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Abstract. A standard problem for internet commerce is the task of
building a product taxonomy from web pages, without access to corpo-
rate databases. However, a nasty aspect of the real world is that most
web-pages have multiple facets. A web page might contain information
about both cameras and computers, as well as having both speci�cation
and sale data. We are interested in methods for supervised and unsu-
pervised learning of multiple faceted models. Here we present results for
multi-faceted clustering of bigram words data.

1 Introduction

A recognized problem for internet commerce is the task of building a product
taxonomy from web pages, without access to corporate databases, and then
populating a database with link information about service, repair, spare parts,
reviews, product speci�cations, product family and company home pages, and
purchase information from retailers. A key precursor for this task is the ability to
build classi�cation hierarchies in a supervised or unsupervised manner. However,
a nasty aspect of the real world is that most web-pages have multiple facets. A
web page might contain information about cameras and computers, as well as
having both speci�cation and sale data. Whereas another page might mix a
product index with partial speci�cation and sales data. We are interested in
methods for supervised and unsupervised learning of multi-faceted models.

Clustering or unsupervised learning is now a standard method for analysing
discrete data such as documents, and is now being used in industry to create tax-
onomies from web pages. A rich variety of methods exist borrowing theory and
algorithms from a broad spectrum of computer science: spectral (eigenvector)
methods [1], kd-trees [2], using existing high-performance graph partitioning al-
gorithms from CAD [3], hierarchical algorithms [4] and data merging algorithms
[5], etc.

All these methods, however, have one signi�cant drawback for typical appli-
cation in areas such as document or image analysis: each item/document is to be
classi�ed exclusively to one class. Their models make no allowance for instance,
for a product page to have 60% digital camera content and 40% laptop com-
puter content. It is 100% one way or another, and any uncertainty is only about
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whether to place the 100% into one or the other class. In practice documents
invariable mix a few topics, readily seen by inspection of the human-classi�ed
Reuters newswire, so the automated construction of topic hierarchies needs to
re
ect this. One alternative is to make clustering multi-faceted whereby a docu-
ment can be assigned proportionally (i.e., using a convex combination) across a
number of clusters rather than uniquely to one cluster.

Authors have recently proposed discrete analogues to principle components
analysis (PCA) intended to handle discrete or positive only count data of the
kind used in the bag-of-words representation of web pages. Methods include
non-negative matrix factorization [6], probabilistic latent semantic analysis [7]
latent Dirichlet allocation [8], multinomial PCA [9]. A good discussion of the
motivation for these techniques can be found in [7], and an analysis of related
reduced dimension models and some of the earlier statistical literature here can
be found in [10], and theory and algorithms are presented in [9].

Multinomial PCA by itself does not perform multi-faceted clustering because
on average a page/item/document might be composed of up to 50 components
in some of our experiments, and this does not re
ect the behaviour of a \few
di�erent topics" we were looking for. We have recently made modi�cations to
the standard algorithms so that multinomial PCA performs multi-faceted clus-
tering. That is, it performs a clustering whereby some items/documents/pages
are assigned with proportion to a few di�erent classes.

In this paper, we �rst expand more on what we mean by a multi-faceted
model, and then we give some examples from our working system. Our experi-
ments are conducted on bigram data for words collected o� a good fraction of
Google's database of web pages for August 2001. The data sizes allowed us to
experiment to understand how many components might be produced.

2 Contrasting Clustering and Multi-Faceted Clustering

For concreteness, consider the problem in terms of the usual \bag of words"
representation for a document [11]. Here the items making up the sample are
documents and the features are the counts of words in the document. A doc-
ument is represented as a sparse vector of words and their occurrence counts.
All positional information is lost. With J di�erent words, the dimensionality for
words/features, each document becomes a vector x 2 ZJ , where the total

P
j xj

might be known. Traditional clustering becomes the problem of forming a map-
ping ZJ 7! f1; : : : ;Kg, where K is the number of clusters. Whereas techniques
such as PCA form a mapping ZJ 7! RK where K is considerably less than J .

The problem we consider, however, is to represent the document as a convex
combination, thus to form a mapping ZI 7! CK where CK denotes the subspace
of RK where every entry is non-negative and the entries sum to 1 (m 2 CK

implies 0 � mk � 1 and
P

kmk = 1). Callm the reduced image of a document.
For instance, suppose we are performing a coarse clustering of newswires

into topics: the topics found might be \sports", \business", \travel", \interna-
tional", \politics", \domestic", and \cultural". Consider a document about a
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major sport-star and the overlap of his honeymoon with a big game. Then tradi-
tional clustering might output the following: \the document is about sports". A
more re�ned clustering system that represents uncertainties as well might out-
put: \with 90% probability it is about sports, with 7% probability it is about
cultural, and 3% probability about something else". General multinomial PCA
considered in this paper might output: \50% of the document is about sports,
35% of the document is about cultural, 7% about business, 5% about interna-
tional". The supposed business content is really a discussion of the hotel for the
honeymoon and the supposed international content comes from the location of
the honeymoon. Note here general multinomial PCA plays the role of dimen-
sionality reduction, and places similar kinds of words into the same bucket for
compression purposes rather than any real topic identi�cation.

The problem we consider is also to perform multi-faceted clustering, which
serves the purpose of extracting multiple mutually occurring topics from a doc-
ument. Suppose m 2 CK is the reduced image of a particular document. For
multi-faceted clustering, m should have most entries zero, and only a few en-
tries signi�cantly depart from zero. A measure we shall use for this is entropy,
H(m) =

P
j mj log(1=mj). Thus multi-faceted clustering prefers low entropy

reduced images from CK . In the limit, when the average entropy of the reduced
images is 0, the mapping becomes equivalent to standard clustering. With the
simple honeymoon example above, the output could be reduced to: \70% of
the document is about sports, 30% of the document is about cultural". This
makes the document have 2H(m) = 1:85 e�ective topics, as opposed to the orig-
inal PCA example above with more proportions (0.5,0.35,0.07,0.05) which had
2H(m) = 3:17 topics.

Note that clustering is usually varied using the dimensionality K, their num-
ber of components, not the nature of their decomposition, H(m). Approaches
such as the Information Bottleneck method [12] and hierarchical approaches in
general yield clustering at di�erent scales and do not relax the assumption of
mutual exclusivity. We make the distinction here between the term component
which is a derived feature discovered for dimensionality reduction, and a facet,
which is similar but is intended instead to be a relaxation of a topic. Documents
should have a few facets for good multi-faceted clustering but many components
for e�ective dimensionality reduction.

3 Theory

We brie
y review the theory of the multinomial version of PCA, and discuss the
extensions. More details of the basic theory appear in [9].

Given a document, we �rst to sample a K-dimensional probability vectorm
that represents the proportional weighting of components, and then to mix it
with a K � J matrix 
 whose k-th row represents a word probability vector
for the k-th component. For a document with a total count of L words in its
bag-of-words representation x, this is modelled as:

m � Dirichlet(�) ;
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x �Multinomial(m
; L) ;

where� is a vector ofK-dimensional parameters to the Dirichlet. Thus, the mean
of each entry xj is a convex combination of a column of 
, the probabilities for
the j-th word for di�erent components.

This probability model does not readily yield an algorithm. The proportion
vector m is a hidden variable but it cannot be treated with the standard EM
algorithm for hidden variables. However, if we can introduce a second hidden
variable for each document w which is the word counts now broken out by word
index j and topic index k as a J�K matrix. This matrix has row totals equal the
bag of words data x. An algorithm can be derived which iteratively recomputes
an expected value for both the topic proportionsm and the word counts broken
out by topic w.

The following iterative algorithm can be derived using variational methods
[9].

Theorem 1. Given the hidden variable model above, and the priors: m �
Dirichlet(�) and 
kl;� � Dirichlet(2f), where f is an empirical word proba-
bility vector and � is some other vector giving priors for the �rst Dirichlet.
The following updates converge to a lower bound of log p(x;
;�) that is op-
timal for all product approximations q(m)q(w) for the hidden value posterior
p(m;w j
;�;x). The subscript [i] indicates values from the i-th document.
For this the K-dimensional vector � is an intermediate variable representing
a Dirichlet approximation to the posterior distribution for the i-th documents
proportions m[i] and the J � K � I-dimensional array 
 is an intermediate
variable representing the multinomial probabilities for an approximation to the
posterior distribution for the rows of the i-th documents word matrix w[i].
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1
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X
i
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!
;

where 	0() is the digamma function, and Z1;j;[i] and Z2;k are some normalizing
constants.

The exponential in the �rst rewrite rule is an estimate ofmk;[i]) as exp(Eqflogmk;[i])g)
which tends to reduce the component entropyH(m[i]). Note the last rewrite rule
is the standard MAP estimate for a multinomial parameter vector.

To reduces the entropies of the component proportionsm[i] even further, we
use the additional updates:


j;k;[i]  �
1

Z1;j;[i]

k;jmk;[i]
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mk;[i]  �
nk;[i]P

k nk;[i] � �
�
H(m[i])� log 1=mk;[i]

� ;

where � is a Lagrange multiplier that can be increased to decrease the entropy
H(m[i]). Note this replaces the above update for 
j;k;[i]. These modi�ed updates

correspond to using an entropic prior pr(m[i]) / exp
�
��H(m[i])

�
, which is a

weighted version of Brand's [13].

4 Experimental Setup

Data was collected about word occurrences from a signi�cant portion of the
English language documents in Google's August 2001 crawl. After HTML and
other tokens are removed, the basic text is processed to determine the most
frequent 5000 words consisting only of letters `a'-`z' ignoring case. Their co-
occurrence data, the so-called bigram data was also collected. Bigrams are only
counted for contiguous words in the same phrase: not broken by punctuation
(excepting `-'), line breaks or other formatting tokens. The large number of
documents used allows the bigram data to be 17% non-zero for bigrams of the
top 5000 words. Note, some web pages contain seemingly random text and more
than enough jargon. The top word \to" has 139; 597; 023 occurrences and the
5; 000-th word \charity" has 920; 343 occurrences. The most frequent bigram
is \to be" with 20; 971; 200 occurrences, while the 1; 000-th most frequent is
\included in" at 2; 333; 447 occurrences.

In this case, the role of document in the theory is played by a word, and the
role of word, is played by the words appearing after this word.

The code for our system is 1300 documented lines of C, with error checking,
input parsing, diagnostic reporting, and component display. The code runs com-
parably to a PCA algorithm, converging in maybe 10-30 iterations, depending on
the accuracy required. It outputs a HTML page with internal links representing
the di�erent aspects of the multi-faceted model constructed.

To measure the component entropies, we use 2H(m j d) where H(m j d) is
the mean of the individual entropies H(m[i]) for each document (which is a
conditional entropy, hence the notation).

5 Experimental Results

We conducted a number of experiments as listed below.

5.1 Basic Illustration

We clustered the 5000 most frequent words on the web into 1500 di�erent multi-
faceted classes based on their occurrence in bigrams. The average e�ective num-
ber of components per word (measured by 2hH(m j d)i) using standard multino-
mial PCA is about 30 and the distinctions are diÆcult to interpret in many cases.
Using the modi�ed version of multinomial PCA which reduces the entropy of
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the component vector m, we got this to the more manageable �gure of about
3 e�ective components per word. Many words had a majority component with
probability over 0.7, while a few had up to 20 di�erent components.

Below we give some examples of the di�erent facets for di�erent words. These
are presented here to illustrate the method. Note the clusters here represent
word use which is subtlety di�erent to word meaning. Look at the examples for
\wedding" below to see this. Our interpretation of each facet is given in italic
prior to the list of words included in the facet,

\wedding": { occasion: birthday, christmas, romantic, holiday, holidays,
vacation, wedding, anniversary, happy,;

{ jewelry: rush, mini, gold, silver, jewelry, diamond, bell, wedding,
\love": { a�ection: kiss, love

{ preference: prefer, expect, recommend, need, like, probably, suggest,
love, want, mean, say, require, never, think

{ emotion: confusion, pride, stress, pleasure, danger, fear, depression,
honor, pain, comfort, britain, su�ering, passion, joy, glory, concern, de-
sire, wealth, beauty, strength, escape, feeling, insight, promise, satisfac-
tion, peace, respect, love

\four": { number: seven, eight, �ve, nine, six, twelve, ten, four, three, twenty,
two, one

{ some/few: few, several, �ve, ten, six, four, couple, three, half
\scene": { event: universe, situation, era, meal, scene, incident, lesson,

province, instance, issue, game, case, event, series, state, class, mission,
project, school, sale, unit

{ play/performance: festival, scene
\e�orts": { group work: initiative, initiatives, projects, proposals, collabo-

ration, e�orts, e�ort, programs, activities, strategies, work
{ attempts: attempts, aim, attempt, e�orts, e�ort
{ relationships: minds, hearts, lives, voices, bodies, families, e�orts, com-
mitment, attention, relationship, original, work

For instance, \love" is broken into an a�ection term, an preference term, and an
emotion term, whereas \e�orts" is broken into a group work term, an attempts
term, and a relationship term.

5.2 Explaining Component Dimensionality

Why does standard multinomial PCA produce di�erent e�ective number of com-
ponents? We varied the input in a number of ways to explore this question.

First, we ran the system with di�erent starting dimensions for the number
of components allowed. Given I documents (i.e., words in the Google data) and
J words/features per document (again, words in the Google data), then with K
starting components, we are attempting to reduce the I � J word count matrix
to the product of a I �K document topic matrix and a K � J topic to word
mapping. Some of the K topics may be rarely used and contribute little, thus
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the e�ective number of total components can be much less. We measure this as
2H(p) where p is the K-dimensional vector of mean proportion for a topic in
all documents (i.e., the mean of the rows of the I �K document topic matrix).
This contrasts with the e�ective number of topics/components per document
2H(m j d) which is the conditional entropy on the I �K document topic matrix,
or the mean of the entropies of the rows of the I �K document topic matrix.

Second, we down-sampled the data. We sampled without replacement from
the data vector to reduce the total size of each \document" by subsampling
factors of 100, 1; 000, 10; 000, 100; 000 respectively. Note the bigram word data
had huge starting counts. This was done to produce \documents" of di�erent
sizes. The characteristics of the data sets produced are given in Figure 1. The
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Fig. 1. Data characteristics for subsampled bigram data

X-axis is the subsampling factor. The solid line (axis on left) represents the
proportion of non-zeros in the resultant data, and the dotted line (axis on right)
represents the count of words in the resultant \document".

The results from these experiments are reported in Figure 2. Each curve rep-
resents the results for one subsampling factor, i.e., an X value on Figure 1. So
the top curve, which has no subsampling and where documents are 8; 000; 000
words on average, the mean e�ective number of components per document in-
creases upto about 40. The second from the bottom curve (/10000) has about 80
words per document and typically 3-4 mean e�ective number of components per
document, no matter how many components are inferred from the data (from
20 upto about 800). The third from the bottom curve (/1000) has about 800
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Fig. 2. Component dimensions

words per document and typically 10 mean e�ective number of components per
document, no matter how many components are inferred from the data (from
20 upto about 1000).

From these experiments, we can conclude that the mean e�ective number of
components is largely in
uenced by the document size. This would be result of
the statistical capacity of the document to support a number of components.
Small newswires and web pages can be 100 words, and thus could support a few
topics statistically. Larger ones are about 1000 words and could support upto
about 10 topics statistically. Web pages larger again that correspond to spec
sheets, long details of factual data, etc., could support even more topics.

6 Conclusion

We have demonstrated that recent extensions to PCA for multinomial data are
inadequate for multi-faceted clustering and given results for a modi�cation to the
basic algorithm that performs better in this regard. We argued that multinomial
PCA is really a dimensionality reduction algorithm, and not designed for multi-
faceted clustering.

It remains to be seen how the modi�ed algorithm will perform on the sug-
gested task of performing multi-faceted clustering of web-pages as a pre-processing
step to data mining for the semantic web. For this, we would need at least the
ability to generate full topic hierarchies, and to perform automatic labelling/naming
of topics in the hierarchy. We expect that by doing this for multiple companies
at once, useful hierarchies could be established.
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Another research direction is to modify these algorithms to create supervised
versions of them, whereby each item/document/page is tagged with multiple
topics (as the Reuters and AP news-wires can be), and the task is to learn a
model for the component topics and the proportions for each.
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