inf. Hauptstudium

Umfang

9 Wochen für Bachelor und 6 Monate für Master

Leistungsnachweis

In der Regel Implementierung, schriftliche Ausarbeitung, Vortrag und ein Poster

Veranstalter

Prof. Dr. Gerd Stumme, Dr. Dominik Dürrschnabel, Tobias Hille, M.Sc., Johannes Hirth, M.Sc.