Ontology learning for Information Extraction in functional genomics - the Caderige project

Claire Nédellec

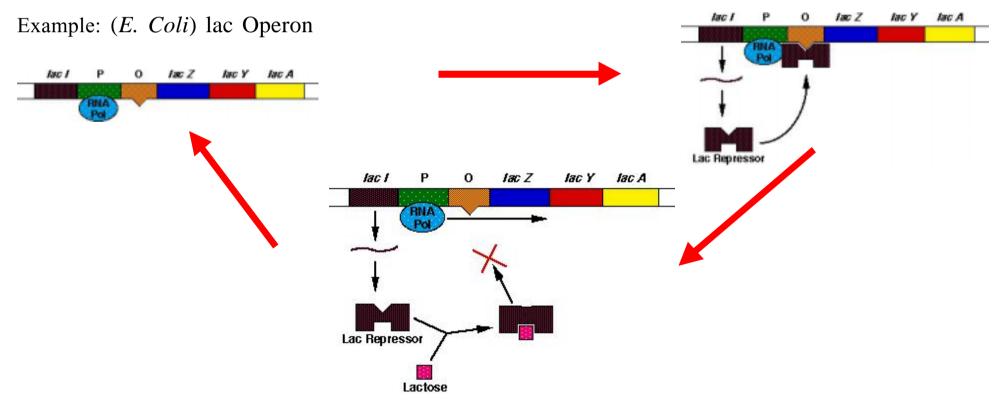
MIG (Mathématiques, Informatique et Génome) INRA (Institut National de Recherche en Agronomie)

France <u>nedellec@versailles.inra.fr</u>

Functional genomics, a test-case for IE from the semantic web

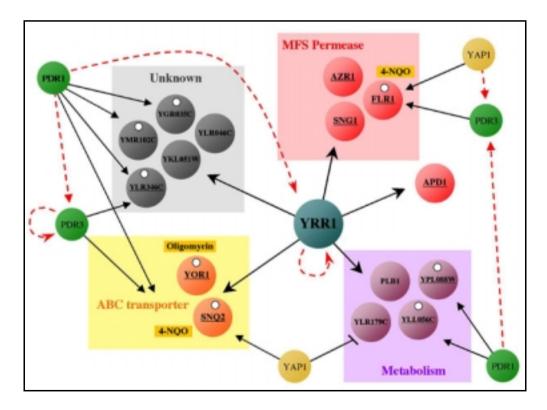
Most of the IE tasks as defined in MUC do not require deep analysis IE patterns can then be hand-coded.

Finding a price in a text comes to point out the dollar sign and look for a sequence of digits (from [Soderland, 98]) Capitol Hill - 1 br twnhme. fplc D/W W/D. Undrgrnd pkg incl \$675. 3BR, upper flr or turn of ctry HOME. incl gar, grt N. Hill loc \$995. (206) 999-9999


But, in many web documents,

- Learning is needed because of the low coverage of hand-coded patterns
- Deeper understanding linguistic methods are required for identifying the discriminant regularities

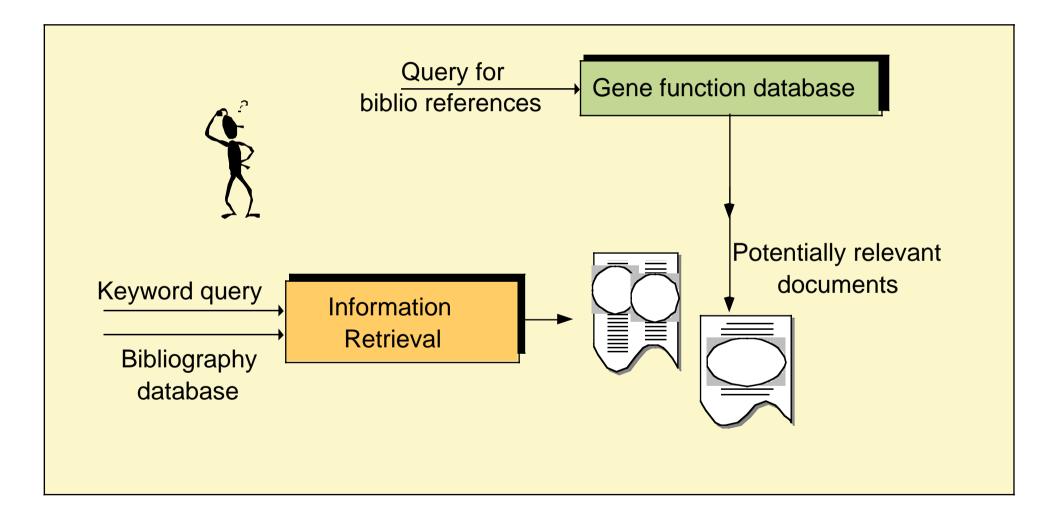
It is the case in *functional* genomics


Gene function

- The proteins are molecules that accomplish most of the functions of the living cells (catalysis, defense, acquiring and transforming energy).
- Genes are DNA sequences that express proteins.
- Proteins are also responsible of the gene activation and inhibition

Gene regulation network

• Gene and protein activity may be part of a whole regulation network Example: Characterization of YRR1 transcription factor regulation system for a better knowledge of the PDR (pleitotropic drug resistance) network in the yeast *Saccharomyces cerevisiae*.


Discovering the gene function

- Experimental approaches for few genes at a time (sequencing, functional analysis)
- Inference by homology in silico: "my new gene should have the same function as similar genes" (and what, if many of them?)
- Large scale study (regulation network): databases and information extraction in bibliography from the web, of gene interaction / phenotype / gene reaction to environmental conditions and experimentation (ADN chips),

Two	examples	of	web	bibliography	databases
-----	----------	----	-----	--------------	-----------

	MedLine	FlyBase	
DB Size	> 12 millions of refs.	> 9500 genes recorded	

Bibliography access

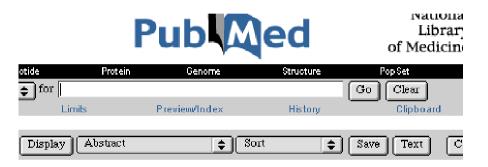
MedLine content

http://www.ncbi.nlm.nih.gov/entrez/

	F	Pub	ed	Nati Lib of Med
cleotide	Protein	Genome	Structure	Pop Set
🚖 for	Bacillus subti	lis transcription		Go Clear
	Limits	Preview/Index	History	Clipboar
Displa		\$ Sor	t 🌩	Save Text
Show:	20	Items 1-20 of 2243		Page 1 of 113

1 Fisher SH, Brandenburg JL, Wray LV.

Mutations in Bacillus subtilis glutamine synthetase that block its interaction wir Mol Microbiol. 2002 Aug;45(3):627-35. PMID: 12139611 [PubMed - in process]


2: <u>Li PT, Gollnick PD.</u>

Using hetero-11-mers composed of wild-type and mutant subunits to study try RNA binding. J Biol Chem. 2002 Jul 19 [epub ahead of print] PMID: 12133840 [PubMed - as supplied by publisher]

🔲 3: Ogura M, Tanaka T.

Recent progress in bacillus subtilis two-component regulation. Front Biosci. 2002 Aug 1;7:D1815-24. PMID: 12133819 [PubMed - in process]

📕 4: Studholme DJ.

📃 1 : J Biol Chem 1999 Mar 19;274(12):8322-7

FREE full text article at www.jbc.org

Negative regulation by the Bacillus subtilis GerE protein.

Ichikawa H, Halberg R, Kroos L.

Department of Biochemistry, Michigan State University, East Lansing, Michigan 48

GerE is a transcription factor produced in the mother cell compartment of sporulatin genes encoding proteins that form the spore coat late in development. Most cot gene sigmaK. RNA polymerase. Previously, it was shown that the GerE protein inhibits t sigmaK. Here, we show that GerE binds near the sigK transcriptional start site, to a containing the GerE-binding site in the promoter region was expressed at a 2-fold la than gerE mutant cells. Likewise, the level of SigK protein (i. e. pro-sigmaK and si than in a gerE mutant. These results demonstrate that sigmaK-dependent transcriptic which GerE acts as a repressor to limit production of sigmaK. In addition, GerE dir genes. We show that GerE binds to two sites that span the -35 region of the cotD pr transcription of cetD by sigmaK RNA nolymerase in with but a bisher level of Ger

A MedLine abstract

UI - 99175219

- AU Ichikawa H
- AU Halberg R
- AU Kroos L
- TI Negative regulation by the Bacillus subtilis GerE protein.

••

PT - JOURNAL ARTICLE

••

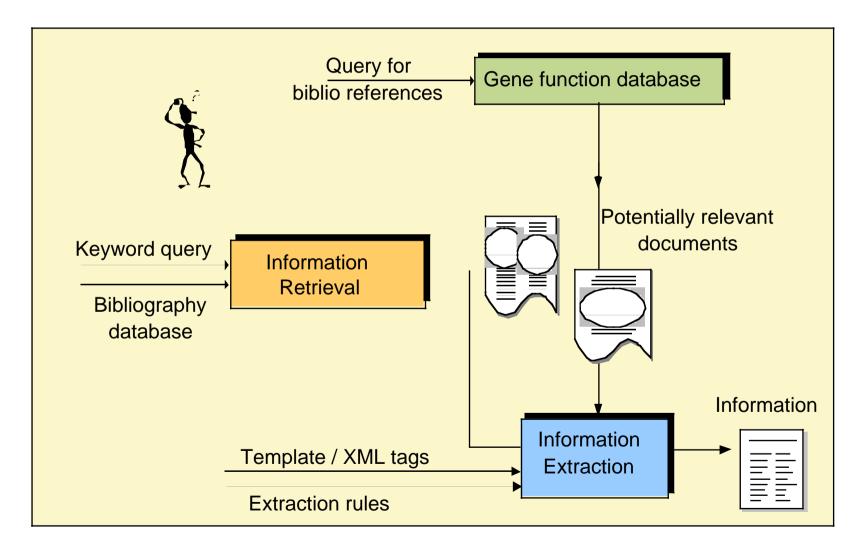
- DA 19990415
- DP 1999 Mar 19
- IS 0021-9258
- TA J Biol Chem

AB - GerE is a transcription factor produced in the mother cell compartment of sporulating Bacillus subtilis. It is a critical regulator of cot genes encoding proteins that form the spore coat late in development. Most cot genes, and the

gerE gene, are transcribed by sigmaK RNA polymerase. Previously, it was shown that the GerE protein

inhibits transcription in vitro of the sigK gene encoding sigmaK. Here, we show that GerE binds near the sigK transcriptional start site, to act as a repressor. A sigK-lacZ fusion containing the GerE-binding site in the promoter region was expressed at a 2-fold lower level during sporulation of wild-type cells than gerE mutant cells. Likewise, the level of SigK protein (i. e. pro-sigmaK and sigmaK) was lower in sporulating wild-type cells than in a gerE mutant. These results demonstrate that sigmaK-dependent transcription of gerE initiates a negative feedback loop in which GerE acts as a repressor to limit production of sigmaK. In addition, GerE directly represses transcription of particular cot genes. We show that GerE binds to two sites that span the -35 transcription. The upstream GerE-binding site was required for activation but not for repression. These results suggest that a rising level of GerE in sporulating cells may first activate cotD transcription from the upstream site then repress transcription as the downstream site becomes occupied. Negative regulation by GerE, in addition to its positive effects on transcription, presumably ensures that sigmaK and spore coat proteins are synthesized at optimal levels to produce a germinationcompetent spore.

- AD Department of Biochemistry, Michigan State University, East Lansing,
- Michigan 48824, USA.PMID- 0010075739
- EDAT- 1999/03/13 03:11
- MHDA- 1999/03/13 03:11
- URL http://www.jbc.org/cgi/content/full/274/12/8322
- SO J Biol Chem 1999 Mar 19;274(12):8322-7


Discovering the function of the genes: an Information Extraction problem

Two examples of the IE problem in functional genomics

- Inference by homology: A biologist at MIG annotates 8 genes of Lactobacillus bulgaricus per day.
 One third stays unannotated because bibliographic references are too long to process. 2000 genes have to be annotated!
- Large sacale study: The query "Bacillus subtilis transcription" retrieves 2243 references from MedLine

⇒ Information extraction must be partially automated

Bibliography access

Information to be extracted from a text fragment

Fragment from a Medline abstract

[..] the GerE protein inhibits transcription in vitro of the sigK gene encoding sigmaK[..]

Filled form

Interaction	Type : negative	
	Agent : GerE protein	
	Target: Expression	Source : sigK gene
		Product : sigmaK

Equivalently, XML tagging

The <agent type=protein>GerE protein</agent> <interaction type=negative>inhibits </interaction> <target type=expression>transcription of <source type=gene>the sigK gene</source> encoding <product>sigmaK</product></target>

Information extraction in functional genomics

Three main approaches for automating IE:

- 1. Hand-coded patterns
- 2. Learning keyword-based extraction patterns
- 3. Learning linguistics-based extraction rules

1. Hand-coded IE patterns [Ono et al., 2001]

One simple example from Ono's:

<u>Bnrlp</u> interacts with another Rho family member, <u>Rho4p</u>, but not with <u>Rho1p</u>.

Patterns:Pattern1:Protein1 * interact/stimulate/inhibit <space> with <space>Protein2 *Pattern2:Pattern1 * but <space> not <space> Protein3

Result:

	Type: positive	Type : negative
Interaction	Agent: Bnr1p	Agent: Bnr1p
	Target: Rho4p	Target: Rho1p

1. Hand-coded IE patterns

Counter example from Caderige:

<u>GerE</u> <u>stimulates</u> <u>cotD</u> transcription and <u>cotA</u> transcription [...], and, unexpectedly, <u>inhibits</u> [...] transcription of the <u>gene</u> (<u>sigK</u>) [...]

Result with pattern1:

	Type: positive	Type : negative		
Interaction	Agent: GerE	Agent: GerE, cotD, cotA		
	Target: cotD, cotA, sigK	Target: <mark>sigK</mark>		

- \Rightarrow Additional constraint on the number of words between the elements of the triple: *Distance* ≤ 5 words
- ⇒ High precision but *low* recall (you can never be exhaustive)

2. Keyword-based rule learning

[Marcotte et al., 2001], [Nedellec et al., 2001]

• Assumption

Sentences with less than two (0, or 1) gene/protein names *do not* mention gene interactions.

• Learning in 3 phases

- 1. Select the sentences with at least two gene names
- 2. Classify the sentences by hand, as relevant or not
- 3. Learn a classifier with the learning set (vector representation)

Training examples

Vector representation

Sentences are lemmatized Stop-words and gene names are suppressed The words represent the vector attributes, the values are boolean

Training example from Bacillus subtilis

Sentence: In addition, GerE stimulates cotD transcription and inhibits cotA transcription in vitro by sigma K RNA polymerase, as expected from in vivo studies, and, unexpectedly, profoundly inhibits in vitro transcription of the gene (sigK) that encodes sigma K.

Example : addition stimulate transcription inhibit transcription vitro RNA polymerase expected vivo study unexpectedly profoundly inhibit vitro transcription gene encode
Class : Positive

Evaluation of keyword-based rule learning

Example of an evaluation on gene interaction in *Bacillus subtilis* Four methods with, and without feature selection [Nedellec *et al*, PKDD'01]

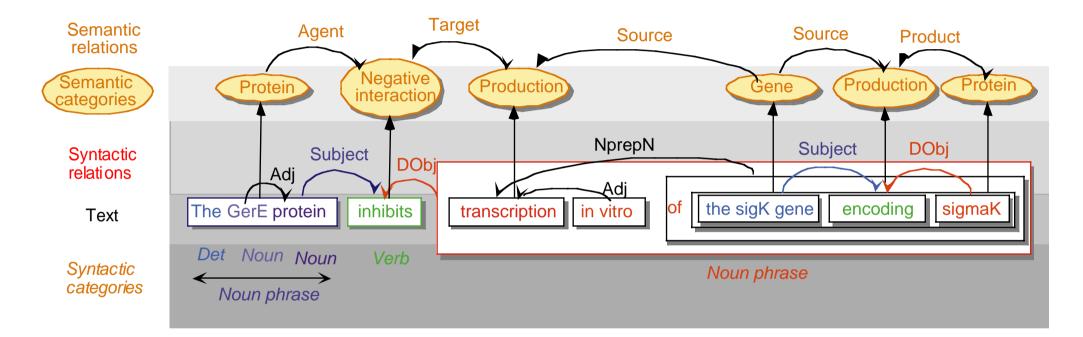
Corpus	Bacillus subtilis corpus							
Method	BN		IVI		IVI+BN		SVM	
# attributes	all 2340	1800	all 2340	1900	all 2340	1500	all 2340	1800
Recall positive	85,7	90,8	82,6	91,5	70,00	90,00	70,21	77,02
Precision positive	66,6	74,1	67,4	78,3	67,14	85,11	69,62	78,52
Recall	71,1	77,5	71	82,8	67,60	84,12	69,53	75,86
Precision	71,1	79,9	71	83,2	67,60	87,89	69,53	78,21

⇒ Good precision and recall but no precise information retrieved (sentence level).

3. Linguistic-based extraction patterns

Conclusion on keyword-based learning

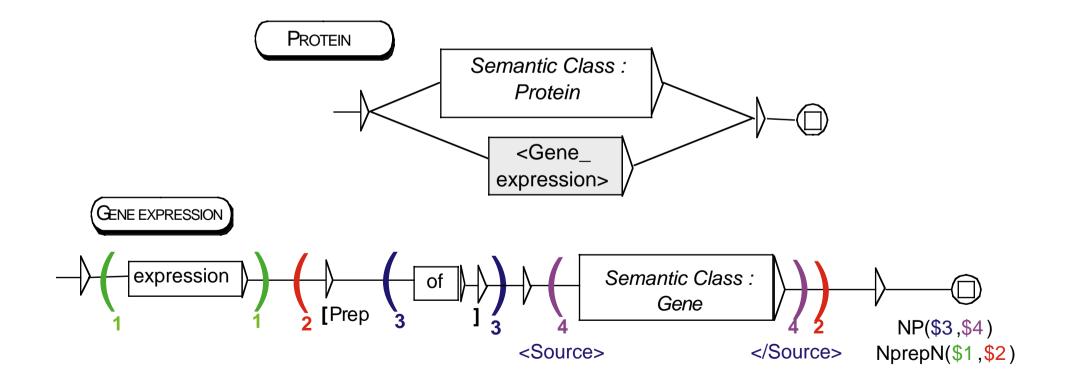
For a good precision and a high recall, extraction rules should include conditions on different *text analysis levels*, syntactic and semantic.


⇒ Information extraction in two phases [Riloff, Soderland, Freitag, Ciravegna]

1. Sentence processing

Parsing and semantic tagging for an enriched and normalized text representation

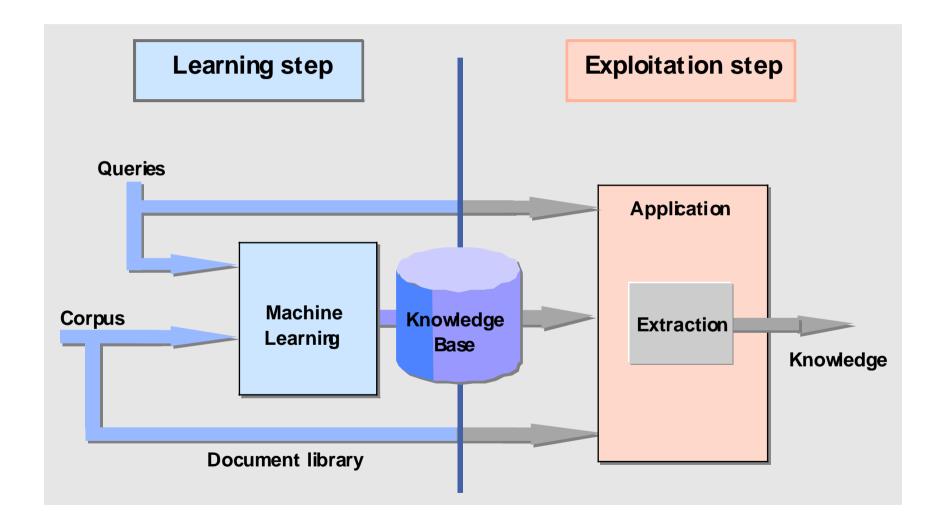
2. Application of extraction patterns on this representation


Normalized text representation

Semanticrelationagent(Ger_protein, inhibit), cible(transcription, inhibit), ...Semanticcategoryconcept(Ger_protein, protein), concept(inibit, negative_interaction), ...Syntacticrelationsubject(Ger_protein, inhibit), DObj(transcription, inhibit), ...Texttk(the), tk(Ger_protein), tk(inhibit), tk(transcription), tk(of), ...Syntacticcategorycat(the, det), cat(Ger_protein, term), cat(inhibit, verb), ...

Example of EI pattern: a transducer for protein identification and mark up

The automata use the syntactic and semantic information from the parsing phase to identify proteins in the text.


Example of EI pattern: a transducer for gene interaction identification and mark up

What knowledge for extracting information

Types of knowledge needed	How to get it	
• Syntactic	Tools	
• Syntactic categories (parts of speech)	 Morphosyntactic taggers 	
• Syntactic relations (dependencies)	• Syntactic parsers	
Semantic	Background knowledge learned	
• Semantic categories (conceptual	from corpus	
hierarchies), restrictions of selection	• Distributional semantics	
	(clustering)	
• Subcategorization frames	• Grammatical inference, ILP	
• Predicate schemata	• FOL clustering	
Extraction rules	• Relational learning, ILP	

Knowledge learning and information extraction

Learning information	extraction patterns
Types of knowledge needed	How to get it
 Syntactic Syntactic categories (parts of speech) Syntactic relations (dependencies) 	Tools • Morphosyntactic taggers • Syntactic parsers
 Semantic Semantic categories (conceptual hierarchies), restrictions of selection Subcategorization frames Predicate schemata 	
Extraction rules	• Relational learning, ILP

Learning information extraction patterns

Active domain research from the beginning of the nineties (MUC)

Learning extraction rules from free and semi-structured texts
 AutoSlog [Riloff, 93-99]
 LIEP [Huffmann, 96]
 SRV [Freitag, 98]
 Crystal [Soderland, 95], Whisk [Soderland, 99]
 WAWE [Aseltine, 99]
 Pinocchio, LP2 [Ciravegna, 00-02]
 ILP RHB+ [Sasaki & Matsuo, 00]

• Learning methods

Attribute-value methods (C4.5, Naïve Bayes), propositional Relational methods bottom-up and top-down (FOIL-like) Grammatical inference (Alergia)

Example

Annotated sentence

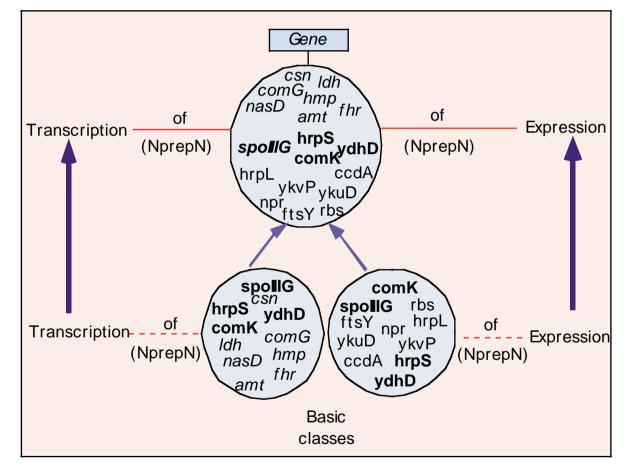
•••

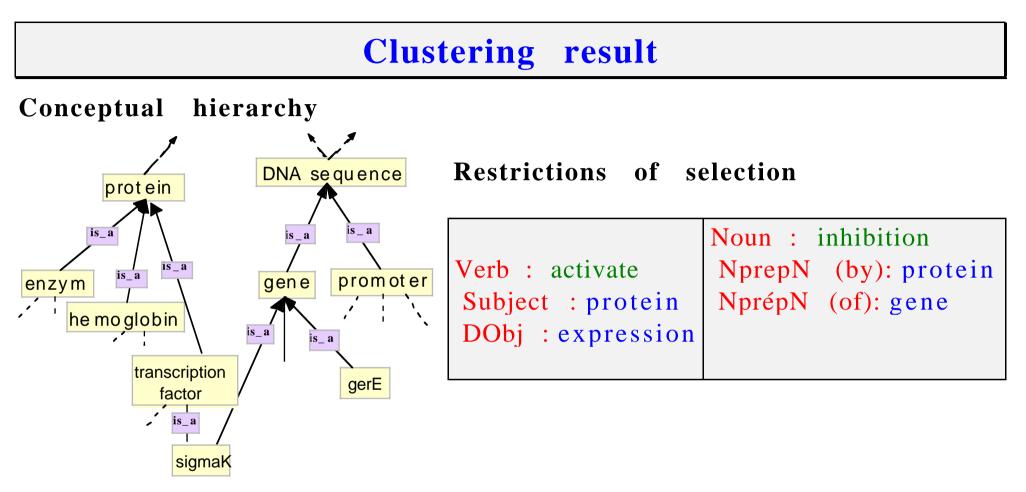
The <agent type=protein>GerE protein</agent> <interaction type=negative>inhibits </interaction> <target type=expression>transcription of <source type=gene>the sigK gene</source> encoding <product>sigmaK</product></target>

Positive example of the field agent

interaction_agent(GerE protein):-

tk(the), tk(Ger_protein), tk(inhibit), tk(transcription), tk(of), ... cat(the, det), cat(Ger_protein, term), cat(inhibit, verb), ... next-token(the, Ger_protein), next-token(Ger_protein, inhibit), ... subject(Ger_protein, inhibit), DObj(transcription, inhibit), ... concept(Ger_protein, protein), concept(inibit, negative_interaction), ... agent(Ger_protein, inhibit), cible(transcription, inhibit), ...


Open problems


- Role of the additional knowledge (syntactic and semantic tags and relations)
- can normalize and increase the textual regularities (e.g. replacing terms by concepts) but potentially suppress discriminant attributes
- potentially add discriminant attributes but drastically augment the search space
- ⇒ Feature granularity and selection problem Obviously depend on the information to be extracted
- Learning the additional knowledge

Learning background	knowledge for IE
Types of knowledge needed	How to get it
 Syntactic Syntactic categories (parts of speech) Syntactic relations (dependencies) 	Tools • Morphosyntactic taggers • Syntactic parsers
Semantic• Semanticcategories(conceptualhierarchies),restrictionsof	
Subcategorization framesPredicate schemata	Grammatical inference, ILPFOL clustering
Extraction rules	• Relational learning, ILP

Learning conceptual hierarchies by clustering

Classes of words co-occurring in different syntactic contexts form concepts

Open problems

Evaluation [Nedellec & Bisson, 2000] Integration of known terminology (Gene Ontology, gene dictionaries)

Learning background	knowledge for IE
Types of knowledge needed	How to get it
 Syntactic Syntactic categories (parts of speech) Syntactic relations (dependencies) 	Tools • Morphosyntactic taggers • Syntactic parsers
• Semantic categories (conceptual hierarchies), restrictions of selection	
• Subcategorization frames	• Grammatical inference, ILP
• Predicate schemata	• FOL clustering
Extraction rules	• Relational learning, ILP

From selectional restrictions to subcategorization frames

Subcategorization frames =

restrictions of selection + syntactic (structure) and semantic constraints

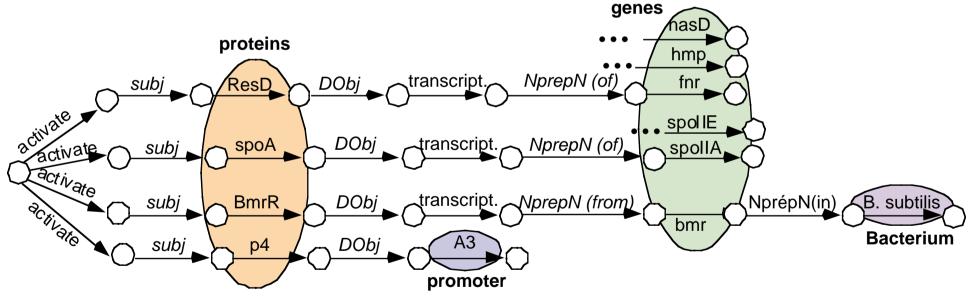
Example

clustering binary independent relations	Subcategorization frame
Verb : inhibit Subject : protein	Verb : inhibit
Verb : inhibit Subject : stress	Subject : <i>repressor XOR</i> stress
Verb : inhibit DObj : expression	DObj : expression

• Protein and stress are mutually exclusive as subject of inhibit

• Among proteins, only repressors inhibit gene expressions

Subcategorization frame learning by grammatical inference

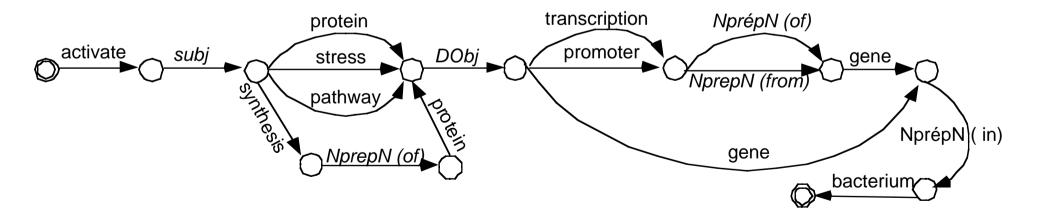

Sentences

ResD activates transcription of fnr, hmp and nasD

The phosphorylated form of SpoOA activates spoIIA and spoIIE transcription.

BmrR activates transcription FNR

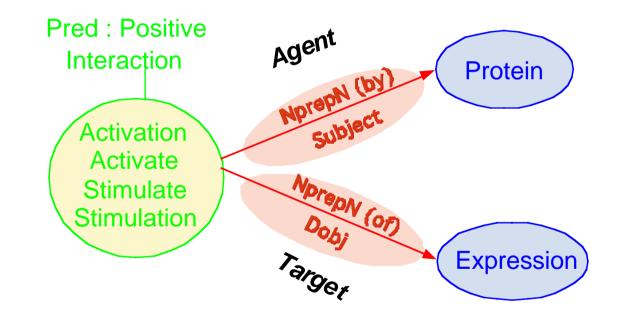
PTA:

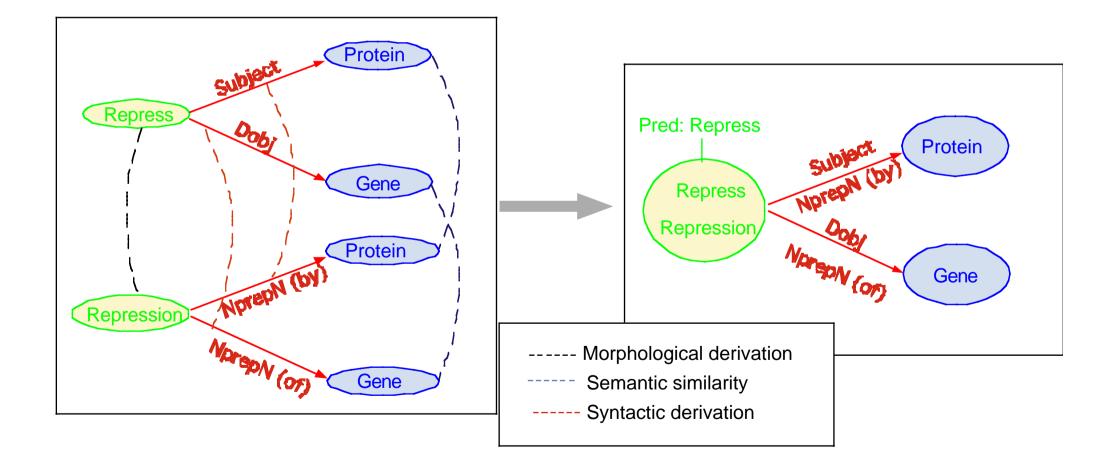


Subcategorization frame learning by grammatical inference

- Verb : activateSubject: proteinDObj: transcriptionSubject: stressDObj: promoterSubject: pathwayDObj: geneSubject: syntesisNprepN (in): bacterium
- Noun : synthesis NprepN (of): protein

Noun : transcription NprepN (of): gene


NprepN (from): gene

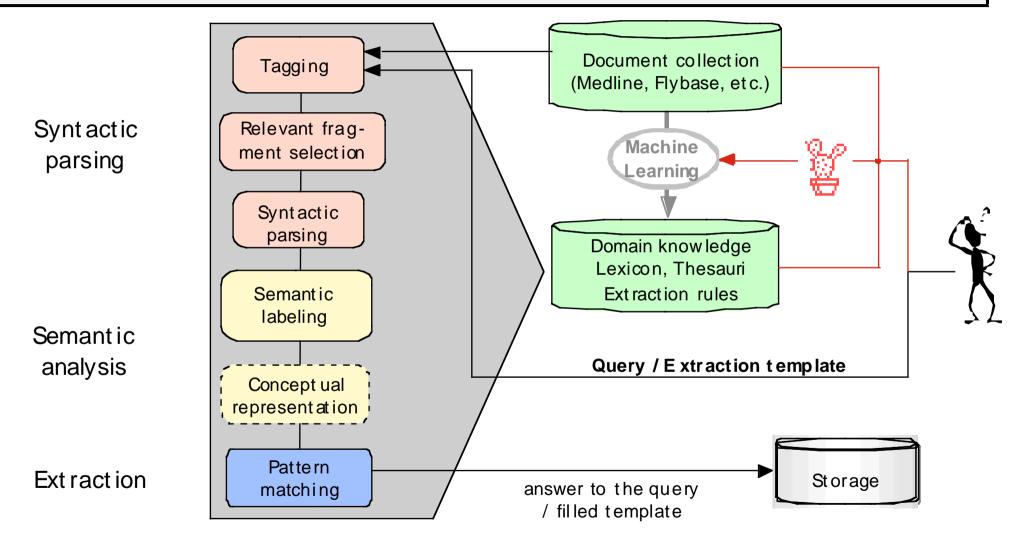

Learning background knowledge for IE	
Types of knowledge needed	How to get it
 Syntactic Syntactic categories (parts of speech) Syntactic relations (dependencies) 	Tools • morphosyntactic taggers • syntactic parsers (SP XRCE)
Semantic • Semantic categories (conceptual hierarchies), restrictions of selection • subcategorization frames	•
• Predicate schemata	• FOL clustering
Extraction rules	• relational learning, ILP

Predicate schemata

Predicate schemata = predicate classes and their arguments related by semantic and syntactic dependencies

Learning predicate schemata from subcategorization frames, by clustering

Conclusion

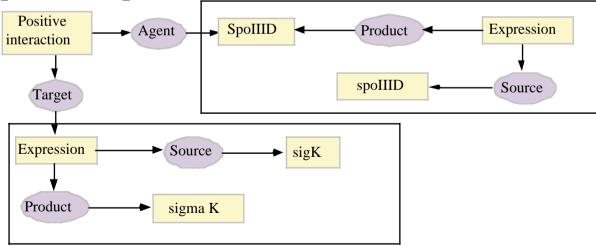

IE in functional genomics, as in many domains requires

- deep understanding methods based on syntactic-semantic analysis
- dictionaries, lexicon, ontologies, thesaurii, IE patterns to be learned by multistrategy learning and integrated with existing knowledge bases.

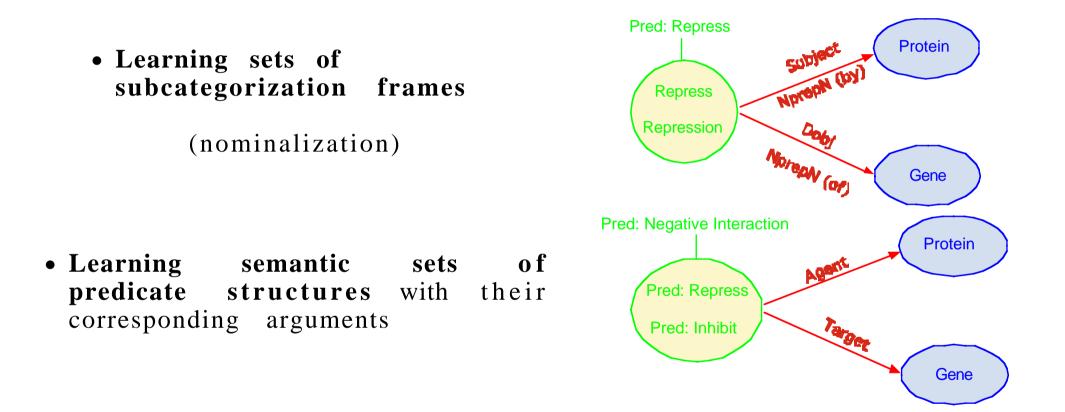
Learning methods for acquiring the needed knowledge and the IE patterns include relational methods

- able to handle
- background knowledge
- relations (syntactic dependencies, semantic relations)
- able to acquire
- conceptual hierarchies for semantic labeling
- subcategorization frames for disambiguating semantic labeling
- predicate argument structure for semantic relation labeling
- IE patterns

Architecture of Caderige (http://caderige.imag.fr)


One further step towards semantic normalization

Various expressions ...


- The expression of spoIIID
- spoIIID expression
- The spollID gene product
- The production of SpoIIID
- SpolID
- SpoIIID production

the expression of sigK. sigK expression. stimulates the sigK gene product the production of sigma K. sigma K production.

for a unique interpretation

From restrictions of selection to conceptual structures

