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Functional genomics, a test-case for IE from the
semantic web

Most of the IE tasks as defined in MUC do not require deep analysis
0 |E patterns can then be hand-coded.

Finding a price in atext comes to point out the dollar sign and look for a
sequence of digits (from [Soderland, 98])

Capitol Hill - 1 br twnhne. fplc DWWD. Undrgrnd pkg incl $675. 3BR,
upper flr or turn of ctry HOVE. incl gar, grt N HIl loc $995. (206)
999- 9999

But, in many web documents,
e Learning is needed because of the low coverage of hand-coded patterns

e Deeper understanding linguistic methods are required for identifying the
discriminant regularities

It is the case in functional genomics




Gene function

e The proteins are molecules that accomplish most of the functions of the
living cells (catalysis, defense, acquiring and transforming energy).

« Genes are DNA sequences that express proteins.
* Proteins are also responsible of the gene activation and inhibition
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Gene regulation network

« Gene and protein activity may be part of a whole regulation network

Example: Characterization of YRRL1 transcription factor regulation system for a better knowledge of
the PDR (pleitotropic drug resistance) network in the yeast Saccharomyces cerevisiae.




Discovering the gene function

- Experimental approaches for few genes at a time (sequencing,
functional analysis)

- Inference by homology in silico: "my new gene should have the
same function as similar genes" (and what, if many of them?)

- Large scale study (regulation network): databases and information
extraction in bibliography from the web, of gene interaction /
phenotype / gene  reaction to  environmental conditions and
experimentation (ADN chips),

Two examples of web bibliography databases

MedLine FlyBase

DB Size > 12 millions of refs. > 9500 genes recorded
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A MedLine abstract

u - 99175219

AU - Ichikawa H

AU - Halberg R

AU - Kroos L

Tl - Negative regulation by the Bacillus subtilis GerE protein.

PT - JOURNAL ARTICLE

DA - 19990415

DP - 1999 Mar 19

IS - 0021-9258

TA - J Biol Chem

AB - GerEis a transcription factor produced in the nother cell conpartnent of sporulating Bacillus subtilis. It is a
critical regulator of cot genes encoding proteins that formthe spore coat late in devel opnent. Mst cot genes, and the

gerE gene, are transcribed by sigmaK RNA pol ynerase. Previously, it was shown that the GerE pr otei n
inhibits transcription in vitro of the sigK gene encoding sigmK rere, we

show that GerE binds near the sigK transcriptional start site, to act as a repressor. A sigK-lacZ fusion containing the
CGerE-binding site in the pronoter region was expressed at a 2-fold lower |evel during sporulation of wild-type cells than
gerE nmutant cells. Likew se, the level of SigK protein (i. e. pro-sigmK and signaK) was | ower in sporulating wld-type
cells than in a gerE mutant. These results denonstrate that sigmaK-dependent transcription of gerE initiates a negative
feedback I oop in which GerE acts as a repressor to linmt production of signaK. In addition, GerE directly represses
transcription of particular cot genes. W show that GerE binds to two sites that span the -35 transcription. The upstream
GerE-binding site was required for activation but not for repression. These results suggest that a rising |evel of GerE
in sporulating cells may first activate cotD transcription fromthe upstreamsite then repress transcription as the
downstream site becones occupi ed. Negative regulation by GerE, in addition to its positive effects on transcription
presunably ensures that sigmaK and spore coat proteins are synthesized at optinal |levels to produce a germni nation-

conpet ent spore.

AD - Departnment of Biochemi stry, Mchigan State University, East Lansing,
M chi gan 48824, USA. PM D- 0010075739

EDAT- 1999/03/13 03:11

MHDA- 1999/ 03/13 03: 11

URL - http://ww.jbc.org/cgi/content/full/274/12/8322

SO - J Biol Chem 1999 Mar 19;274(12):8322-7




Discovering the function of the genes:
an Information Extraction problem

Two examples of the IE problem in functional genomics

 Inference by homology: A biologist a MIG annotates 8 genes of
Lactobacillus bulgaricus per day.

One third stays unannotated because bibliographic references are too
long to process. 2000 genes have to be annotated!

e Large sacale study: The query "Bacillus subtilis transcription”
retrieves 2243 references from MedLine

O Information extraction must be partially automated
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Information to be extracted from a text fragment

Fragment from a Medline abstract

[..] the GerE protein inhibits transcription in vitro of the sigk gene
encoding sigmak [..]

Filled form *

Interaction Type : negative
Agent . GerE protein

Target: Expression Source: sigKk gene
Product : sigmaK

Equivalently, XML tagging

The <agent type=protein>GerkE protein</agent> <interaction type:negative>-
</interaction> <target type=expression>transcription of <source type=gene>the sigK
gene</source> - <product>sigmaK </product></target>




| nformation extraction in functional genomics

Three main approaches for automating IE:
1. Hand-coded patterns
2. Learning keyword-based extraction patterns

3. Learning linguistics-based extraction rules




1. Hand-coded |E patterns [ono et al., 2001]

One simple example from Ono's:

Bnrlp [interactg with another Rho family member, Rho4p, but not with Rholp.

Patterns: Patternl: Proteinl * interact/stimulate/inhibit <spaces With <space
Protein2 *

Pattern2: Patternl * but <space- NOt <space= Protein3

Result:
_ Type: positive Type : negative
| nteraction
Agent: Bnrlp Agent: Bnrlp
Target: Rho4p Target: Rholp




1. Hand-coded |E patterns

Counter example from Caderige:

GerE stimulate§ cotD transcription and cotA transcription [..], and,
unexpectedly, [nhibitd[..] transcription of the gene (sigK) [ ...]

Result with patternl:

Type. positive Type . negative

Interaction
Agent: Gerk Agent: GerEk, cotD, cotA

Target: cotD, cotA, sigK Target: sigK

0 Additional constraint on the number of words between the elements of
the triple: Distance < 5 words

0 High precision but low recall (you can never be exhaustive)




2. Keyword-based rule learning
[Marcotte et al., 2001], [Nedellec et al., 2001]

e« Assumption

Sentences with less than two (0, or 1) gene/protein names do not mention
gene interactions.

e Learning in 3 phases

1. Select the sentences with at least two gene names
2. Classify the sentences by hand, as relevant or not
3. Learn a classifier with the learning set (vector representation)




Training examples

Vector representation
Sentences are |lemmatized
Stop-words and gene names are suppressed
The words represent the vector attributes, the values are boolean

Training example from Bacillus subtilis

Sentence : In addition, GerE stimulates cotD transcription and inhibits cotA
transcription in vitro by sigma K RNA polymerase, as expected from in vivo studies,

and, unexpectedly, profoundly inhibits in vitro transcription of the gene (sigK) that
encodes sigma K.

Example : addition stimulate transcription inhibit transcription vitro RNA polymerase
expected vivo study unexpectedly profoundly inhibit vitro transcription gene encode

Class : Positive




Evaluation of keyword-based rule learning

Example of an evaluation on gene interaction in Bacillus subtilis
Four methods with, and without feature selection [Nedellec et al, PKDD'01]

Corpus Bacillus subtilis corpus
Method BN VI IVI+BN SVM

: all all all all
# attributes 2340 1800 2340 1900 2340 1500 2340 1800
Recall positive 85,7 | 90,8 | 82,6 | 91,5 | 70,00| 90,00 70,21 | 77,02
PreF:l_smn 66,6 | 74,1 | 67,4 78,3 [ 67,14|85,11| 69,62 | 78,52
positive
Recall 71,1 | 77,5 71 82,8 [ 67,60|84,12| 69,53 | 75,86
Precision 71,1 ] 79,9 71 83,2 | 67,60|87,89| 69,53| 78,21

Good precision and recall but no precise information retrieved

(sentence level).




3. Linguistic-based extraction patterns

Conclusion on keyword-based learning

For a good precision and a high recall, extraction rules should
include conditions on different text analysis levels, syntactic and
semantic.

0 Information extraction in two phases [Riloff, Soderland, Freitag, Ciravegna]

1. Sentence processing
Parsing and semantic tagging for an enriched and normalized text

representation

2. Application of extraction patterns on this representation




Normalized text representation

Semantic Agent Target Source Source Product
relations
Semantic Negative : .
S
Syntactic Subject ) /NprepN —__ Subject DODbj
relations Adj | ——
Text The GerE protein || inhibits I transcription ﬂ in vitro ﬂ of || the sigK gene] | encoding | sigmaK

_ Det Noun Noun Verb
Syntactic < N Noun phrase

i ~
categories Noun phrase

Semantic relation agent(Ger_protein, inhibit), cible(transcription, inhibit),
Semantic category concept(Ger_protein,protein),concept(inibit,negative_interaction),
Syntactic relation subject(Ger_protein, inhibit), DObj(transcription, inhibit),

T ext tk(the), tk(Ger_protein), tk(inhibit), tk(transcription), tk(of),
Syntactic category cat(the, det), cat(Ger protein, term), cat(inhibit, verb), ...



Example of El pattern: a transducer for protein
identification and mark up

The automata use the syntactic and semantic information from the
parsing phase to identify proteins in the text.

( PROTEIN ’
Semantic Class :
K Protein D @
<Gene_
expression>

of M>> ‘D < Semantic Class : N\
rep ( :I ] Gene v @

3 4 NP($3,$4)
<Source> </Source>  NprepN($1,$2)

(GENE EXPRESSION '

4‘>—€ expression

Y N\
'._U' =




Example of El pattern: a transducer for gene interaction
identification and mark up

POSITIVE INTERACTION .
Q <interaction> </interaction> Subject($2,$1)

, G \ Semantic Class : <Geqe Dobj(2 ’E?’)
Positive interaction expression>
[NP [Verb, ) ] <target> [NP¥; ] </target>

1
<Agent> </Agent>




What knowledge for

extracting information

Types of knowledge needed

How to get it

e Syntactic
Syntactic categories (parts of speech)

Syntactic relations (dependencies)

Tools

« Morphosyntactic taggers
e Syntactic parsers

Semantic

categories (conceptual
restrictions of selection

Semantic
hierarchies),

Subcategorization frames

Predicate schemata

Background knowledge learned

from corpus

e Distributional semantics
(clustering)
e Grammatical

Inference, ILP

« FOL clustering

Extraction rules

 Relational learning, ILP




Knowledge learning and information extraction

Learning step Exploitation step

Queries
|
‘ == Appliation
—
Corpus MEEIG Extraction |
_— | Learning T
| Knowledge
/
Document library




Learning information extraction patterns

Types of knowledge needed

How to get it

« Syntactic
Syntactic categories (parts of speech)

Syntactic relations (dependencies)

Tools

« Morphosyntactic taggers
« Syntactic parsers

Semantic

categories (conceptual
restrictions of selection

Semantic
hierarchies),

Subcategorization frames

Predicate schemata

Background knowledge learned

from corpus

e Distributional semantics
(clustering)
e Grammatical

iInference, ILP

« FOL clustering

Extraction rules

* Relational learning, ILP




Learning information extraction patterns

Active domain research from the beginning of the nineties (MUC)

« Learning extraction rules from free and semi-structured texts
AutoSlog [Riloff, 93-99]
LIEP [Huffmann, 96]
SRV [Freitag, 98]
Crystal [Soderland, 95], Whisk [Soderland, 99]
WAWE [Aseltine, 99]
Pinocchio, LP2 [Ciravegna, 00-02]
ILP RHB+ [Sasaki & Matsuo, 00]

« Learning methods
Attribute-value methods (C4.5, Naive Bayes), propositional

Relational methods bottom-up and top-down (FOIL-like)
Grammatical inference (Alergia)




Example

Annotated sentence

The <agent type=protein>GerE protein</agent> <interaction type:negative>-
</interaction> <target type=expression>transcription of <source type=gene>the sigK
gene</source> - <product>sigmaK </product></target>

Positive example of the field agent

i nteraction_agent (GerE protein):-
tk(the), tk(Ger _protein), tk(inhibit), tk(transcription), tk(of),
cat (the, det), cat(Ger _protein, term, cat(inhibit, verb),
next -t oken(the, Ger _protein), next-token(Ger protein, inhibit),
subject (Ger _protein, inhibit), DObj(transcription, inhibit),
concept (Ger _protein, protein), concept(inibit, negative_interaction),
agent (Ger _protein, inhibit), cible(transcription, inhibit),




Open problems

« Role of the additional knowledge
(syntactic and semantic tags and relations)

[0 can normalize and increase the textual regularities (e.g. replacing terms
by concepts) but potentially suppress discriminant attributes

[0 potentially add discriminant attributes but drastically augment the
search space

[] Feature granularity and selection problem
Obviously depend on the information to be extracted

« Learning the additional knowledge




Learning background

knowledge for |E

Types of knowledge needed

How to get it

« Syntactic
Syntactic categories (parts of speech)

Syntactic relations (dependencies)

Tools

« Morphosyntactic taggers
« Syntactic parsers

Semantic

categories (conceptual
restrictions of selection

Semantic
hierarchies),

Subcategorization frames

Predicate schemata

Background knowledge learned

from corpus

e Distributional semantics
(clustering)
« Grammatical

Inference, ILP

« FOL clustering

Extraction rules

e Relational learning, ILP




Learning conceptual

hierarchies by clustering

Classes of words co-occurring in different syntactic contexts form concepts

of
(NprepN)

Transcription

Transcription- - - == - -
(NprepN)

of :
Expression
(NprepN)
spollG rbs
NS (oo hrpL of _
ykuD pykvP —————— Expression
(NprepN)

ccdA hrpS

Basic
classes




Clustering result

Conceptual hierarchy

Noun : inhibition
NprepN (by): protein
NprépN (of): gene

/ \\/’ . = .
DNA sequence Restrictions of selection
enzym 'f gene promoter Vel'b. . activate |
| Subject : protein
’ hemoglobln . _ :
DODbj : expression
transcrlptlon

factor gerE

|
’
’ n I
. s a
I

sigmaK

Open problems
Evaluation [Nedellec & Bisson, 2000]

Integration of known terminology (Gene Ontology, gene dictionaries)




Learning background

knowledge for |E

Types of knowledge needed

How to get it

« Syntactic
Syntactic categories (parts of speech)

Syntactic relations (dependencies)

Tools

« Morphosyntactic taggers
« Syntactic parsers

Semantic

categories (conceptual
restrictions of selection

Semantic
hierarchies),

Subcategorization frames

Predicate schemata

Background knowledge learned

from corpus

e Distributional semantics
(clustering)

e Grammatical ILP

Inference,

« FOL clustering

Extraction rules

e Relational learning, ILP




From selectional restrictions to
subcategorization frames

Subcategorization frames =
restrictions of selection + syntactic (structure) and semantic constraints

Example

clustering O binary independent Subcategorization frame
relations

Verb : inhibit Subject : protein Verb :inhibit

Verb : inhibit Subject : stress Subject : repressor XOR stress

Verb : inhibit DObj : expression DObj : expression

 Protein and stress are mutually exclusive as subject of inhibit
« Among proteins, only repressors inhibit gene expressions




Subcategorization frame learning by grammatical

inference

Sentences
ResD activates transcription of fnr, hmp and nasD
The phosphorylated form of SpoOA activates spollA and spollE transcription.

BmrR activates transcription FNR

PTA:

proteins

- Gtranscriﬁto NprepN (of

jranscrigt. D NprepN (of)

:transcrigt.derepN (froni
DODbj
QLN NS

promoter

NprépN(in) @‘

Bacterium




Subcategorization frame learning by grammatical inference

Verb : activate Subject: protein DODbj: transcription
Subject: stress DODbj: promoter
Subject: pathway DODbj: gene
Subject: syntesis NprepN (in): bacterium

Noun : synthesis NprepN (of): protein
Noun : transcriptionNprepN (of): gene NprepN (from): gene

protein W NprépN (of)
activate i i romoter
subj p R m gene

@ G NprepN (from

NprépN|(in)

gene




Learning background

knowledge for |E

Types of knowledge needed

How to get it

« Syntactic
Syntactic categories (parts of speech)

Syntactic relations (dependencies)

Tools

« morphosyntactic taggers
e syntactic parsers (SP XRCE)

Semantic

categories (conceptual
restrictions of selection

Semantic
hierarchies),

subcategorization frames

Predicate schemata

Background knowledge learned

from corpus

e distributional semantics
(clustering)
e grammatical

inference, ILP

« FOL clustering

Extraction rules

e relational learning, ILP




Predicate schemata

Predicate schemata = predicate classes and their arguments related by
semantic and syntactic dependencies




Learning predicate schemata from subcategorization
frames, by clustering

Pred: Repress @
o

Doy,
Ny,
(ory @
N | . .
\M R (— Morphological derivation
(opy~Gene Y | - - Semantic similarity
—————— Syntactic derivation




Conclusion

|E in functional genomics, as in many domains requires
« deep understanding methods based on syntactic-semantic analysis

o dictionaries, lexicon, ontologies, thesaurii, |E patterns to be learned by
multistrategy learning and integrated with existing knowledge bases.

Learning methods for acquiring the needed knowledge and the IE
patterns include relational methods

« able to handle
background knowledge
relations (syntactic dependencies, semantic relations)

able to acquire

conceptual hierarchies for semantic labeling
subcategorization frames for disambiguating semantic labeling
predicate argument structure for semantic relation labeling
|E patterns




Architecture of Caderige (http://caderige.imag.fr)

Syntactic
parsing

Semantic
analysis

Extraction

[ Tagging

\

Relevant frag-
ment selection

Syntactic
parsing
Semantic
labeling

4

. Conceptual :
! representation

! ’

n._____l_____

Document collem
(Medline, Flybase, etc.)

Domain knowledge \

Lexicon, Thesauri _J L

Extraction rules

Query / E xtraction template

Pattern
matching J

/

>
answer to the query EStorage “

/ filled template

L 4




One further step towards semantic normalization

Various expressions

for

Positive
interaction

The expression of spolllD
spolllD expression
The spollID gene product

The production of SpolllID
SpoliD
SpolllID production

unique interpretation

stimulates

the expression of sigK.
sigK expression.

the sigK gene product
the production of sigma K.

sigma K production.

Y

Target

—» Agent —» SpollID <«———Product <——— Expression

spollID

'

Source

'

Expresson ——— Source ——» sigk

'

Product ——» sigmaK




From restrictions of selection to conceptual structures

Learning sets of )

subcategorization frames

(nominalization) Sy
Norngy

« Learning semantic sets of @
predicate structures with their

corresponding arguments




