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1. Introduction 
As well as the generalization of multimedia communication, the volume of textual information is 
exponentially increasing. Today mere Information Retrieval technologies are unable to meet specific 
information needs because they provide information at a document collection level. Developing intelligent 
tools and methods, which can give access to document content, is therefore more than ever a key issue for 
knowledge and information management. Text content access is a crucial issue as much in the document 
engineering system of a small firm as in the document management of a whole scientific domain, 
whichever the source of information is: an Intranet information system or the "semantic web". 
As soon as one wants to automate access to the content of texts in electronic form, one needs semantic 
knowledge to localize and interpret the relevant information. The acquisition of semantic knowledge is a 
well-known bottleneck for real-world applications, whichever technology is used (Information Extraction, 
Question/Answering, and more generally document engineering). There are two main reasons. Firstly, 
little semantic knowledge specific to application domains has been available because, until now, effort has 
been mainly devoted to the definition of formal languages for the representation of ontology and to the 
acquisition of generic knowledge bases, either lexical databases such as WordNet or EuroWordNet or 
general ontologies; CYC, for instance. In contrast, almost no community effort has been devoted to the 
acquisition of specific semantic knowledge that is required for particular applications and to the design of 
the acquisition methods that could be applied. We claim that no generic knowledge can be used as such 
and that the required semantic knowledge, even if it is derived from a generic source, must be specifically 
tuned to the application, domain and task that it will be used for. Although the process of acquiring this 
specific semantic knowledge cannot be fully automatic, methods and tools can be designed to efficiently 
help its acquisition. Secondly, it is also noticeable that there has been little dialogue between the various 
disciplines involved in knowledge acquisition and text analysis, although the integration of methods and 
tools from various disciplines is obviously needed. These disciplines include Information Science, 
Linguistics, Natural Language Processing, Knowledge Acquisition, Knowledge Representation, Machine 
Learning, Information Retrieval and Information Extraction. The Caderige project (http://www-
caderige.imag.fr) is an example of such a collaboration in the domain of functional genomics. It involves 
four French laboratories, IRISA (ML and NLP), LIPN (KA, KR and NLP), LRI (ML) and MIG 
(genomics, ML and IE) and more recently a biotechnology company, Hybrygenics. 
After sequencing, the next challenge in genomics is identifying the role of genes in interaction networks. 
Genome research projects have resulted in new experimental approaches, such as using DNA chips, at the 
level of whole organisms . Such chips provide comprehensive data about gene activity, so a research team 
can quickly produce thousands of measurements. More than ever, these new lab technologies are calling 
for fast and efficient access to previous results to interpret elementary measurements from the laboratory.  
Unfortunately, most functional genomics knowledge is not described in databanks; it is only available in 
scientific abstracts and articles written in natural language. For instance, the main generalist bibliographic 
database, Medline, contains approximately 12 millions entries. Efficiently using previous research results 
requires automating access to bibliography content. Therefore, exploring bibliographies and extracting 
knowledge from literature is a major milestone toward developing functional models of gene interactions.  
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In our opinion this new challenge offers as many benefits and present the same level of technical 
difficulty as other more popular bioinformatics challenges such as designing predictive algorithmic 
models. Moreover, AI research in natural language processing (NLP), information extraction (IE), 
machine learning (ML), and genomics have now reached the stage where automating IE from genomics 
literature is a realistic and exciting research goal. The specificity of the genomics bibliography, compared 
to other domains, justifies the expectation for short-term and high-quality results. We will illustrate this 
claim in the following by a genomic example about information extraction of gene interaction in Bacillus 
subtilis. 

2. An example of the IE problem in genomics  
Biologists can search bibliographic databases via the Internet using keyword queries that retrieve a 

large superset of relevant papers. Alternatively, they can navigate through hyperlinks between genome 
databanks and the corresponding papers. To extract the requisite gene interaction knowledge from the 
retrieved papers, they must identify the relevant fragments (see the bold text in Figure 1). Such manual 
processing is time consuming and repetitive, because of the bibliography size, the relevant data  
sparseness, and the database continuous updating. 
 
UI - 99175219 

AB  - GerE is a transcription factor produced in the mother cell compartment of 
sporulating Bacillus subtilis. It is a critical regulator of cot genes encoding 
proteins that form the spore coat late in development. Most cot genes, and the gerE 
gene, are transcribed by sigmaK RNA polymerase. Previously, it was shown that the GerE 
protein inhibits transcription in vitro of the sigK gene encoding sigmaK. Here, we show 
that GerE binds near the sigK transcriptional start site, to act as a repressor […] 

Figure 1. An extract of a Medline abstract on transcription in Bacillus subtilis. 

 
Type: negative 
Agent: GerE protein  

Interaction 

Target: Expression Source: sigK gene 
Product: sigmaK protein  

Figure 2. Information extracted from the second selected fragment 

For example, the query “Bacillus subtilis and transcrip tion” retrieves 2,209 abstracts such as the one of 
Figure 1. We chose this query example because Bacillus subtilis is a model bacterium and transcription is 
a central phenomenon in functional genomics. Gene functions are realized through gene transcription and 
protein production. The example of Figure 1 represents the problems posed by applying IE to a 
bibliography in genomics. Extraction involves understanding and requires expertise in biology. The 
information to be extracted is sparse in  the document set. For instance, in the set of 2,209 abstracts I 
mentioned, only 3 percent of the sentences contain relevant information on gene interaction—that is, text 
that mentions the interaction’s agents and type. Hopefully, in biology the bibliography is well structured 
and the information is local, mainly located in a single sentence or in a part of it as opposed to other 
domains where it is spread over the document. Many other biological phenomenon, such as translation or 
gene homology, raise similar IE problems. 

3. Limitations of usual IE methods 
Up to now, DARPA’s MUC (Message Understanding Conference) program has defined automatic IE 

as the task of extracting specific, well-defined types of information from natural language texts in 
restricted domains. The objective is to fill predefined template slots and databases, such as shown in 
Figure 1b. In functional genomics, even such a restrictive view of IE is useful. Until now, no operational 
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IE tool has been made available in genomics, and extraction has not been automated.  
However, applying IE à la MUC to genomics and more generally to biology is not an easy task because 

deep text analysis methods are needed to handle the relevant fragments. IE systems should combine the 
semantic-conceptual analysis of text understanding methods with IE through pattern matching,  [Thomas 
et al., 2000], [Blaschke et al., 99], [Sekimizu et al., 98], [Ono et al., 2001]. Indeed, IE approaches to 
genomics, based either on predefined sets of fixed patterns, or on shallow representations of the text, yield 
limited results with either a bad recall or a low precision.  

Hand-coded sets of patterns based on significant interaction verbs, gene names, or even syntactic tags 
and dependencies, [Blaschke et al., 99], [Thomas et al., 2000], [Ono et al., 2001], retrieve little high-
quality information. Our experiments with such patterns (described in the IE literature in genomics)—for 
example, [(Protein1/Gene1) *1 (interact/associate/bind) * (Protein2/Gene2) *]—yield a precision around 
98 percent with a recall between 0 and 20 percent. The reason is that, even in technical and scientific 
domains, there are many ways to express given biological knowledge in natural language. Manually 
encoding all patterns encountered in a corpus is thus unfeasible due to cost and unreliability. Therefore, 
automatically learning such IE patterns or rules from corpus seems to be an appropriate solution. 
Additionally, building IE systems is time consuming if they rely on manually encoded dictionaries and 
extraction rules or patterns that are specific to the domains and tasks at hand and they are not easily 
portable. 

At the  opposite end, some methods are based on statistic measures of keywords and gene name co-
occurrences, [Craven, 99]  (for example, shallow information-retrieval-based techniques), [Blaschke et al., 
99]. They yield high recall and low precision because they assume that any pair of genes encountered in 
the retrieved sentences interact, which is  not always true. Many false positives are thus retrieved because 
potentially discriminant keywords and gene names occur in sentences where the genes mentioned are not 
semantically related. The following example (Figure 3.a and 3.b) illustrates some of the problems 
encountered by both hand-coded patterns and statistic –based approaches. Figure 3.a gives an example of 
a sentence that cannot be handled by these approaches and Figure 3.b represents the correct gene 
interaction network that should be extracted from this sentence. 

 
"GerE stimulates cotD transcription and inhibits cotA transcription in vitro by sigma K 
RNA polymerase, as expected from in vivo studies, and, unexpectedly, profoundly 
inhibits in vitro transcription of the gene (sigK) that encode sigma K.". The sentence 
describes five interactions, sigma K with cotA and cotD, GerE with cotD, with cotA and with sigK.  

Figure 3.a An example of sentence that cannot be handled by hand-coded patterns and pure statistic–
based approaches 

An intuitive pattern, such as the one mentioned above, (i. e. [(Protein1/Gene1) * 
(interact/associate/bind) * (Protein2/Gene2) *]), that would match any pair of gene or protein names and 
interaction verbs or nouns (framed in the figure 3.a), [Craven & Kumlien, 1999], [Blaschke et al., 99], 
would retrieve many erroneous interactions from this sentence, such as cotD [...] inhibits [...] cotA. 
Additional criterion such as a maximum number of words between gene names would yield a better 
precision but would miss some interactions such as the inhibition of sigK gene transcription by GerE (28 
words apart). Statistics and keyword-based approaches would select the relevant sentences but would not 
be able to determine the right interactions between the five different gene and protein names cited in 
Figure 3.a (in bold-faced text). 

                                                 
1 * matches any string of any length (including zero). 
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Figure 3.b The gene interaction network to be extracted.  

Extracting relevant knowledge in the selected documents thus requires deeper syntactic and semantic 
analysis based on lexical and semantic resources specific to the domain. For instance, in Figure 2.a, 
identifying that GerE is the subject of the verb “inhibit” and that sigK is its direct object, and given that 
these relations are compatible with the conceptual agent and target roles, would improve the extraction’s 
quality. To summarize, extraction patterns should be learned, because their manual development is 
unfeasible, and the learning should be based on syntactic–semantic regular expressions. 

4. ML and IE today 
Since the beginning of the nineties, automatically learning extraction rules from examples of pairs of 

filled patterns and annotated documents seemed like an attractive approach.6 However, by the end of the 
decade, people were questioning the relative merits of the trainable and the knowledge engineering 
approaches—Doug E Appelt and David J. Israel, for example, discussed this issue at an IJCAI-99 (Int’l 
Join Conference on Artificial Intelligence) tutorial on IE (http://www.ai.sri.com/~appelt/ie -tutorial/). 
According to them, trainable (that is, statistics and ML-based) approaches should be preferred when the 
training data is cheap and plentiful, the extraction specifications are stable, and obtaining the highest 
possible performance is not a critical issue. They consider that the best recall the ML-based systems 
obtained is quite low compared to hand-coded IE systems. Appelt and Israel’s analysis is based on the 
current state of the art in IE, in which existing ML-based systems exploit little, if any, background 
knowledge for guiding learning. The systems are often applied to a rather shallow representation of the 
training texts, and most of them are based on general-purpose ML algorithms —mainly K nearest-
neighbor, grammatical inference, naïve Bayes methods, and top-down or bottom-up relational learning 
based on an exhaustive search or a local information gain measure.  

Two related facts explain the limited range of these approaches, despite the rich spectrum of the 
modern state of the art in ML. First, according to the limited experiments performed, [Freitag, 98],  on the 
common and quite simple IE tasks (MUC tasks, IE on the job, and seminar announcements), approaches 
based on linguistic analysis, lexical semantics, and informative representation of the training data do not 
perform much better than more shallow approaches. This does not encourage the design and application of 
novel symbolic and relational ML methods, which would be suitable for richer text analysis. Second, until 
recently, the main stream in text processing was mainly linguistic and statistic but not ML-based, besides 
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some notable exceptions such as S. Soderland’s work and T. Mitchell’s group research, [Soderland, 99]  
[Freitag, 98]. A large part of the effort in learning for IE, including genomic applications, has also been 
devoted to lower-level tasks such as named entity recognition, [Fukuda, 98]. This situation is evolving 
with the growing interest of the ML community in text processing and in IE in particular. Moreover, the 
growing demand for applications brings many new IE tasks, such as IE in functional genomics, that 
require a deeper understanding and consequently call for more sophisticated linguistics- and ML-based 
approaches [Craven & Kumlien, 99]. Additionally, in real-world applications, training complements rather 
than opposes knowledge engineering, as ontology-based and interactive approaches illustrate. 

5. Linguistics- and ML-based approach of IE in future genomics  
In Caderige, we view the genomics IE of the future as a three-step method. In the first step, we select 

the relevant textual fragments from all sentences in the papers, based on shallow criteria (for example, 
discriminant keywords or gene and protein names) to deal with the relevant data’s sparseness. In the 
second step, we build a representation of the content of the fragments using successive interpretation 
operations based on syntactic–semantic lexicon, [Sekimizu et al., 99], [Rindflesh et al., 2000], following a 
classical approach in text understanding. Figure 4 shows an example of this phase’s output. This step 
should involve terminology, ontologies, and predicate argument structures to label the relevant terms and 
syntactic dependencies with the appropriate concepts. In doing so, we rely on the fact that in the language 
of a given specific domain there exists strong syntactic regularities, which make it possible to build a 
semantic structure.  

[cspAp ] [directs ] [the  expression of  the cspA gene ]

DobjSubject
NprepN

Protein Production GenePositive_ 
interaction

Fragment

Semantic labeling

Noun Verb Det Noun Prep Det NounNoun
Syntactic parsing NP NP

Syntactic relation
 

Figure 4. Example of syntactic-semantic interpretation (NP denotes noun phrases and Dobj denotes the 
Direct Object). 

Finally, we apply extraction rules (see Figure 5) to the resulting text interpretation to identify the 
relevant information and store it in a database in the suitable format, or to fill forms as in MUC case. In 
this example, the IE is realized by transducers designed by Intex software, that insert XML labels in the 
text fragments when the syntactic and semantic conditions are verified. For example, the transducer in 
Figure 5 says states conditions, among others, there must be a noun phrase, subject of the verb and 
representing a protein (denoted by variable $1), and a noun phrase, direct object of the interaction verb 
(denoted by variable $2), representing a gene expression (denoted by variable $3). The gray boxes 
represent subtransducers. If all conditions are true, then XML protein, interaction and gene expression tags 
should be inserted (for example, see <protein>, <interaction> and <gene_expression> tags in the figure). 

<Protein>

</gene_ 
expression><protein> </protein>

<interaction> </interaction>

<gene_ 
expression>

Semantic Class :
Positive interaction

[NP
( )

1 1
[ Ver b

(
2

)
2

[ NP
(

3
)
3

]

POSITIVE INTERACTION
Subject( $2 ,$1 )

Dobj($2 ,$3 )
<Gene 

expression>
] ]

 

Figure 5. Example of extraction rule in the form of transducers for extracting gene interactions in 
functional genomics. 

ML methods can help develop the knowledge bases needed for each step. For sentence filtering, 
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discriminant keywords are learnable by classification methods such as naive Bayes or Support Vector 
Machines, [Marcotte et al., 2001], [Nedellec et al., 2001]. For building terminologies and ontologies from 
parsed corpora or assisting their design, unsupervised methods such as conceptual clustering are 
appropriate [Nedellec & Faure, 98]. The many methods designed for semantic class learning, query 
expansion, word sense disambiguation, or for building restrictions of selection are easily applicable to 
ontology and subcategorization frame learning. Then, predicate argument structures are learnable from 
subcategorization frame clustering or from semantically labeled corpora. Finally, extraction rules or 
automata (see Figure 5) are learnable from annotated corpora (see Figure 6) at the suitable level of 
linguistic  interpretation (see Figure 4), [Sasaki & Matsuo, 2000]. The feasibility of such learning tasks 
from parsed corpora has been shown many times in the framework of specific domains such as scientific 
ones. 
<SENTENCE  name = "2" > 
 <INTERACTION  

id  = "1"  
type  = "Y" 
Previous studies showed that <Agent1 type="Protein" func="Factor"> spoIIID </Agent1> <Interaction> is 
needed to produce </Interaction> <Target1 type="SigmaFactor">sigma K</Target1> [...] 

 </INTERACTION> 

Figure 5. Example of annotated sentence for IE rule learning. The highlights indicate the graphic 
attributes of the XML tags. For example , the regions tagged as "Interaction" are underlined, and the 
regions tagged as Agent are in bold . 
Superficial approaches will not sufficiently resolve the problem of building IE systems for genomics.  
However, given the specificity of the language used in genomics texts, we can solve the task by 
combining ML from a corpus of annotated and un-annotated texts with syntactic–semantic analysis. 
Genomics provides demanding problems that will stimulate the development of more sophisticated 
approaches in IE.  Although these aspects of extraction are not yet in the mainstream of IE research, this 
seems a promising direction not only for genomics but more generally for biology and for other perhaps 
less technical domains. Preliminary work in this area has produced encouraging results that we should 
now extend and deepen.  
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