University of Kassel
Knowledge & Data Engineering Group

Knowledge & Data Engineering Group (KDE), EECS, University of Kassel

The research unit Knowledge & Data Engineering at the Department of Electrical Engineering/Computer Science is developing methods for knowledge discovery and representation (approximation and exploration of knowledge, order structures in knowledge, ontology learning) and for the analysis of (social) networks and related knowledge processes (metrics in networks, anomaly detection, characterization of social networks). Our focus is on the exact algebraic modelling of structures in knowledge and networks. Our research on foundations in order and lattice theory, description logics, graph theory and ontologies is complemented by applications in social media and scientometrics. The research unit Knowledge & Data Engineering is member in the Interdisciplinary Research Center for Information Systems Design (ITeG) and the International Centre for Higher Education Research (INCHER Kassel) at the University of Kassel, and in the Hessian Center for Artificial Intelligence (hessian.AI).

Our latest publications

  • 1.
    Tolzin, A., Hille, T., Knoth, N., Janson, A.: Mining Hidden Prompt Engineering Patterns with Formal Concept Analysis and Association Rules. In: Bui, T.X. (ed.) 59th Hawaii International Conference on System Sciences, {HICSS} 2026. ScholarSpace (2026).
    URLBibTeXEndNote
  • 1.
    Abdulla, M., Hille, T., Dürrschnabel, D., Stumme, G.: Rises for Measuring Local Distributivity in Lattices. In: Cellier, P., Ganter, B., and Missaoui, R. (eds.) SpringerLink. pp. 392–407. Springer, Cham, Switzerland (2025). https://doi.org/10.1007/978-3-032-03364-2_25.
    URLBibTeXEndNoteDOI
  • 1.
    Gutekunst, K.M., D{ü}rrschnabel, D., Hirth, J., Stumme, G.: Conceptual Topic Aggregation. In: Cellier, P., Ganter, B., and Missaoui, R. (eds.) Conceptual Knowledge Structures. pp. 3–18. Springer Nature Switzerland, Cham (2025).
    BibTeXEndNote
  • 1.
    Abdulla, M., Hille, T., D{ü}rrschnabel, D., Stumme, G.: Rises for Measuring Local Distributivity in Lattices. In: Cellier, P., Ganter, B., and Missaoui, R. (eds.) Conceptual Knowledge Structures. pp. 392–407. Springer Nature Switzerland, Cham (2025).
    BibTeXEndNote
  • 1.
    Hirth, J., Hanika, T.: The Geometric Structure of Topic Models. In: Cellier, P., Ganter, B., and Missaoui, R. (eds.) CONCEPTS. pp. 19–34. Springer (2025).
    URLBibTeXEndNote
  • 1.
    Stubbemann, M., Hille, T., Hanika, T.: Unsupervised Selection of Features by Their Resilience to the Curse of Dimensionality. In: Braun, T., Paaßen, B., and Stolzenburg, F. (eds.) KI. pp. 161–174. Springer (2025).
    URLBibTeXEndNote
  • 1.
    de Portugal Mecke, D.C., Alyoussef, H., Stubbemann, M., Koloiarov, I., Hanika, T., Schmidt-Thieme, L.: STADE: Standard Deviation as a Pruning Metric, https://arxiv.org/abs/2503.22451, (2025).
    URLBibTeXEndNote
  • 1.
    Hille, T., Hanika, T.: Incomplete Formal Contexts and Their Intrinsic Dimension. In: Cellier, P., Ganter, B., and Missaoui, R. (eds.) SpringerLink. pp. 342–358. Springer, Cham, Switzerland (2025). https://doi.org/10.1007/978-3-032-03364-2_22.
    URLBibTeXEndNoteDOI
  • 1.
    Hanika, T., Jäschke, R.: A Repository for Formal Contexts. In: Proceedings of the 1st International Joint Conference on Conceptual Knowledge Structures (2024).
    URLBibTeXEndNote
  • 1.
    Hirth, J., Hanika, T.: The Geometric Structure of Topic Models, (2024). https://doi.org/10.48550/arxiv.2403.03607.
    BibTeXEndNoteDOI
  • 1.
    Hirth, J.: Conceptual Data Scaling in Machine Learning, (2024). https://doi.org/10.17170/kobra-2024100910940.
    BibTeXEndNoteDOI
  • 1.
    Horn, V., Hirth, J., Holfeld, J., Behmenburg, J.H., Draude, C., Stumme, G.: Disclosing Diverse Perspectives of News Articles for Navigating between Online Journalism Content. In: Nordic Conference on Human-Computer Interaction. Association for Computing Machinery, Uppsala, Sweden (2024). https://doi.org/10.1145/3679318.3685414.
    URLBibTeXEndNoteDOI
  • 1.
    Hanika, T., Hille, T.: What is the intrinsic dimension of your binary data? -- and how to compute it quickly. In: CONCEPTS. pp. 97–112. Springer (2024).
    URLBibTeXEndNote
  • 1.
    Hirth, J., Horn, V., Stumme, G., Hanika, T.: Ordinal motifs in lattices. Information Sciences. 659, 120009 (2024). https://doi.org/https://doi.org/10.1016/j.ins.2023.120009.
    URLBibTeXEndNoteDOI
  • 1.
    Hille, T., Stubbemann, M., Hanika, T.: Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research, (2024).
    BibTeXEndNote
  • 1.
    Abdulla, M., Hirth, J., Stumme, G.: The Birkhoff Completion of Finite Lattices. In: Cabrera, I.P., Ferré, S., and Obiedkov, S. (eds.) Conceptual Knowledge Structures. pp. 20–35. Springer Nature Switzerland, Cham (2024).
    BibTeXEndNote
  • 1.
    Draude, C., Dürrschnabel, D., Hirth, J., Horn, V., Kropf, J., Lamla, J., Stumme, G., Uhlmann, M.: Conceptual Mapping of Controversies. In: Cabrera, I.P., Ferré, S., and Obiedkov, S. (eds.) Conceptual Knowledge Structures. pp. 201–216. Springer Nature Switzerland, Cham (2024).
    BibTeXEndNote
  • 1.
    Draude, C., D{ü}rrschnabel, D., Hirth, J., Horn, V., Kropf, J., Lamla, J., Stumme, G., Uhlmann, M.: Conceptual Mapping of Controversies. In: Cabrera, I.P., Ferr{é}, S., and Obiedkov, S. (eds.) Conceptual Knowledge Structures. pp. 201–216. Springer Nature Switzerland, Cham (2024).
    BibTeXEndNote
  • 1.
    Draude, C., Engert, S., Hess, T., Hirth, J., Horn, V., Kropf, J., Lamla, J., Stumme, G., Uhlmann, M., Zwingmann, N.: Verrechnung – Design – Kultivierung: Instrumentenkasten für die Gestaltung fairer Geschäftsmodelle durch Ko-Valuation, https://plattform-privatheit.de/p-prv-wAssets/Assets/Veroeffentlichungen_WhitePaper_PolicyPaper/whitepaper/WP_2024_FAIRDIENSTE_1.0.pdf, (2024). https://doi.org/10.24406/publica-2497.
    URLBibTeXEndNoteDOI
  • 1.
    Dürrschnabel, D., Priss, U.: Realizability of Rectangular Euler Diagrams, (2024).
    BibTeXEndNote