Bachelor- und Masterarbeiten
Themen
Viele Aufgabenstellungen beschäftigen sich mit der Implementierung verschiedener Komponenten in eines der Websysteme, die am Fachgebiet betrieben werden, oder mit der Analyse der in solchen System vorhandenen Daten. Darüber hinaus werden weitere Themen angeboten, die in der Regel einen inhaltlichen Bezug zu aktuellen Forschungsprojekten des Fachgebiets Wissensverarbeitung haben.
Die Themenstellung erfolgt in Absprache mit den Studierenden; die Ausrichtung und der Umfang der Arbeit richtet sich nach dem jeweils angestrebten Anschluss. Prinzipiell liegt der Schwerpunkt bei Abschlussarbeiten auf der Methodik, während er bei Projektarbeiten auf der technischen Umsetzung liegt.
Zu folgenden Themengebieten können wir Arbeiten anbieten; zu konkreten Themen können die jeweiligen Betreuer genauere Auskunft geben.
Intrinsische Dimension und Knoteneinbettungen
In dieser Arbeit soll untersucht werden, wie hoch die intrinsische Dimension von Datensätzen ist, welche mit verschiedenen Knoteneinbettungsverfahren aus Graphen erstellt wurden.
Informationen: Maximilian Stubbemann
Stabilität der intrinsischen Dimension
Es gibt mehrere Maße, um die intrinsische Dimension von Datensätzen abzuschätzen. In dieser Arbeit soll untersucht werden, inwieweit diese Maße stabil gegenüber “kleinen” Manipulationen/Fehler in den Datensätzen sind.
Informationen: Maximilian Stubbemann
Operationen aus der Relationalen Algebra in der Begriffsanalyse
Operationen (Joins etc) aus der Relationalen Algebra werden häufig verwendet um Daten zu verbinden oder zu kombinieren. Dadurch ergeben sich neue Zusammenhänge zwischen Objekten oder deren Eigenschaften. Eine Methode, um solche Zusammenhänge zu analysieren, kommt aus der Begriffsanalyse. Hierbei werden Veränderungen in der Begrifflichen Struktur analysiert und herausgearbeitet. In dieser Arbeit studieren Sie, wie sich die Begriffliche Struktur eines Datensatzes unter Verwendung von Operationen aus der Relationalen Algebra verändert.
Informationen: Johannes Hirth
Community Detection in WikiData zur Datensatzgenerierung
Knowlegde Graphs wie WikiData enthalten sehr viel Wissen, das im Bereich der künstlichen Intelligenz in vielen Anwendungen eingesetzt werden kann. Der Umfang an Informationen ist aber auch ein Problem für viele Anwendungen. Ihre Aufgabe besteht darin, Methoden der Community Detection in sozialen Netzwerken auf die Struktur von WikiData zu übertragen. Des Weiteren sollen Sie untersuchen, wie diese Methoden genutzt werden können, um kleinere Teil-Datensätze aus WikiData zu extrahieren.
Informationen: Johannes Hirth
Evaluierung von Graphzeichnungen
Ziel dieser Arbeit ist es, zu evaluieren, welche “weichen” Kriterien für Graphzeichnungen in der Praxis wie stark mit als “schön” wahrgenommenen Zeichnungen korellieren. Außerdem soll untersucht werden, inwieweit die “wichtigen” Kriterien sich beim Zeichnen von Graphen und Ordnungsdiagrammen unterscheiden.
Informationen: Maximilian Stubbemann
Automatisierte Themenbenennung
Topic Models berechnen i.d.R. Themen, aus denen sich ihre “wichtigsten” Wörter ableiten lassen. In der Forschung existieren bereits einige Ansätze zur automatisierten Benennung von Themen solcher Wortmengen. In dieser Arbeit sollen verschiedene bestehende sowie mindestens ein eigener Ansatz implementiert und miteinander verglichen werden.
Informationen: Bastian Schäfermeier
Thematische Trajektorien mit Dynamischen Topic Models
Am Fachgebiet Wissensverarbeitung wird zur Zeit an thematischen Trajektorien von wissenschaftlichen Konferenzen und Journalen geforscht. In unserer Forschung wurden (statische) Themen durch die sogenannte Nonnegative Matrix Factorization (NMF) extrahiert. In dieser Arbeit sollen dynamische Verfahren, bei denen sich Themen über die Zeit ändern (z.Bsp. D-LDA), auf ihre Tauglichkeit überprüft werden.
Informationen: Bastian Schäfermeier
K-Means und FCA
K-means, oder genauer Lloyds-Algorithmus, ist eine Technik, durch welche Datenpunkte im Euklidischen Raum in eine Anzahl von k-Clustern zerlegt werden können. Durch wiederholtes Ausführen mit unterschiedlichem k entsteht eine Menge von sich teilweise überlappenden Clustern. Durch das Hinzufügen der Schnitte der einzelnen Cluster können diese zu einer Verbandsstruktur erweitert werden. Dieser Verband wiederum hat einen zugehörigen formalen Kontext.
Das Ziel dieses Projektes ist es zu untersuchen, inwiefern diese Cluster mit dem Hüllensystem des formalen Kontextes zusammenhängen.
Informationen: Dominik Dürrschnabel
Invarianten für Formale Kontexte
Es ist nicht einfach zu erkennen, ob zwei (reduzierte) Formale Kontexte isomorph sind, bzw. gegeben eine Menge Formaler Kontexte zu erkennen, wie viele verschiedene Formale Kontexte dort enthalten sind. Ein Hilfsmittel sind Invarianten, also abgeleitete Größen, die nicht von der konkreten Darstellung des Formalen Kontexts abhängen, beispielsweise die Anzahl der Attribute des Kontexts oder auch die Anzahl der Begriffe des Kontexts. Haben zwei Kontexte unterschiedliche Werte für eine Invariante, so sind die Kontexte nicht isomorph. Ziel ist es, Formale Kontexte hinsichtlich möglicher Invarianten zu untersuchen. Formale Kontexte können als bipartite Graphen dargestellt werden, daher sollen insbesondere bekannte Graph-Invarianten in Betracht gezogen werden.
Informationen: Maximilian Felde
Eigenschaften von Knoteneinbettungen
In dieser Arbeit sollen verschiedene Einbettungsverfahren für Netzwerke dahingehend untersucht werden, inwiefern Eigenschaften wie “Nähe” im Ko-Autorengraphen mit der Nähe in der Einbettung korrespondiert. Bei welchen Verfahren werden Nachbarn “nahe” eingebettet? Korrespondiert die Pfadlänge von Knoten im Graphen zu ihrem Abstand im Graphen? Als weiterer Schritt kann hier untersucht werden, ob ein Klassifikator aus einem Graphen und einer Einbettung entscheiden kann, mit welchem Verfahren der Graph eingebettet wurde.
Informationen: Maximilian Stubbemann
Concept Neural Networks
Bei der Klassifikation in Graphen ist es üblich, mittels Graph Neuronalen Netzen (GNNs) die Struktur des Graphen zu nutzen, um die Klassifikation von Knoten zu verbessern. Ziel dieser Arbeit ist es, diesen Ansatz auf die Formale Begriffsanalyse zu übertragen, indem die “Faltungsoperation” anhand von Konzepten durchgeführt wird. Vergleichen Sie dieses Verfahren mit anderen Verfahren, die neuronale Netze basierend auf Begriffsverbänden nutzen!
Informationen: Maximilian Stubbemann
Reduktionstechniken in der Formalen Begriffsanalyse
Ein Problem für Algorithmen der Formalen Begriffsanalyse ist die Größe der Daten. In dieser Arbeit sollen verschiedene Techniken zur Größenreduktion oder Kompression zusammengetragen und gegenübergestellt werden. Dabei soll insbesondere auf den Informationsverlust in einem geeigneten Formalismus eingegangen werden.
Informationen: Johannes Hirth
PCA auf formalen Kontexten
Principal Component Analysis dient dazu, Datensätze zu vereinfachen. Hierbei wird eine große Menge an (möglicherweise) korrelierten Variablen in eine möglichst aussagekräftige kleinere Menge transformiert. Dieses Vorgehen soll auf formale Kontexte übertragen werden, um ihre Merkmalsmenge einzuschränken.
Informationen: Maren Koyda
Aufgabenstellung und Termin
Nach Absprache mit dem jeweiligen Betreuer.
Vorkenntnisse
Informatik Grundstudium bzw. 30 absolvierte Credits des Masterstudiums
Angesprochener HörerInnenkreis
Informatik Bachelor und Master, Math. NF Inf. Hauptstudium
Umfang
9 Wochen für Bachelor und 6 Monate für Master
Leistungsnachweis
In der Regel Implementierung, schriftliche Ausarbeitung und Vortrag
Veranstalter
Prof. Dr. Gerd Stumme, Dr. Tom Hanika, Bastian Schäfermeier, M.Sc., Dominik Dürrschnabel, M.Sc., Johannes Hirth, M.Sc., Maren Koyda, M.Sc., Maximilian Felde, M.Sc., Maximilian Stubbemann, M.Sc..