University of Kassel
Knowledge & Data Engineering Group

Knowledge & Data Engineering Group (KDE), EECS, University of Kassel

The research unit Knowledge & Data Engineering at the Department of Electrical Engineering/Computer Science is developing methods for knowledge discovery and representation (approximation and exploration of knowledge, order structures in knowledge, ontology learning) and for the analysis of (social) networks and related knowledge processes (metrics in networks, anomaly detection, characterization of social networks). Our focus is on the exact algebraic modelling of structures in knowledge and networks. Our research on foundations in order and lattice theory, description logics, graph theory and ontologies is complemented by applications in social media and scientometrics. The research unit Knowledge & Data Engineering is member in theInterdisciplinary Research Center for Information System Design (ITeG) and the International Centre for Higher Education Research (INCHER Kassel) at the University of Kassel, in theL3S Research Center and in the Hessian Center for Artificial Intelligence (hessian.AI).

Try our Social Bookmark System BibSonomy as well as our Name Search Engine Nameling now!

PhD Position for the research project “Towards Ordinal Data Science – Applications until 2023-06-30

See also Job offer on the homepage of the University of Kassel.

Our latest publications

  • Hirth, J., Horn, V., Stumme, G., Hanika, T.: Automatic Textual Explanations of Concept Lattices In: Ojeda-Aciego, M., Sauerwald, K., and Jäschke, R. (eds.) Graph-Based Representation and Reasoning. pp. 138–152. Springer Nature Switzerland, Cham (2023).
    BibTeXEndNote
  • Stumme, G., D{{ü}}rrschnabel, D., Hanika, T.: Towards Ordinal Data Science, https://doi.org/10.48550/arXiv.2307.09477, (2023).
    URLBibTeXEndNoteDOI
  • Felde, M., Koyda, M.: Interval-dismantling for lattices International Journal of Approximate Reasoning. 159, 108931 (2023).
    URLBibTeXEndNoteDOI
  • Hanika, T., Hirth, J.: Conceptual views on tree ensemble classifiers International Journal of Approximate Reasoning. 159, 108930 (2023).
    URLBibTeXEndNoteDOI
  • Stubbemann, M., Hanika, T., Schneider, F.M.: Intrinsic Dimension for Large-Scale Geometric Learning Transactions on Machine Learning Research. (2023).
    URLBibTeXEndNote
  • Dürrschnabel, D., Stumme, G.: Maximal Ordinal Two-Factorizations, http://arxiv.org/abs/2304.03338, (2023).
    URLBibTeXEndNote
  • Dürrschnabel, D., Stumme, G.: Greedy Discovery of Ordinal Factors, http://arxiv.org/abs/2302.11554, (2023).
    URLBibTeXEndNote
  • Stubbemann, M., Hille, T., Hanika, T.: Selecting Features by their Resilience to the Curse of Dimensionality (2023).
    BibTeXEndNote
  • Hirth, J., Horn, V., Stumme, G., Hanika, T.: Ordinal Motifs in Lattices, http://arxiv.org/abs/2304.04827, (2023).
    URLBibTeXEndNoteDOI
  • Ganter, B., Hanika, T., Hirth, J.: Scaling Dimension In: Dürrschnabel, D. and López-Rodríguez, D. (eds.) Formal Concept Analysis - 17th International Conference, {ICFCA} 2023, Kassel, Germany, July 17-21, 2023, Proceedings. pp. 64–77. Springer (2023).
    URLBibTeXEndNoteDOI
  • Felde, M., Stumme, G.: Attribute Exploration with Multiple Contradicting Partial Experts In: Braun, T., Cristea, D., and J{ä}schke, R. (eds.) Graph-Based Representation and Reasoning. pp. 51–65. Springer International Publishing, Cham (2022).
    BibTeXEndNoteDOI
  • Schäfermeier, B., Hirth, J., Hanika, T.: Research Topic Flows in Co-Authorship Networks, https://doi.org/10.1007/s11192-022-04529-w, (2022).
    URLBibTeXEndNoteDOI
  • Stubbemann, M., Stumme, G.: LG4AV: Combining Language Models and Graph Neural Networks for Author Verification In: Bouadi, T., Fromont, E., and H{ü}llermeier, E. (eds.) Advances in Intelligent Data Analysis XX. pp. 315–326. Springer International Publishing, Cham (2022).
    URLBibTeXEndNote
  • Dürrschnabel, D., Hanika, T., Stumme, G.: Discovering Locally Maximal Bipartite Subgraphs, http://arxiv.org/abs/2211.10446, (2022).
    URLBibTeXEndNote
  • Hanika, T., Schneider, F.M., Stumme, G.: {Intrinsic dimension of geometric data sets} Tohoku Mathematical Journal. 74, 23–52 (2022).
    URLBibTeXEndNoteDOI
  • Schäfermeier, B., Stumme, G., Hanika, T.: Mapping Research Trajectories, https://arxiv.org/abs/2204.11859, (2022).
    URLBibTeXEndNoteDOI
  • D{ü}rrschnabel, D., Hanika, T., Stubbemann, M.: FCA2VEC: Embedding Techniques for Formal Concept Analysis In: Missaoui, R., Kwuida, L., and Abdessalem, T. (eds.) Complex Data Analytics with Formal Concept Analysis. pp. 47–74. Springer International Publishing, Cham (2022).
    URLBibTeXEndNoteDOI
  • Felde, M., Koyda, M.: Interval-Dismantling for Lattices, https://arxiv.org/abs/2208.01479, (2022).
    URLBibTeXEndNoteDOI
  • Schaefermeier, B., Stumme, G., Hanika, T.: Topic space trajectories Scientometrics. 126, 5759–5795 (2021).
    URLBibTeXEndNoteDOI
  • Schaefermeier, B., Stumme, G., Hanika, T.: Topological Indoor Mapping through WiFi Signals (2021).
    URLBibTeXEndNote
  • Schäfermeier, B., Stumme, G., Hanika, T.: Towards Explainable Scientific Venue Recommendations, http://arxiv.org/abs/2109.11343, (2021).
    URLBibTeXEndNote
  • Schäfermeier, B., Hanika, T., Stumme, G.: Distances for WiFi Based Topological Indoor Mapping 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous), November 12--14, 2019, Houston, TX, USA (2019).
    BibTeXEndNoteDOI