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Abstract. We address a new machine learning problem, taming, that involves
two types of training sets: wild data and tame data. These two types of data sets
are mutually complementary. A wild data set is less consistent, but is much larger
in size than a tame set. Conversely, a tame set has consistency but not as many
data. The goal of our taming task is to learn more accurate classifiers by exploiting
the strong points of each training set. For this task, we develop a new algorithm,
BaggTaming, which is a modified version of bagging. Such an algorithm would
be useful for predicting tags in collaborative tagging services, such as del.icio.us.
With such services, users can register Web documents, assign tags to them, and
share these tags. Such tags are similar to the notion of class labels that have been
adopted in supervised learning. The tags are poorer in consistency than well-
managed labels, but more tags are available. If we consider tags as wild data,
and labels as tame ones, Web pages could be more accurately classified with our
taming technique.

1 Introduction

In this paper, we address a new learning problem, which we call taming, and develop a
method for solving this problem. The learner for this taming requests two types of train-
ing data sets, tame and wild. The label information of tame data is carefully maintained
based on a consistent target concept, which we actually want to learn. In contrast, wild
data are not so well maintained; thus, some labels are consistent with the target con-
cept, while some others are not. Additionally, we assume that wild data are much more
abundant than tame data. This assumption is reasonable, because it is generally difficult
to provide a large tame data set due to its high maintenance cost. The goal of the taming
is to acquire more accurate classifiers by exploiting wild data than those learned only
from tame data.

One example of such wild data is found in collaborative tagging systems. Collab-
orative tagging services such as del.icio.us1 enable users to register their favorite Web
pages. To these registered pages, users can assign tags, which are words that describe
the contents, characteristics, or categories of the tagged pages. These tags are useful
for searching or classifying their own registered pages. In addition, these registered
pages and assigned tags can be shared among users of the service. With these shared

1 http://del.icio.us/
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tags, users can search the pages that other users have registered, and they can find like-
minded users.

This social tagging process differs from a traditional classification scheme. In the
case of a document repository or library collection, the materials are classified under
well maintained and unified criteria. That is to say, the labeling scheme is highly re-
stricted, and the semantics of the labels is strictly defined. In contrast, social tags are la-
beled based on each user’s personal criterion. Users can freely choose their favorite tags;
thus, the semantics of social tags can vary greatly. Golder and Huberman have pointed
out such inconsistency among collaborative tags [1]. They discussed the causes of the
variation in the semantics of the tags. One variation involves the degree of specificity.
For example, the official page of the programming language python can be tagged by
either the specific word, “python,”, or the general one, “programming.” Another cause is
polysemous words and phrases, which have many related senses. For example, one may
consider the term “data mining” as a statistical technique for marketing research. But
another user may use this term to indicate techniques for analyzing massive data sets.
Note that these polysemous words and phrases are different from homonymous words
that have multiple unrelated meanings. As a consequence, the tags labeled by one user
may be inappropriate to another user. When searching for documents with shared tags,
users might find undesired documents or miss relevant pages.

Our taming technique can be applied to cope with this difficulty. We prepare a set
of Web pages that are consistently labeled based on the target concept in which we
are interested. These labeled pages are treated as tame data. Because making tame data
is labor intensive, the size of the tame data set tends to be small. For the task whose
labeled training samples are fully available, statistical techniques often fail to find the
regularity in the tame data. In contrast, it is relatively easy to collect many tagged pages
by using collaborative tagging services, but these tags may not consistent with the target
concept as described above; thus, we treat these pages as wild data. These tame and wild
data are mutually complementary; the tame data are well maintained, while the size of
the wild data set is large. Therefore, it would be fruitful to use both data sets together.
Our taming technique lets the user know whether any collaborative tags are consistent
with his/her own concept. Further, it is also useful for finding more appropriate tags
for new Web pages. In this paper, we will show a method for this taming, which we
call BaggTaming. This is a modified version of bagging [2] so as to be applicable to
taming. We employ BaggTaming in a tag-prediction task, and show the effectiveness
of our method. We expect that this taming technique would be generally helpful for
any situation where many unreliable observations are available together with a small
amount of highly reliable information.

In section 2, we state a taming learning problem and describe our BaggTaming
method. Section 3 show the experimental results for synthetic and real tagging data,
respectively. Finally, after discussing the related work in section 4, we conclude in sec-
tion 5.
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2 Taming Task and Its Solution

In this section, we address the learning problem of taming and describe our BaggTaming
algorithm, which is developed by modifying bagging so as to be applicable for taming.

2.1 What’s Taming

We first address the learning problem of taming. Here, we are focused on classification,
though taming techniques can be applied to other types of supervised learning tasks,
such as regression. An object is represented by a feature vector, x. The variable c de-
notes the class to which the object should be classified. The pair of a class and object,
(ci,xi), is a training example. The goal of classification is to acquire a classifier that
can predict an appropriate class for any input feature vector, x, from a set of training
examples.

A standard classifier is learned from only one homogeneous set of training exam-
ples. These training examples are assumed to be independently sampled from an identi-
cal distribution, P[c,x], which expresses the target concept to be learned. On the other
hand, in our taming case, two types of training examples, tame and wild, are adopted.
Similar to a standard classification case, tame data are assumed to be independently
sampled from an identical distribution, P[c,x], that corresponds to the target concept.
This set of tame data is denoted by DT = {(ci,xi)}NT

i=1, where NT = |DT |. A wild data
set might include examples that are sampled from distributions that express irrelevant
concepts, together with examples that are consistent with the target concept. We further
assume that, in the wild data, the number of examples of the target concept is at least a
few times NT and that the learner does not know which examples are generated from
the target distribution. This wild data set is denoted by DW = {(ci,xi)}NW

i=1 , where
NW = |DW |. Finally, we assume the size of the wild data set is much larger than that
of the tame set, i.e., NW ≫ NT . The goal of the learning problem of taming is to ac-
quire a classifier that can more accurately predict classes by exploiting the information
in wild data.

2.2 BaggTaming

To solve the above problem of taming, we developed the algorithm BaggTaming (Boot-
strap AGGregated TAMING). Before showing our BaggTaming, we briefly describe the
original bagging method, because this algorithm is a modified version of this bagging
[2]. In the bagging algorithm, the following steps are iterated for t = 1, . . . , T .

1. Obtain a training example set Dt by bootstrap sampling, that is, sampling with
replacement, from a given training example set D.

2. From this training set Dt, learn a weak classifier f̂t(x) by using a classification
algorithm, such as naive Bayes.

By this procedure, T weak classifiers, f̂1(x), . . . , f̂T (x), can be acquired. These weak
classifiers are then aggregated, and any input feature vectors are finally classified. In the
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case of classification, this aggregation is done by majority voting. Formally, the class to
which the feature vector x should belong is determined by

ĉ = arg max
c∈C

T∑
t=1

I[c=f̂t(x)], (1)

where I[cond] is an indicator function, which takes 1 if the condition cond is true;
otherwise it takes 0, and C denotes the domain of classes.

The reason why this bagging improves the prediction accuracy is explained simply
based on the bias-variance theory [2, 3]. According to the bias-variance theory, a gen-
eralization error is divided into three factors: the bias, which is derived from the choice
of models, the variance, which is derived from the variation in sampling of training
examples, and the intrinsic error, which cannot be avoided. If a low-bias model, which
can approximate various forms of functions, is used for learning, the effect of the bias
factor can be lessened while that of the variance factor more affects the generalization
error. Inversely, in the case of a high-bias model, the degrees of effect caused by the
bias and variance factors are exchanged. In the process of bagging, various training ex-
ample sets are generated, weak classifiers are learned from each example set, and these
classifiers are aggregated. Because this aggregated classifier has been trained by using
various training sets, the variance factor can be lessened without increasing the error
caused by the bias factor. Therefore, if a low-bias model is adopted, the bagging tech-
nique contributes to reducing the generalization error. However, if a high-bias model,
such as Fisher’s discriminant analysis, is used, bagging fails to reduce the prediction
error, because the ratio of the error caused by the variance factor is originally small.

We developed our BaggTaming algorithm by modifying this bagging. In [3, section
7], an improvement technique for bagging is reported. In the case of standard bagging,
training examples are bootstrap-sampled from a given example set, and the sampled
examples are fed to a weak learner without modification. Instead, by adding a noise to
the feature vectors in the sampled examples, the prediction accuracy can be improved.
This is because more varied weak classifiers can be learned by this modification. Our
BaggTaming algorithm is inspired by this improvement technique. In the process of
BaggTaming, training examples are sampled from wild data instead from tame data.
We expected that the variance part of the error can be more drastically reduced, because
a wild data set contains more diverse examples than a tame set. Note that the idea of
reducing variance by using the relevant data sets was also proposed in [4]. However,
there is one difficulty. A wild data set contains examples of irrelevant concepts, which
we want to ignore, and there is no information whether each example is of the target
concept or not. To avoid this difficulty, we exploit a tame data, which is consistent with
the target concept. Specifically, learning of our BaggTaming iterates the following two
steps:

– Training examples are randomly sampled from the wild data set, and a weak clas-
sifier is learned from these training examples.

– The empirical accuracy of the weak classifier on the tame data is computed. If the
accuracy is sufficiently high, the classifier is accepted; otherwise, it is rejected, and
a new classifier is repeatedly learned.
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Note that we assume that if most of examples that have been used for training the weak
classifier are consistent with the target concept, the empirical accuracy of the classifier
would be high. By iterating these procedures, the learner can obtain weak classifiers
that are consistent with the target concept and that have wide diversity. In this way, T
weak classifiers are acquired, and the final class is determined by majority voting.

1: t = 1
2: while t ≤ T do
3: s = 1
4: repeat
5: generate a training set Dt by sampling with replacement from DW

6: learn a weak classifier f̂t(x) from training set Dt

7: calculate the accuracy pt of the classifier f̂t(x) on the tame set nDT

8: if p ≥ AcceptLimit then t = t + 1, goto step 2
9: if s ≥ FailureLimit then

let the most accurate classifier in this inner loop be f̂t(x)
t = t + 1, goto step 2

10: s = s + 1, goto step 4
11: output the weak classifiers f̂1(x), . . . , f̂T (x),

together with their corresponding accuracies p1, . . . , pT .

Fig. 1. BaggTaming algorithm

Our BaggTaming algorithm is shown in Figure 1. Two types of training sets, wild
and tame data, and a weak learner are given as inputs for this algorithm. T weak classi-
fiers are acquired in the outer loop beginning from step 2. The counter s for the rejection
of weak classifiers is initialized at step 3, and the inner loop starts at step 4. In steps 4
to 6, training examples are sampled from wild data, DW , a weak classifier, f̂t(x), is ac-
quired, and its accuracy, pt, on the tame set DT is calculated. At step 7, if the accuracy
is greater than or equal to the threshold, AcceptLimit, the weak classifier is accepted,
and then the algorithm turns to the next iteration of the outer loop. In the next step, if the
number of rejections exceeds the threshold, FailureLimit, the most accurate weak clas-
sifier is set to f̂t(x) as a backup, and then the next iteration of the outer loop begins. At
step 9, after incrementing the rejection counter s, the acquisition of a weak classifier is
re-tried. Finally, the algorithm outputs the weak classifiers f̂1(x), . . . , f̂T (x), together
with their corresponding accuracies, p1, . . . , pT .

We describe an option for our BaggTaming algorithm. As the threshold, AcceptLimit,
we adopted three options: three classifiers are leaned from all wild data, all tame data,
and merged data, respectively. The accuracies of these classifiers on the tame set are
calculated, and these accuracies are used as thresholds. Generally, the frequency of ac-
cepted classifiers rises in the order of tame, merged, and wild options.

We describe a few comments and options for our BaggTaming algorithm. If the
ratio of examples consistent with the target concept to the total number of wild data
is low, weak classifiers are too frequently rejected, and the algorithm slows. In such
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a condition, a weak classifier is learned from a union set of Dt and DT at step 6. By
adopting this option, weak classifiers are accepted more frequently, but the effect of
reducing the variance in the prediction error is lessened.

The classification procedure of our BaggTaming is similar to that of standard bag-
ging. Majority voting is used to predict the classes for a new vector, but each vote is
weighted. As described before, the accuracy, pt, would be high if the Dt contains many
examples that are consistent with the target concept. Therefore, we weigh each weak
classifier by pt. Specifically, the class to which the feature vector x should belong is
determined by

ĉ = arg max
c∈C

T∑
t=1

ptI[c = f̂t(x)]. (2)

2.3 Application of our BaggTaming Technique to a Tag Prediction Task

We then apply the above BaggTaming technique to the task to predict personalized
tags in a social bookmark system. As described in the introduction, different users may
assign different tags to the same Web page. For example, one may choose “python”, but
another may do “programming”, according to his/her preference in the specificity level.
Further, the synonymous words or the singular/plural forms give rise to another type
of inconsistency. However, if we give attention to the specific target user, the choice
of tags would be highly consistent, because any users would behave according to their
own preference pattern, which would be highly self-consistent. We here perform a tag
prediction task that is personalized to the target user as follows. First, for each candidate
tag, we acquire a binary classifier to discriminate whether the target user will assign the
candidate tag to Web pages. To be personalized this discrimination, this classifier is
trained from the Web pages that are tagged by the target user, because such tags are
considered to be reflecting the target user’s concept. Once such classifiers are learned,
these can be used for judging whether each candidate tag should be assigned to a new
Web page. For example, consider the case that the target user prefers the tag “python”
to “programming” in terms of a given Web page. The classifiers for the tag “python”
and “programming” would return positive and negative outputs, respectively, and tags
that are appropriate for the target user can be selected.

However, we encounter a serious problem, which is often referred as a cold-start
problem in a recommendation context [5]. In order that Web pages are tagged based
on the concept of the target user, the binary classifiers are learned from the set of Web
pages that have been tagged by the user before. The number of such Web pages are
generally small, because it is difficult for one user to tag thousands of pages. In this
case, the learned classifiers cannot make precise prediction, due to the insufficiency of
training examples.

To cope with this difficulty, we adopt our BaggTaming technique. The Web pages
that tagged by the target user are highly consistent with the user’s concept, while the
number of pages are generally small. Additionally, we can exploit the enormous Web
pages that have been tagged by the non-target users. These Web pages cannot be directly
used for training classifiers, because the most of these are inconsistent with the target
user’s concept. However, We can apply our BaggTaming by treating the target user’s
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and the non-target users’ tagging information as tame and wild data, respectively. We
expect that our BaggTaming enables to learn the more precise classifier, because these
wild data partially contain useful information for learning the target user’s concept.
In particular, some users would surely select the same level of specificity as that of
the target user, and some users would definitely use synonymous words in the same
sense as the target user. In the next experimental section, we will show the more precise
personalized classifiers can be learned by employing our BaggTaming in conjunction
with both the target user’s and non-target users’ tagging data.

3 Experiments for Collaborative Tagging Data

In this section, we applied our BaggTaming to collaborative tagging data.

3.1 Data Sets and Experimental Settings

We first describe our collaborative tagging (CT) data set. We crawled the collaborative
tagging site, del.icio.us, in July, 2007. The number of unique URLs, tags, and users
were 762, 454, 172, 817, and 6, 488, respectively. We found 3, 198, 185 bookmarks,
which were the pairs of one registered URL and one tag assigned to the URL.

We counted the number of URLs to which each tag was assigned, and selected the
20 most-assigned tags. We focused on one of these tags, and call it a target tag. In this
experiment, we dealt with a binary classification to predict whether the target tag would
be assigned to a given URL or not, as described in section 2.3. For each target tag,
we focused on the top user, who was the user who assigned the target tag to the most
URLs among all users. We treated the URLs tagged by the top user as the tame data.
We hereafter refer to this top user as a tame user. Among all URLs tagged by the tame
user, the URLs to which the target tag was assigned were used as positive examples,
and the rest of the URLs were used as negative ones. As the wild data set, we used the
URLs tagged by the second to twentieth top users of the target tag. We refer to these
nineteen users as wild users. The most of tags assigned by these wild users would be
inconsistent, but a part of them might share the tame user’s concept. Thus, the URLs
tagged by these wild users were treated as wild data.

We next turned to the features that describe the URLs. As features, we adopted the
most popular 100 tags except for the target tag. That is to say, the i-th element of the
feature was the number of users who assigned the i-th most popular tag to the URL.
We then abandoned the URLs to which none of the top 100 tags was assigned. Note
that the Web pages’ texts is frequently used as features, but we didn’t employ them to
avoid steps for cleaning irrelevant information, such as advertise messages. For each
of the twenty target tags, we generated data sets. The sizes of tame and wild data are
summarized in Table 1.

3.2 Results for Collaborative Tagging Data

We first compared our BaggTaming with a baseline method, which is standard bagging
whose weak classifiers were trained by using the tame data. For both methods, we
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Table 1. The sizes of collaborative tagging data sets

target tag tame wild target tag tame wild

blog 2908 28214 web2.0 1784 13829
design 2511 26791 politics 1234 13709
reference 2355 22847 news 2473 13429
software 2658 22529 howto 1685 13407
music 2898 19725 imported 405 12862
programming 1697 18668 linux 1535 12231
web 2296 18503 blogs 1465 12217
tools 2365 18488 tutorial 1883 12001
video 2538 16734 games 2097 11291
art 2054 16521 free 1960 11258

NOTE: The “target tag” columns show the words used as target tags. The “tame” and “wild”
columns show the sizes of the corresponding tame and wild data sets.

adopted again a naive Bayes learner with multinominal model [6] as weak classifiers,
because this learner is computationally fast. The number of weak classifiers, T , was 30.
The size of the sampled data was one-half of the tame data, i.e., |Dt| = NT /2. The
FailureLimit threshold was set to 100, and the AcceptLimit threshold was the accuracy
of the classifier learned from the merged data. We performed a 5-fold cross-validation
test. Tame example set was divided into five blocks. One block was respectively picked,
and the examples in these blocks were used for testing. The remaining four tame blocks
and all the wild examples were used as the tame and wild training data, respectively.

The accuracies on the tame data set are shown in Table 2. We changed the tame
data set without changing the wild data. For all ALL – 1/16 cases, our BaggTaming was
clearly superior to bagging for the tame data. This result leads to the conclusion that our
BaggTaming method can select the target information in the wild data and can use the
information for learning classifiers. Further, the effectiveness of BaggTaming became
more significant as the size of the tame sets decreased. This fact enhances the usefulness
of BaggTaming, because a taming technique is more useful under a cold-start condition
where less tame data are available. We also tested bagging classifiers whose weak clas-
sifiers were trained by using the wild set or merged data sets. We observed that almost
all of these classifiers were inferior than bagging with weak classifiers trained from the
tame set. Especially, for the tags, “web” or “web2.0”, the classifiers learned from the
wild data are fairly worse. This fact indicates that these wild data sets don’t contain
useful information for solving the target classification problem; thus, for these tags, we
considered that our BaggTaming is inferior to the baseline as observed in Table 2.

We finally examined the effects of the parameters and options of BaggTaming. We
applied BaggTaming under different settings to the tagging data with the ALL type
tame set, and three statistics were calculated for each setting as shown in Table 3. As
described in section 2.2, we prepared three options for the AcceptLimit, which is the
threshold used for checking whether a candidate weak classifier is fully accurate or not.
The columns “tame”, “merged”, and “wild” show results derived by BaggTaming with
the tame, merged, and wild options. Adopting the tame option produces a set of highly
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Table 2. Prediction Accuracies on The Tame Data Set

tag name size of tame data sets

ALL 1/2 1/4 1/8 1/16
BT bagg BT bagg BT bagg BT bagg BT bagg

blog 0.700 0.755 0.697 0.701 0.665 0.658 0.663 0.697 0.713 0.637
design 0.744 0.723 0.738 0.725 0.737 0.728 0.738 0.718 0.746 0.729
reference 0.825 0.813 0.833 0.808 0.836 0.812 0.835 0.816 0.849 0.815
software 0.752 0.771 0.764 0.767 0.784 0.775 0.800 0.753 0.801 0.775
music 0.956 0.953 0.964 0.954 0.966 0.956 0.967 0.958 0.966 0.954
programming 0.896 0.900 0.895 0.895 0.893 0.889 0.888 0.878 0.881 0.878
web 0.661 0.775 0.657 0.763 0.660 0.760 0.651 0.731 0.645 0.702
tools 0.772 0.749 0.769 0.728 0.768 0.700 0.760 0.667 0.741 0.681
video 0.884 0.887 0.892 0.891 0.891 0.897 0.896 0.901 0.883 0.901
art 0.920 0.899 0.924 0.895 0.930 0.898 0.932 0.908 0.928 0.915
web2.0 0.614 0.708 0.614 0.696 0.630 0.706 0.627 0.716 0.709 0.706
politics 0.649 0.666 0.633 0.658 0.625 0.645 0.628 0.638 0.622 0.631
news 0.940 0.806 0.925 0.687 0.791 0.522 0.657 0.478 0.910 0.403
howto 0.901 0.902 0.908 0.901 0.917 0.893 0.920 0.893 0.926 0.877
imported 1.000 0.971 1.000 0.971 0.994 0.965 1.000 0.907 0.936 0.930
linux 0.783 0.740 0.794 0.769 0.793 0.775 0.798 0.796 0.778 0.749
blogs 0.937 0.923 0.941 0.923 0.940 0.928 0.938 0.931 0.938 0.925
tutorial 0.908 0.889 0.914 0.884 0.918 0.880 0.922 0.877 0.920 0.889
games 0.961 0.963 0.964 0.962 0.964 0.960 0.965 0.953 0.963 0.945
free 0.810 0.802 0.830 0.783 0.835 0.801 0.840 0.753 0.852 0.756

win / lose 5 / 2 8 / 3 8 / 2 10 / 2 11 / 1

NOTE: The column “tag name” shows the strings of the target tags. The column pair “ALL”
shows the results when entire tame data were used, and the column pairs labeled “1/2” – ”1/16”
show the results when the tame data were reduced to the 1/2 – 1/16 of the ALL case, respec-
tively. The left “BT” and right “bagg” columns of each pair show the results derived by our
BaggTaming and baseline bagging, respectively. Each row shows the accuracies for the corre-
sponding target tag. Bold face indicates that the accuracy was larger than that derived by the
other method, and the difference was statistically significant at the significance level of 1%
using Z-test statistic. The last row “win/lose” shows the number of target tags for which our
method won/lost baseline bagging.
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Table 3. Statistics when AcceptLimit and the number of samples were changed

# samples tame merged wild

100% [ 0.477 52.55 3/3 ] [ 0.060 15.33 3/3 ] [ 0.004 4.82 4/4 ]
50% [ 0.437 49.68 5/4 ] [ 0.076 17.12 5/2 ] [ 0.009 6.89 5/4 ]
20% [ 0.404 46.40 8/1 ] [ 0.124 24.00 8/2 ] [ 0.032 13.32 7/3 ]

NOTE: The columns “tame”, “merged”, and “wild” show results when the tame, merged,
and wild options for the AcceptLimit threshold (Section 2.2) were adopted. The “100%” –
“20%”rows show the results when the training set size, |Dt|, was set to the 100%, 50%, and
20% of NT , respectively. Each entry contains three statistics. The left one is the failure ratio,
which is the ratio of the failed weak learning in step 9 of BaggTaming to the total number of
trials. The middle one is the mean number of trials until the resultant weak classifier is accepted.
The right one is the number of wins and loses as shown in Table 2.

qualified weak classifiers, but makes the algorithm slow due to frequent rejections. On
the other side, using the wild option accelerates BaggTaming, but weak classifiers can
be poorer. The “100%,” “50%,” and “20%” rows show the results when the training
set size, |Dt|, was set to the 100%, 50%, and 20% of the size of the tame set, NT ,
respectively. Each entry contains three statistics. The left one is the failure ratio, which
is the ratio of the failed weak learning in step 9 of the BaggTaming algorithm to the total
number of trials. The middle one is mean trial, which is the mean number of trials until
the resultant weak classifier is accepted. That is to say, the mean number of iterations
of the BaggTaming inner loop. The right one is the win/lose, which is number of wins
and loses as shown in Table 2.

We first discuss the AcceptLimit option. In the case of the tame option, the failure
ratio and mean trial are so large that the algorithm get slow. Inversely, inaccurate classi-
fiers are more frequently selected under the wild option; thus, we employed the merged
option. We next discuss the sample size, |Dt|. If the number of training examples, |Dt|,
grows, the weak learner gets the more chance to acquire better classifiers. However, at
the same time, this increases the probability that the non-target wild data are involved in
the training set. This size should be determined according as how many samples in the
wild data are tagged based on the target concept, but this number is unknown. By con-
sidering the balance of the efficiency and effectiveness, we set |Dt| to the 50% of NT .
We empirically confirmed that BaggTaming worked well for the wide ranges of data
sets under this setting. Finally, we also changed the number of weak classifiers, T , from
10 to 100. We observed that the accuracies rises until T = 30, but further improvement
was not observed. We expected that the reason for this is as follows. As described in
section 2.2, bagging cannot reduce the bias factor of the total generalization error. We
used naive Bayes, which is rather high-bias, as a weak learner. Therefore, we expected
that the error derived by the variance factor would be almost diminished at T = 30. In
future, we want to test lower-bias weak learners.

In summary, our BaggTaming successfully acquired the more accurate classifier
than the classifier that were learned solely from the tame data. It can be concluded
that BaggTaming succeed to learn a better classifier by exploiting useful information
involved in the wild data.
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4 Related Work

There are several machine learning schemes that adopt two types of training data sets.
Semi-supervised learning [7] employs both labeled and unlabeled data sets. Because
both tame and wild data are labeled, our taming approach clearly differs from semi-
supervised learning.

Our taming problem can be considered as a sort of inductive transfers [8–15, 4].
Inductive transfer refers to the problem of retaining and applying the knowledge learned
in one or more tasks to efficiently develop an effective hypothesis for a new task2.
There are many variant tasks in this inductive transfer, such as multitask learning [8] or
domain adaptation [11]. However, we may say that there is no strict consensus about the
relations or definitions of these tasks in this research community. We consider that these
problems are different in their motivation. Multitask learning [8] aims to simultaneously
solve multiple tasks. For this aim, the learner have to find the common knowledge
shared by these tasks in a form, such as hyper prior or similarity measure. In the case
of domain adaptation [11], the tasks other than the target task don’t need to be solved.
Thus, it is important to find out useful information for solving the target task from the
data of the non-target domains. According to this interpretation, we can say that our
taming is more relevant to a domain adaptation task. However, constituents of training
data sets for non-target tasks are different between taming and domain adaptation. In a
case of domain adaptation, a non-target training data is labeled based on some single
concept that is related to the target concept. Therefore, it is possible to fit a non-target
model to such training data, as in [11]. On the other hand, in a case of taming, because
the wild training set includes the examples of many kinds of tasks, it is difficult to
fit a simple single model to them due to their diversity. We therefore designed our
BaggTaming so as to ignore non-target data in the wild set. Indeed, we tried an approach
fitting mixture models for solving the tag prediction task, but no improvement was
observed.

Dai et al. recently proposed the problem more related to taming [9]. This problem
is treated as inductive transfer, but is more close to domain adaptation according to the
above interpretation. They prepared two types of data sets. One is highly similar to the
target concept, while the other is less similar. Again, what is the similarity is not so
formally defined as above problems, the relation to taming is not yet clear. We plan to
investigate the relation between their method and ours.

In the covariate shift [16] approach, the data distributions of test and training data
sets are assumed to differ, while the criteria of labeling are the same for both data
sets. This problem differs from our taming because in the case of covariate shift one
homogeneous training set is assumed.

We finally discuss tagging on Web pages or blog pages. The P-TAG [17] is the
system that predicts appropriate tags for given Web pages. Because this prediction is
based on the users’ personal repository, and other users’ tags are not referred to, there
is no need for considering inconsistency among tagging criteria. The Autotag [18] is
designed to predict proper tags for blog articles. Though other users’ tags are used,
inconsistency in tags is not taken into account.

2 From the announcement of the “NIPS 2005 Workshop, Inductive Transfer: 10 Years Later”
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5 Conclusion

We proposed a new machine problem, which we call taming. This exploits two types of
data sets, tame and wild. The tame data are labeled based on a consistent concept, while
the size of the data set is relatively small. The labels of the wild data can be inconsistent,
but are more easily collected. We proposed a method, BaggTaming, for solving this
problem. We applied BaggTaming to synthetic and real collaborative tagging data sets,
and showed that labels are more accurately predicted by our method.

We plan to enhance the theoretical background, to improve the efficiency by using
adaptive sampling, and to acquire more accurate classifier by using other probabilistic
models.

Acknowledgments: We wish to thank Dr. Yutaka Matuo and Dr. Atsushi Fujii for their
valuable advices. Thanks are due to Hottolink Inc. for assistance in crawling.
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Errata

In section 3.1, we described as follows:

We then abandoned the URLs to which none of the top 100 tags was assigned.

However, we showed the sizes of data sets, before abandoning such URLs. The correct
sizes of data sets are as follows.

Table 1. The sizes of collaborative tagging data sets

target tag tame wild target tag tame wild

blog 603 24201 web2.0 917 25256
design 1405 25353 politics 5455 21857
reference 6323 19512 news 67 28385
software 3512 30264 howto 6359 23335
music 6311 22914 imported 172 3165
programming 4498 25931 linux 1151 24288
web 1291 31024 blogs 3472 18437
tools 3493 23625 tutorial 3518 28593
video 1870 30334 games 3218 22588
art 6258 16574 free 3509 23543

NOTE: The “target tag” columns show the words used as target tags. The “tame” and “wild”
columns show the sizes of the corresponding tame and wild data sets.


