
Abstract 
Methods and technologies from Artificial 
Intelligence (AI) have already entered many 
areas other than only computer sciences. For the 
last few years, AI approaches have also become 
extremely useful tools in environmental 
engineering. Here, one relevant application area 
is the optimization of processes in wastewater 
treatment plants (WWTPs). Besides the 
examination of the technical states of the 
di fferent environmental systems, their human 
managers’  knowledge and experiences from past 
events gain more and more importance. In this 
paper, we wil l  present two examples for 
approaches from Experience Management (EM), 
specifically based on Case-Based Reasoning 
(CBR) in the field of wastewater treatment 
(WWT): first, a DSS to Identif ication and 
Counteraction for Harmful Microorganisms in 
WWTPs and  the second approach deals with a 
Predictive Controller for discontinuous 
Sequencing Batch Reactor (SBR) plants.  

1 I nt r oduct ion 
During recent years, a rising complexity of the problems 
in the area of wastewater treatment can be observed. On 
the one hand, major reasons can be found in the growing 
requirements for purification and the interweaving to a 
high degree by connections and dependencies of sewer 
systems, WWTP, and receiving water. On the other hand, 
the technologies for measurements of the quality 
parameters as well as the process control systems have 
become more powerful and more inexpensive. 
Nevertheless, such systems are stil l  a cost factor. Due to 
the fact of low public budgets, the use of latest 
technologies or even expensive changes in the WWTP 
infrastructure is often impossible. 

Thus, approaches for optimisation of existing plants 
attract more and more the attention, which make 
extensive use of the plant-inherent potentials. At this 
stage, methods and technologies from AI have been 
discovered to play an important role. 

Even though measuring and control technologies are 
improving, the problem of incomplete or missing data 
stil l exists because many parameters are diff icult to be 
determined or cannot be determined at al l . Furthermore, 
in specific cases, the measured data might not be 
representative for the overall  system. Therefore, i t often 
happens that the WWTP operator must control  the plant 
rather with his experience from past events than with 
sophisticated machines. When it comes to capturing and 
especially drawing conclusions from experiences, AI 
offers with Case-Based Reasoning a powerful 
technology, which has already proved its potentials in 
di fferent industrial  applications (see, e.g., [Bergmann et 
al ., 1999]). In this paper, we wil l present several 
examples for CBR approaches in wastewater treatment.  

The paper is structured as follows. In section 2, we will 
present a Decision Support System (DSS) based on a 
CBR approach to Identif ication and Counteraction for 
Harmful  Microorganisms in WWTPs. Section 3 describes 
an architecture for a predictive WWTP control ler that 
bases its decisions for the plant control on past events and 
situations captured in cases. The system has been tailored 
to a relatively unknown kind of WWTP, the Sequencing 
Batch Reactors. Furthermore, we present in Section 3 the 
research project “Messel” , within parts of our suggested 
architecture have been implemented and tested in a 
simulated environment. In Section 4, we take a look at 
other CBR approaches in the field of wastewater 
treatment. Section 5 end with the conclusions.  
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2 Example 1 - DSS Harmful M icroorganisms 

2.1 I nt r oduct i on 
Growing quantities of wastewater made enlargements of 
treatment plants necessary. Then, trying to optimize the 
costs for running the plants by reducing the precipitation 
and minimizing the oxygen supply for the biological 
system in the plant sometimes leads to new problems; 
from the ecological and biological points of view, 
optimization can entail undesired side effects. 
Environmental  conditions are created that favor 
f i lamentous organisms, which can cause foam effects or 
later even lead to harmful bulking sludge or scum 
formation [Eikelboom, 2000]. We can observe this 
phenomenon by a growing number of WWTPs during 
recent years; especial ly during spring and autumn time. 
One crucial factor amongst others is the loss of biomass 
needed for the biological purification in the system. The 
responsible harmful  microorganisms affect nearly al l 
biological processes for WWT. Additionally, the bulking 
sludge problem does not only influence the WWT in a 
negative way but also the sludge treatment. If sludge 
dominated by fi lamentous bacteria reenters the anaerobic 
sludge treatment foaming of the digester contents can 
occur. As a consequence, the digester can over boil . 

The managers of WWTPs with bulking sludge problem 
consider this one of the most important problems to be 
solved. Nowadays, various approaches for counteractions 
exist to eliminate the problem-generating microorganisms 
[Eikelboom, 2000], for instance, deployment of l ime, 
polymers or pulverized lignite, installation of selectors, 
increasing or decreasing of the oxygen, etc. Usually, 
bulking sludge problems have their individual aspects 
depending on the WWTP where they occur. Therefore, 
the next problem that is developing has to be seen in 
f inding the right solution. This task is even harder to 
solve, as different harmful  types of microorganisms can 
exist in the sludge. The same counteraction that kil ls one 
of these types of bacteria can help the growth of others.  

We conclude that the only efficient way for suppressing 
the excessive growth of the specifically responsible 
microorganisms is their identification and the closely 
related goal-directed selection of treatment means. Our 
starting points are the positive and negative experiences 
experts made in the treatment of bulking sludge 
problems. Their experiences serve as successful 
suggestions for solutions respectively the knowledge 
about unsuccessful  treatments (failures). So, the aim was 
the development of an expert system that supports the 
decision process for the selection of adequate 
counteractions. The system is fed by a query that 
describes parameters of the WWTP. We will  have a 
closer look at the technology behind the scenes of our 
expert system and the underlying domain model in 
Sections 2.2 and 2.3. 

2.2 T he Case Repr esent at i on 
It is typical for CBR applications that the case 
representation consists of two major parts: a problem 
description and a solution description, as mentioned 

before. In the following, we give an overview of the 
structure of these two parts that make up the domain 
model for our system. 

The aim of the problem description is to characterize 
the current situation on a WWTP when a problem caused 
by uncontrol led reproduction of harmful microorganisms 
is observed. Unfortunately, even WWTP experts are not 
able to determine the relevant influences exactly. 
Therefore, all  information that may have signi ficant 
impact on the microorganism problem is considered in 
the problem description. Basically, the information of the 
problem description is divided into the following four 
parts, represented by particular concepts in an object-
oriented domain model: 
WWTP data:  This part contains relevant information 
about the respective WWTP where the problem occurred. 
This kind of information includes attributes that describe 
the structure and operating parameters of the specific 
plant. 
Already per formed counteracts:  Here, al l  available data 
about already performed counteracts against the sludge 
problem is stored. These pieces of information are also 
essential because it contains important hints about the 
responsible microorganism species. For example, i f a 
counteraction that works usually very well  against 
microorganism M has been applied, but the bulking 
sludge problem is stil l  present, this is a clear hint that 
microorganism M is not the responsible species in the 
current situation. 
Environmental  data: Due to the fact, that the occurrence 
of microorganism problems crucially depends on the 
current environmental  circumstances, this information is 
also a core component of the problem description. 
Quality information: Additionally, some attributes 
describing the quali ty of the particular case data are 
introduced. Because the case base contains currently 
observed problems as well as problems described in 
specific WWT l iterature, it is useful to assign each case a 
respective confidence level. 

The aim of the corresponding solution description is the 
qualitative and quantitative identification of the species 
of microorganisms measured in the described bulking 
sludge problem. Therefore, the solution description 
contains one attribute for each major microorganism 
species relevant with respect to the sludge diff iculty. The 
value range of these attributes is the interval of real 
values. These values correspond to a particular measure 
used when carrying out a microscopic examination of 
sludge probes. Here, the value 0 states that the respective 
microorganism is absent, while high values correspond to 
a high concentration. Though the described application 
can be characterized as a classification task, the solution 
description is not a simple class identifier l ike in common 
similar applications. Instead, the solution itself is again a 
complex object in form of a 11-dimensional vector. The 
consequences of this complexity will be discussed in 
more detail  in the next section. Figures 1 and 2 partially 
show the used case representation and an exemplary case. 
The complete representation consists of 40 attributes 
describing the problem part and 11 attributes describing 
the solution part. However, many cases contain some 



unknown attributes, especial ly the cases taken from 
scientific l i terature. The corresponding uncertainty about 
the quality of this case data is then explicitly remarked in 
the already mentioned additional  attributes. 
 

Figure 1: Parts of the case representation. 

Figure 2: Parts of an example case. 

2.3 Opt i mi zi ng Cl assi f i cat i on A ccur acy 
The success of any CBR application crucially depends on 
the quality of the employed similarity measure used to 
retrieve the most useful  cases with respect to the current 
problem situation. Unfortunately, due to the high 
complexity of our problem description, i t is very hard to 
define an optimal similarity measure. Therefore, it is 
planned to apply a machine learning approach in order to 
optimize the similarity measure and therewith also the 
classif ication accuracy of the system. This is not an 
absolutely unusual procedure to improve classification 
systems based on CBR. A lot of approaches to learn one 
important part of the similarity measure, namely the 
feature weights, have been developed up to now 
[Wettschereck and Aha, 1995]. Al l these approaches are 
based on a leave-one-out test and try to find a measure 
that assigns a higher similarity to cases containing a 
“correct”  classification than to cases containing an 
“ incorrect”  classif ication. However, this procedure is 
only applicable when the occurring classes are quite 
simple (e.g., only described by a simple class identi fier 
represented by a string) and disjunctive. Nevertheless, as 
described in the precedent section our “classes”  are really 
complex objects. Therefore, a hard distinction between 
“correct”  and “ incorrect”  classes is insufficient.  

To avoid this problem, we apply a novel approach that 
allows a more flexible validation of retrieval results. This 
approach is based on a new concept, that we call  solution 
similarity represented by an additional similari ty measure 
that compares solution parts of cases instead of problem 
parts (see Figure 3). This allows us to measure 
classif ication results as “better”  or “worse”  instead of 
only “ correct/incorrect” . By using this concept, we are 
able to adapt one of the existing learning approaches in 
order to optimize the attribute weights assigned to the 
attributes of our problem description. We hope this 
allows us to define a similari ty measure that sufficiently 
measures the util ity of cases with respect to a current 
bulking sludge problem. 

Figure 3: The concept of solution similarity. 

2.4 Pr oj ect  Summar y 
The approach presented in this example is implemented in 
the research project ZERBERUS. In a preliminary stage of 
the project, the WWTP managers’  experiences had been 
elicited using a mail questionnaire. All relevant data was 
extracted from the questionnaires and transformed into 
cases. So, we gathered approximately 70 cases until now. 
Starting from this point, we divided the project into two 
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aeration: pressure, surface, both, ... 
N-elimination: pre-operate, post-operate, in-
termittant, simultaneous, none 
high fate rate: yes, no 
O2-concentration: real [0.0;6.0] 
sludge index: real [0.0;0.4]  

successful counteractions: fat elimination, O2 
increase, O2 decrease, iron-salt, ... 
failed counteractions: fat elimination, O2 inc-
rease, O2 decrease, iron-salt, ... 

problem occurance: ever, suddenly, creeping 
problem duration: ever, short, long 
problem localization: aerated basin, secondary 
clarifier, digester 
temperature: integer [0;30]  
seasonal occurance: ever, cold sea., warm sea. 

trust level : bad, moderate, good 

P
ro

bl
em

 

microtrix parvicella: real [0;7]  
nostocoida l imicola: real [ 0;7]  
sphaerotilus natans: real [ 0;7]  
beggiatoa: real [0;7] 
type 0092: real [0;7]  
... So
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Case ‘‘WWTP 43‘‘  

aeration: surface 
N-elimination: pre-operate 
high fate rate: no 
O2-concentration: 4.5 
sludge index: 0.07 

successful counteractions: none 
failed counteractions: i ron-salt. 

problem occurance: creeping 
problem duration: long 
problem localization: aerated basin, sec. clarif. 
temperature: 10 
seasonal occurance: cold season 

trust level : good 
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microtrix parvicella: 6.0 
nostocoida limicola: 4.0 
sphaerotilus natans: 0.0 
beggiatoa: 0.0 
type 0092: 6.5 
... So
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major stages. On the first stage, we concentrated on the 
identification of the harmful microorganisms that caused the 
bulking sludge problem. A WWTP manager can specify a 
current problem and query the system’s experiences to find 
out what might be the responsible bacteria. The second stage 
can generate an individual treatment solution for the queried 
problem situation. The solution will be based on the specific 
WWTP conditions and the retrieved solutions from the most 
similar experiences in the case base. The WWTP manager’s 
feedback on the quality of the generated solution will be 
used to improve our system by a certain learning effect. If 
the generated suggestion – which counteraction to take – 
was successful or unsuccessful this new experience will be 
integrated in the case base. A few weeks ago, the 
implementation of the DSS was completed (see 
http://www.zerberus-online.de). 

3 Example 2 – SBR Real  T ime Cont r ol  
In contrast to the example from Section 2 where we 
showed the potentials of EM in cri tical  situations that are 
already present on the WWTP, we will now focus on the 
prediction of the right control steps to be taken dependent 
on the current situation of the WWTP.  

3.1 I nt r oduct i on 
In Germany and several other countries, urban drainage 
mainly consists of combined sewer systems (CSS). That 
means, sewage and stormwater flow are transported in 
one sewer. So, during rain events the amount of 
combined sewer flow in the sewer system is much larger 
than that of dry weather f low. Due to high costs and the 
l imited flexibil ity of biological  processes against high 
hydraulic and high pollution loads, the prescribed 
maximum influent capacity of the WWTP is much lower 
than that of the CSS. The fraction of combined sewage 
that surpasses the maximum inflow rate wil l  either be 
stored in detention basins and routed to the WWTP later 
or directly discharged into the receiving water. The 
pollution load on the receiving water caused by these so-
called Combined Sewer Overflow (CSO) events might be 
as high as that caused by the WWTP effluent at the same 
time; during certain rain events i t can even be much 
higher. Until  now, most sewer systems with their 
ancil lary structures as well  as WWTPs are designed and 
operated in a static way. One disadvantage of this method 
is that CSOs can occur even when there are stil l  free 
storage capacities within the sewer system and/or free 
treatment capacities in the WWTP. Therefore, integrated 
Real Time Control (RTC) strategies, which are trying to 
reduce total  emissions by operating sewer system and 
WWTP depending on the current capacities of both 
systems, are more than necessary considering 
environmental and economical aspects. One can find 
several  examples for such approaches in l iterature (e.g., 
[Alex et al., 1999]), but almost all  refer to continuous 
flow plants, because this type is stil l mostly used in the 
world. But, there are several other types of WWTPs, 
which are far common in the world. One of these types is 
the SBR technology. In contrast to a continuous flow 

plant, in a SBR all  treatment processes take place in one 
single reactor, step after step as il lustrated in Figure 4.  

The time between the beginning of the fi l l  and the end of 
the treatment process is cal led a cycle. The SBR 
technology has a high process flexibi lity and treatment 
efficiency, because with the help of modern computer-
aided control  devices (CACD) it is easily possible to 
adapt the duration of a cycle, the duration of the different 
phases (e.g., static fi l l, aerated react, settle) within each 
cycle and the volumetric exchange ratio (the fraction of 
the reactor volume, which is removed during draw, and 
replaced during fi l l) to the current requirements. This 
especially applies when sensors are used for control 
purposes. For instance, it is possible to vary the duration 
of the settle phase depending on the sludge settling 
characteristics. Unfortunately, most of the SBR plants are 
stil l using fixed time control strategies; until  now, 
measuring devices are predominately only used for 
monitoring.  

Figure 4: The concept of SBR. 

But, even when there is no doubt about the high process 
flexibil ity and efficiency in general, there are sti l l many 
objections to deploy this technology for plants with high 
hydraulic loads due to combined sewage flow. E.g., a few 
experts stil l  state that SBR is not suitable to treat 
combined sewage as well as continuous WWTPs. This is 
one of the reasons why integrated RTC strategies for SBR 
plants with CSSs have not been developed unti l now. 
However, SBR plants, which have been designed 
according to the German guidelines are able to treat 
combined sewage very well, because the advantages of 
the SBR technology can also be used treating combined 
sewage. This especial ly applies because the design of a 
SBR plant according to the German standards caused 
high procedural  reserves as several  specific advantages of 
this technology could not be considered in this static 
dimensioning process. Due to these circumstances, i t is 
very interesting to think about integrated RTC strategies 
for SBR plants with CSSs. Therefore, a research project 
has been initiated to realise an integrated RTC for the 
WWTP Messel in simulation as well as in ful l  scale and 
to assess the economical and ecological benefits of such 
an approach [Wiese et. al., 2002]. 
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3.2 Resear ch Pr oj ect  WW T P M essel  
The catchment area of WWTP Messel, which is also 
typical for many other areas in Germany, covers 1.5 km2, 
an overal l  impervious area of 0.6 km2 and a population of 
about 3,750. Most of the inhabitants are connected to a 
combined sewer. Although Messel is part of the populous 
Rhine-Main-Area, the catchment area itself is rural. The 
wastewater can be characterised as domestic sewage, 
because there are only few commercial  dischargers (500 
people equivalents). There are a CSO and two storage 
tanks with CSOs with a total volume of 1.450 m3 in the 
catchment area. The annual rainfall is about 725 mm/a. 

Figure 5: Scheme of WWTP Messel 

The WWTP Messel schematically depicted in Figure 5, 
which was put into operation in 2000, is a SBR plant with 
a primary treatment, one influent holding tank, two 
SBRs, one effluent buffer tank, and a final fi lter. Except 
for the fi lter, this configuration is often used in Germany. 
The plant was designed according to the German 
guidelines ATV A 131 [1991] and ATV M 210 [1997] for 
nitri f ication, denitri fication, biological phosphorus 
removal and a maximum flow rate of 230 m3/h. The plant 
is equipped with a modern CACD and a lot of 
measurement equipment. According to the static 
dimensioning, the plant is operated with a cycle duration 
of 8 hours (h) during dry weather flow, but during 
combined sewage flow it is necessary to reduce the cycle 
duration to 6 h and thus, to increase the hydraulic 
capacity of the WWTP.  

In the first part of the research project, very detailed 
models of the combined sewer system and the WWTP 
have been developed. These models were calibrated and 
validated with monitoring data. With these models, 
several control strategies have been developed and 
assessed. These strategies are based on ammonia and 

nitrate sensors, as well  as sludge blanket and suspended 
solids meters. Furthermore, a rain gauge has been 
integrated in the control strategies. The results of the 
WWTP simulation show that it seems to be possible to 
reduce the cycle duration during combined sewage flow 
in full-scale in almost every case to only 4 h without 
exceeding the low effluent limits for BOD5 (9 mg/l), 
COD (45 mg/l), and NH4-N (3 mg/l) and thus to increase 
the hydraulic capacity of the plant up to 50 % by using 
the developed control  strategies. In several cases, it 
should be even possible to reduce the cycle duration to 
less than 4 hours. That means, i t would be possible to 
increase the maximum flow rate to the WWTP from 
230 m3/h up to more than 345 m3/h. Furthermore, the 
results of the long-term pollution load simulation show 
that an increase of the flow rate to 345 m3/h wil l lead to a 
reduction of the total COD emission during phases of 
combined sewage flow up to 30 %. So, an integrated RTC 
of a SBR plant seems to be very useful  considering 
ecological aspects. But, despite these very positive 
results, there are stil l several problems: 

• Due to the discontinuous principle, it is necessary in case 
of rainfall to switch as early as possible from the 8 hours 
cycle to the 3, 4, or 6 hours cycle, because the storage 
capacity of the influent holding tank is limited. 

• The cycle duration reduction potential depends on 
several factors, e.g., wastewater temperature and sludge 
settling characteristics.  

• SBRs are normally synchronised (in this case with a time 
delay of 3 hours), so, it can last up to 6 hours until the 
second SBR switch to the short cycle mode. 

• Furthermore, according to the German guidelines, it is 
not allowed to exceed the official effluent limits.  

That means, the whole potential for optimisation can 
only be used when a control strategy is realised, which is 
able to act and not only to react. Consequently, we 
developed a method that is serviceable for a predictive 
controller being able to predict as early as possible the 
duration of a cycle, which is necessary to achieve the 
treatment target. Furthermore, the control ler also had to 
be able to predict the maximum volumetric exchange 
ratio. 

3.3 A  Case-Based Pr edi ct i ve Cont r ol l er  
From our point of view, i t seemed to be promising to 
develop a predictive controller based on a CBR approach 
because of the following reasons: 

• Beginning and end of the treatment process are exactly 
defined. With a few restrictions, this is also valid for the 
different treatment phases of the cycle, which helps to 
easily determine a case structure. 

• It is important that the system works fast because the 
time delay between the beginning of a rainfall event and 
an increase of the inflow rate can be quite short. 

• With cycle durations between 3 and 8 h the database will 
grow very fast, i.e. case acquisition is not a problem. 
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3.3.1 Cont r ol  Syst em A r chi tect ur e 
Modern SBR plants often possess much online measure-
ment equipment. However, as a consequence of higher 
treatment standards, reduced prices for sensors, etc., a 
further increase in online monitoring, especially for 
quali ty parameters (e.g., NH4, NO3) can be expected. Due 
to this fact, it wil l be possible to document the curves of 
important processes within each cycle. Later on, it would 
be possible to calculate the duration of each treatment 
phase, which would have been sufficient to reach 
predefined effluent standards. The opportunities for a 
Case-Based predictive SBR controller resulting from 
these circumstances are quite interesting, especially in 
case of an integrated RTC strategy. 

For instance, at the beginning of a rainfall  event, the 
control ler could predict the required duration and 
composition of the next cycle, by comparing actual 
process information (e.g., wastewater temperature, sludge 
characteristics) with historical  data. In the next step, the 
maximum hydraulic capacity of the WWTP can be 
calculated. However, due to the enormous amount of 
measurement data, it would not make sense to use only 
one CBR model to predict the required cycle duration and 
composition, because the database would have to be 
extremely large. So, it is promising to work with multiple 
domain models. 

Figure 6 shows our proposed system architecture. The 
specific process controlling units for the WWTP and the 
sewer system are connected via an interface (CACD) that 
mediates between our predictive control  system and the 
control lers for the WWTP and the sewer system.  

Figure 6: Principle of the predictive SBR controller. 

The interface provides us with al l  measured data and 
forwards the control  data resulting from the predictions 
depending on the current situation. Our predictive 
control ler consists of a CBR system as the core part, 
which operates on multiple case bases and domain 
models, respectively, with respect to the WWTP 
subsystem to which the measured data (situation) 
belongs. Speaking more specifically, almost each process 
stage in the cycle depicted by Figure 6 is represented by 
i ts own case base. The exceptions are the “settle”  and 

“draw”  (also known as “decant” ) phases (see Section 3.2) 
that are summarised in one case base and “ idle/sludge 
excess”  phase, which we will  not support with respect to 
time optimisation due to i ts very short duration.  

New measured data is taken as an input to our CBR 
system, which generates the adequate problem 
descriptions for querying the different case bases. As we 
are dealing with an independent series of process phases 
in the regarded cycle, i.e. a phase can only be started 
after its predecessor having finished, we can optimise 
(predict) the processing time of each individual phase and 
add the predicted duration times of each single phase in 
order to obtain the overall cycle duration. This fact also 
allows us to query the single case bases simultaneously.  

The cases are problem-solution pairs, where the current 
situation (measured data) represents the problem part and 
the solution is given by the respective control data for 
this situation. Due to the structure of the data, we are 
working with flat domain models.  

The subsequent control data for each single phase is 
derived from the retrieval result of the n most similar 
cases from past situations. Adapting the solutions from 
the respective n cases generates the solution for the 
current situation. However, the adaptation method 
depends on the process phase. (An example for the 
“settle/decant”  phase is given in Section 3.3.2.) The new 
solutions are forwarded to the cycle controller unit, which 
processes them and gives the final  solution back to the 
CACD. Depending on the results of the different case 
bases, the Cycle Controller will estimate the total 
duration of the cycle and create the composition of the 
cycle. Due to the fact, that the hydraulic capacity of the 
WWTP depends on the duration of each cycle and the 
current exchange volume, the maximum flow rate to the 
WWTP could be calculated in the next step.  

3.3.2 Exampl e M odel  “ Set t l e/Decant ”  
Up to now, we have only implemented one component 
(i .e. domain model) of the described overall  architecture. 
So far, our system only simulates the control  process 
offl ine, i .e. the generated solutions are not to be returned 
to the CACD interface. One of the results of project 
“Messel”  is that there is a huge potential for optimisation 
of the settle and decant (draw) phase. During this phase, 
first the water/biomass separation takes place and then 
the treated wastewater will  be decanted. Due to the fact 
that even a small sludge displacement from the reactor 
into the effluent of the plant can cause an exceeding of 
the required effluent standards, the settle and decant 
phase was dimensioned for unfavourable operational 
conditions. In order to point up the potential for 
optimisation, an example is depicted in Figure 7.  

As a consequence of the static dimensioning, the 
duration of the settle and decant phase in case of WWTP 
Messel takes in total 140 min. In reality, however, the 
operational values are usually much better than the 
comparable design values. Therefore, sludge blanket and 
suspended solid meters were installed at the decant 
devices to investigate the potential  for a reduction of the 
settle and draw phase. The results of this investigation are 
that in many cases it would be possible to reduce the 
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settle and decant phase up to 70 min (Figure 7) and thus 
to increase the hydraulic capacity up to almost 20 %. 
Furthermore, the monitoring shows that in most of the 
cases it would be possible to increase the volumetric 
exchange ratio from appr. 40 % to appr. 50 % (+145 m3; 
see Figure 7); this could further increase the hydraulic 
capacity. Due to the high optimisation potential of the 
settle and draw phase, it was decided to develop the CBR 
subsystem “Settle/Decant”  first. 

Figure 7: Potential  for optimisation of settle and decant phase. 

In the first step, more than 120 sludge settl ing curves, 
which have been measured under different operational 
conditions, were analysed and evaluated statistically. It 
could be observed that the settl ing velocity of the sludge 
blanket mainly depends on two factors. As already 
published by other authors (e.g., [Keudel and Dichtl, 
2000]), the initial settl ing velocity mainly depends on the 
sludge volume at the beginning of the settle phase. For 
instance, the settling velocity in a full  SBR is higher than 
in a barely f i l led tank, because the compression phase of 
the sludge starts later. Furthermore, it could be observed 
that the settl ing velocity depends on the last phase before 
the settle phase starts. For example, in case of a mixed 
react phase, it takes at least 10 min. until the 
sedimentation begins. In case of an aerated react phase, 
the turbulence at the beginning of the sedimentation 
phase is smaller, thus the flocculation process is faster 
and the sedimentation process can start in less than 5 
min. Consequently, the cycle type, the water level in the 
reactor, the sludge volume, and the water temperature 
were chosen as attributes in the respective CBR model 
(see Table 1). The system has been implemented with 
CBR-Works® (empolis – knowledge management, Inc.) 

Table 1: Attributes and their value ranges 

Attr ibute Value Range 
Cycle Type dry weather, rain weather 
Max. Water Level 3.32 m – 5.30 m  
Sludge Volume 241 ml/l  – 446 ml/l  
Water Temperature 8.7 °C – 21.4 °C 

In order to create the case base, in the second step, 30 
representative curves have been selected. Then, the 
calibration and validation process was started. The local 

similarity measures are mainly given by l inear distance 
functions (Euclidean distances) between the query values 
and the respective case values. Only the cycle type with 
its two values ‘ dry weather’  and ‘ rain weather’  has been 
modelled as a simple similarity matrix. The global 
similarity function is a weighted sum of the local 
similarities. The solution part of the cases is given by the 
courses of the respective sludge heights, represented by 
curves (sludge settling curves). We simplified the 
representation of these curves approximating them by 
polynomials of degree six. The idea was to be able to 
easily compare the coefficients a1 to a6 of these 
polynomials with each other, in order to evaluate the 
quality of the generated solutions. 

Figure 8: Good prediction of the sludge settl ing curve.  

Figure 9: Example for a worse prediction. 

The results produced by this subsystem are very 
promising. Despite the fact that the database is rather 
small, the model is able to predict the sludge settling 
curve well. Thereby, the predicted sludge settling curve is 
a weighted function, calculated with the help of 3 
measured curves, which have been measured under the 
most similar operation conditions. Figure 8 shows an 
example for a good prediction of the sludge settling 

 

 

 



curve. The measured and the predicted curve are almost 
identical. Of course, not all  predictions are as good as the 
example in Figure 8. Figure 9 shows an example for a 
worse prediction. However, even in this worse case the 
maximum difference between measured and predicted 
curve is only 0.5 m.  

It has to be taken into consideration that the 
measurement inaccuracy of the sludge blanket meter can 
be up to 0.2 m. Furthermore, in practise such worse 
predictions would not cause serious problems, because 
with the help of a sludge blanket meter-based and/or a 
suspended solids meter-based feedback decant controller, 
which survey the decant phase, it would be easily 
possible to close the decanter immediately, in case of a 
sludge displacement danger. 

3.3.4 Fut ur e Wor k  
As a consequence of the good results reached with the 
CBR “Settle/Decant”  model, the other components of our 
architecture will be developed, i.e. we wil l create the 
domain models and the respective CBR subsystems. 
Thereby, the monitoring established within the project 
“Messel”  serves as a data source for the case bases. In the 
near future, our overall  system will then be verified in 
ful l  scale in a field test by feeding the so generated 
control data into the modern CACD of WWTP Messel. 

4 Related Wor k 
Recently, an increasing number of publications can be 
found that deal with WWTP control  and optimisation 
respectively, using knowledge-based techniques, 
sometimes also Case-Based Reasoning: 
 Sànchez-Marrè [1996] presents the DAI-DEPUR 
system. The system is based on an integrated multi-level 
architecture for WWTP supervision in real-time. Like the 
SBR controller approach to use multiple case bases for 
the different control tasks, DAI-DEPUR maintains 
several knowledge bases that are connected for solving 
the global control  task. In contrast to the SBR controller, 
DAI-DEPUR is kept more general with respect to the 
supported WWTPs. Furthermore, different knowledge-
based approaches besides CBR are deployed. Fenner and 
Saward [2002] describe a methodology to produce a 
performance assessment model. They identify changes in 
the internal conditions of sewer pipes. Amongst other 
data, they build up a case base of performance histories. 
The past performances are used to predict suitable 
management strategies in the current situation. 

5 Conclusions 
Despite the fact, that CBR is a powerful technology, 
which has already proved its potentials in different 
industrial applications, CBR is not widely used in the 
field of wastewater treatment until  now. Although 
approaches for optimisation of existing plants attract 
more and more the attention, they are sti l l based in almost 
al l  cases on Fuzzy Logic, Neuro Fuzzy, Genetic 
Algorithms, and Neural Networks. Nevertheless, there are 
some examples that the use of CBR in the field of 
wastewater treatment could be very promising, especially 

in case of Decision Support Systems and Real Time 
Control. Consequently, there is a good chance, that CBR 
wil l be far more common in environmental engineering 
during coming years.  
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