
Scalable Bayesian Matrix Factorization

Avijit Saha??,1, Rishabh Misra??,2, and Balaraman Ravindran1

1 Department of CSE, Indian Institute of Technology Madras, India
{avijit, ravi}@cse.iitm.ac.in

2 Department of CSE, Thapar University, India
rishabhmisra1994@gmail.com

Abstract. Matrix factorization (MF) is the simplest and most well stud-
ied factor based model and has been applied successfully in several do-
mains. One of the standard ways to solve MF is by finding maximum a
posteriori estimate of the model parameters, which is equivalent to min-
imizing the regularized objective function. Stochastic gradient descent
(SGD) is a common choice to minimize the regularized objective func-
tion. However, SGD suffers from the problem of overfitting and entails
tedious job of finding the learning rate and regularization parameters. A
fully Bayesian treatment of MF avoids these problems, but the existing
Bayesian matrix factorization method based on the Markov chain Monte
Carlo (MCMC) technique, has cubic time complexity with respect to the
target rank, which makes it difficult to apply it to very large datasets.
In this paper, we propose the Scalable Bayesian Matrix Factorization
(SBMF), which is a MCMC Gibbs sampling algorithm for MF and has
linear time complexity with respect to the target rank and linear space
complexity with respect to the number of non-zero observations. Also,
we show through extensive experiments on three sufficiently large real
word datasets that SBMF incurs only a small loss in the performance
and takes much less time as compared to the baseline method for higher
latent dimension.

Keywords: Recommender Systems, Matrix Factorization, Bayesian In-
ference, Markov Chain Monte Carlo, Scalability.

1 Introduction

Factor based models have been used extensively in collaborative filtering. In a
factor based model, preferences of each user are represented by an unknown
factor vector. Matrix factorization (MF) [1–6] is the simplest and most well
studied factor based model and has been applied successfully in several domains.
Formally, MF recovers a low-rank latent structure of a matrix by approximating
it as a product of two low-rank matrices. For delineation, consider a user-movie
matrix R ∈ RI×J where the rij cell represents the rating provided to the jth

movie by the ith user. MF decomposes the matrix R into two low-rank matrices

?? Both the authors contributed equally.

U = [u1,u2, ...,uI]
T ∈ RI×K and V = [v1,v2, ...,vJ]T ∈ RJ×K (K is the latent

space dimension) such that:
R ∼ UV T . (1)

Probabilistic Matrix Factorization (PMF) [4] provides a probabilistic inter-
pretation for MF. In PMF, factor vectors are assumed to be marginally inde-
pendent whereas rating variables, given the factor vectors, are assumed to be
conditionally independent. PMF considers the conditional distribution of the
rating variables (the likelihood term) as:

p(R|U ,V , τ−1) =
∏

(i,j)∈Ω

N (rij |uTi vj , τ−1), (2)

where Ω is the set of all observed entries in R provided during the training
and τ is the model precision. Zero-mean spherical Gaussian priors are placed
on the factor vectors of users and movies. The main drawback of this model
is that inferring the posterior distribution over the factor vectors, given the
ratings, is intractable. PMF handles this intractability by providing a maximum
a posteriori estimation of the model parameters by maximizing the log-posterior
over the model parameters, which is equivalent to minimizing the regularized
square error loss defined as:∑

(i,j)∈Ω

(
rij − uTi vj

)2
+ λ

(
||U ||2F + ||V ||2F

)
, (3)

where λ is the regularization parameter and ||X||2F is the Frobenius norm of
X. The optimization problem in Eq. (3) can be solved using stochastic gradient
descent (SGD) [2]. SGD is an online algorithm which obviates the need to store
the entire dataset in the memory. Although SGD is scalable and enjoys local
convergence guarantee [7], it often overfits the data and requires manual tuning
of learning rate and regularization parameters. Hence, maximum a posteriori
estimation of MF suffers from the problem of overfitting and entails tedious job of
finding the learning rate (if SGD is the choice of optimization) and regularization
parameters.

On the other hand, fully Bayesian methods [5, 8–10] for MF do not require
manual tuning of learning rate and regularization parameters and are robust to
overfitting. As direct evaluation of posterior is intractable in practice, approxi-
mate inference techniques are adopted to learn the posterior distribution. One
of the possible choices to approximate inference is to apply variational approx-
imate inference technique [8, 9]. Bayesian MF based on the variational approxi-
mation [11–13, 10] considers a simplified factorized distribution and assumes that
the factors of users are independent of the factors of items while approximating
the posterior. But this assumption often leads to over simplification and can
produce inaccurate results as shown in [5]. On the other hand, Markov chain
Monte Carlo (MCMC) based approximation method can produce exact results
when provided with infinite resources. MCMC based Bayesian Probabilistic Ma-
trix Factorization (BPMF) [5] directly approximates the posterior distribution

rij

τ

a0 b0

µ

µg σg

αi

µα σα

uik

µuk
σuk

vjk

µvk
σvk

βj

µβσβ

µ0, ν0 µ0, ν0α0,β0 α0,β0

i = 1..I j = 1..J

k = 1..K

Fig. 1. Graphical model representation of SBMF.

using the Gibbs sampling technique and outperforms the variational based ap-
proximation.

In BPMF, user/item latent factor vectors are assumed to follow a multi-
variate Gaussian distribution, which results cubic time complexity with respect
to the latent factor vector dimension. Though BPMF performs well in many
applications, this cubic time complexity makes it difficult to apply BPMF on
very large datasets. In this paper, we propose the Scalable Bayesian Matrix
Factorization (SBMF) based on the MCMC Gibbs sampling, where we assume
univariate Gaussian priors on each dimension of the latent factor. Due to this as-
sumption, the complexity of SBMF reduces to linear with respect to the latent
factor vector dimension. We also consider user and item bias terms in SBMF
which are missing in BPMF. These bias terms capture the variation in rating
values that are independent of any user-item interaction. Also, the proposed
SBMF algorithm is parallelized for multicore environments. We show through
extensive experiments on three large scale real world datasets that the adopted
univariate approximation in SBMF results in only a small performance loss and
provides significant speed up when compared with the baseline method BPMF
for higher values of latent dimension.

2 Method

2.1 Model

Fig. 1 shows a graphical model representation of SBMF. Consider Ω as the set
of observed entries in R provided during the training phase. The observed data
rij is assumed to be generated as follows:

rij = µ+ αi + βj + uTi vj + εij , (4)

where (i, j) ∈ Ω, µ is the global bias, αi is the bias associated with the ith

user, βj is the bias associated with the jth item, ui is the latent factor vector of

dimension K associated with the ith user, and vj is the latent factor vector of
dimension K associated with the jth item. Uncertainty in the model is absorbed
by the noise εij which is generated as εij ∼ N (0, τ−1), where τ is the precision
parameter. Bias terms are particularly helpful in capturing the individual bias
for user/item: a user may have the tendency to rate all the items higher than
the other users or an item may get higher ratings if it is perceived better than
the others [2].

The conditional on the observed entries of R (the likelihood term) can be
written as follows:

p(R|Θ) =
∏

(i,j)∈Ω

N (rij |µ+ αi + βj + uTi vj , τ
−1), (5)

where Θ = {τ, µ, {αi}, {βj},U ,V }. We place independent univariate priors on
all the model parameters in Θ as follows:

p(µ) =N (µ|µg, σ−1g), (6)

p(αi) =N (αi|µα, σ−1α), (7)

p(βj) =N (βj |µβ , σ−1β), (8)

p(U) =

I∏
i=1

K∏
k=1

N (uik|µuk , σ−1uk), (9)

p(V) =

J∏
j=1

K∏
k=1

N (vjk|µvk , σ−1vk), (10)

p(τ) =N (τ |a0, b0). (11)

We further place Normal-Gamma priors on all the hyperparameters ΘH =
{µα, σα, µβ , σβ , {µuk , σuk}, {µvk , σvk}} as follows:

p(µα, σα) = NG (µα, σα|µ0, ν0, α0, β0) , (12)

p(µβ , σβ) = NG (µβ , σβ |µ0, ν0, α0, β0) , (13)

p(µuk , σuk) = NG (µuk , σuk |µ0, ν0, α0, β0) , (14)

p(µvk , σvk) = NG (µvk , σvk |µ0, ν0, α0, β0) . (15)

We denote {a0, b0, µg, σg, µ0, ν0, α0, β0} as Θ0 for notational convenience. The
joint distribution of the observations and the hidden variables can be written as:

p(R,Θ,ΘH |Θ0) = p(R|Θ)p(µ)

I∏
i=1

p(αi)

J∏
j=1

p(βj)p(U)p(V)p(µα, σα)

p(µβ , σβ)

K∏
k=1

p(µuk , σuk)p(µvk , σvk). (16)

2.2 Inference

Since evaluation of the joint distribution in Eq. 16 is intractable, we adopt a
Gibbs sampling based approximate inference technique. As all our model pa-
rameters are conditionally conjugate [10], equations for Gibbs sampling can be
written in closed form using the joint distribution as given in Eq. 16. Replac-
ing Eq. (5)-(15) in Eq. (16), the sampling distribution of uik can be written as
follows:

p(uik|−) ∼ N (uik|µ∗, σ∗) , (17)

where,

σ∗ =

σuk + τ
∑
j∈Ωi

v2jk

−1 , (18)

µ∗ = σ∗

σukµuk + τ
∑
j∈Ωi

vjk

rij −
µ+ αi + βj +

K∑
l=1&l 6=k

uilvjl

 .

(19)

Here, Ωi is the set of items rated by the ith user in the training set. Now,
directly sampling uik from Eq. 17 requires O(K|Ωi|) complexity. However if we
precompute a quantity eij = rij − (µ + αi + βj + uTi vj) for all (i, j) ∈ Ω and
write Eq. (19) as:

µ∗ = σ∗

σukµuk + τ
∑
j∈Ωi

vjk (eij + uikvjk)

 . (20)

then the sampling complexity of uik reduces to O(|Ωi|). Table 1 shows the space
and time complexities of SBMF and BPMF. We sample model parameters in
parallel whenever they are independent to each other. Algorithm 1 describes the
detailed Gibbs sampling procedure.

Table 1. Complexity

Method Time Complexity Space Complexity

SBMF O(|Ω|K) O((I + J)K)

BPMF O(|Ω|K2 + (I + J)K3) O((I + J)K)

Algorithm 1 Scalable Bayesian Marix Factorization (SBMF)
Require: Θ0, initialize Θ and ΘH .
Ensure: Compute eij for all (i, j) ∈ Ω
1: for t = 1 to T do
2: // Sample hyperparameters

3: α∗ = α0 + 1
2 (I + 1), β∗ = β0 + 1

2 (ν0 (µα − µ0)
2 +

I∑
i=1

(αi − µα)). Sample σα ∼ Γ (α∗, β∗).

4: σ∗ = (ν0σα + σαI)
−1, µ∗ = σ∗(ν0σαµ0 + σα

I∑
i=1

αi). Sample µα ∼ N (µ∗, σ∗).

5: α∗ = β0 + 1
2 (J + 1), β∗ = β0 + 1

2 (ν0 (µβ − µ0)
2 +

J∑
j=1

(βj − µβ)). Sample σβ ∼ Γ (α∗, β∗).

6: σ∗ = (ν0σβ + σβJ)
−1, µ∗ = σ∗(ν0σβµ0 + σβ

J∑
j=1

βj). Sample µβ ∼ N (µ∗, σ∗).

7: for k = 1 to K do in parallel

8: α∗ = α0 + 1
2 (I + 1), β∗ = β0 + 1

2 (ν0
(
µuk − µ0

)2 +
I∑
i=1

(
uik − µuk

)
).

9: Sample σuk ∼ Γ (α∗, β∗).

10: σ∗ = (ν0σuk + σuk I)
−1, µ∗ = σ∗(ν0σukµ0 + σuk

I∑
i=1

uik). Sample µuk ∼ N (µ∗, σ∗).

11: α∗ = β0 + 1
2 (J + 1), β∗ = β0 + 1

2 (ν0
(
µvk − µ0

)2 +
J∑
j=1

(
vjk − µvk

)
).

12: Sample σvk ∼ Γ (α∗, β∗).

13: σ∗ = (ν0σvk + σvkJ)
−1, µ∗ = σ∗(ν0σvkµ0 + σvk

J∑
j=1

vjk). Sample µvk ∼ N (µ∗, σ∗).

14: end for
15: a∗0 = a0 + 1

2 |Ω|, b
∗
0 = b0 + 1

2

∑
(i,j)∈Ω

e2ij . Sample τ ∼ Γ (a∗0 , b
∗
0).

16: // Sample model parameters

17: σ∗ = (σg + τ |Ω|)−1, µ∗ = σ∗(σgµg + τ
∑

(i,j)∈Ω
(eij + µ)). Sample µ ∼ N (µ∗, σ∗).

18: for (i, j) ∈ Ω do in parallel
19: eij = eij + (µold − µ)
20: end for
21: for i = 1 to I do in parallel
22: σ∗ = (σα + τ |Ωi|)−1, µ∗ = σ∗(σαµα + τ

∑
j∈Ωi

(eij + αi)). Sample αi ∼ N (µ∗, σ∗).

23: for j ∈ Ωi do
24: eij = eij + (αold − αi)
25: end for
26: for k = 1 to K do
27: σ∗ = (σuk + τ

∑
j∈Ωi

v2jk)
−1, µ∗ = σ∗(σukµuk + τ

∑
j∈Ωi

vjk (eij + uikvjk)).

28: Sample uik ∼ N (µ∗, σ∗).
29: for j ∈ Ωi do
30: eij = eij + vjk(u

old
ik − uik)

31: end for
32: end for
33: end for
34: for j = 1 to J do in parallel
35: σ∗ = (σβ + τ |Ωj |)−1, µ∗ = σ∗(σβµβ + τ

∑
i∈Ωj

(eij + βj)). Sample βj ∼ N (µ∗, σ∗).

36: for i ∈ Ωj do
37: eij = eij + (βold − βj)
38: end for
39: for k = 1 to K do
40: σ∗ = (σvk + τ

∑
i∈Ωj

u2
ik)
−1, µ∗ = σ∗(σvkµvk + τ

∑
i∈Ωj

uik (eij + uikvjk)).

41: Sample vjk ∼ N (µ∗, σ∗).
42: for i ∈ Ωj do

43: eij = eij + uik(v
old
jk − vjk)

44: end for
45: end for
46: end for
47: end for

3 Experiments

3.1 Datasets

In this section, we show empirical results on three large real world movie-rating
datasets3,4 to validate the effectiveness of SBMF. The details of these datasets
are provided in Table 2. Both the Movielens datasets are publicly available and
90:10 split is used to create their train and test sets. For Netflix, the probe data
is used as the test set.

3.2 Experimental Setup and Parameter Selection

All the experiments are run on an Intel i5 machine with 16GB RAM. We have
considered the serial as well as the parallel implementation of SBMF for all the
experiments. In the parallel implementation, SBMF is parallelized in multicore
environment using OpenMP library. Although BPMF can also be parallelized,
the base paper [5] and it’s publicly available code provide only the serial imple-
mentation. So in our experiments, we have compared only the serial implemen-
tation of BPMF against the serial and the parallel implementations of SBMF.
Serial and parallel versions of the SBMF are denoted as SBMF-S and SBMF-P,
respectively. Since the performance of both SBMF and BPMF depend on the
dimension of latent factor vector, K, it is necessary to investigate how the mod-
els work with different values of K. So three sets of experiments are run for
each dataset corresponding to K = {50, 100, 200} for SBMF-S, SBMF-P, and
BPMF. As our main aim is to validate that SBMF is more scalable as compared
to BPMF under same conditions, we choose 50 burn-in iterations for all the ex-
periments of SBMF-S, SBMF-P, and BPMF. In Gibbs sampling process burn-in
refers to the practice of discarding an initial portion of a Markov chain sample,
so that the effect of initial values on the posterior inference is minimized. Note
that, if SBMF takes less time than BPMF for a particular burn-in period, then
increasing the number of burn-in iterations will make SBMF more scalable as
compared to BPMF. Additionally, we allow the methods to have 100 collection
iterations where collection iterations are the ones that come after the burn-in
iterations and contribute to the sample collections for the variables.

In SBMF, we initialize parameters in Θ using a Gaussian distribution with 0
mean and 0.01 variance. All the parameters inΘH are set to 0. Also, a0, b0, ν0, α0,
and β0 are set to 1, and µ0 and µg are set to 0. σg is initialized to 0.01. For
BPMF, we use standard parameter setting as provided in the paper [5]. We
collect samples of user and item latent factor vectors and bias terms from the
collection iterations and approximate a rating rij as:

r̂tij =
1

C

C∑
c=1

(
µc + αci + βcj + uci .v

c
j

)
, (21)

3 http://grouplens.org/datasets/movielens/
4 http://www.netflixprize.com/

Table 2. Dataset Description

Dataset No. of users No. of movies No. of ratings

Movielens 10m 71567 10681 10m

Movielens 20m 138493 27278 20m

Netflix 480189 17770 100m

where uci and vcj are the cth drawn samples of the ith user and the jth item latent

factor vectors respectively, µc, αci , and βcj are the cth drawn samples of the global

bias, the ith user bias, and the jth item bias, respectively. C is the number of
drawn samples. Then the Root Mean Square Error (RMSE) [2] is used as the
evaluation metric for all the experiments. The code for SBMF will be publicly
available 5.

3.3 Results

In Fig. 2, X-axis represents the time elapsed since the starting of experiment and
Y-axis presents the RMSE value for all the graphs. Since we allow 50 burn-in
iterations for all the experiments and each iteration of BPMF takes more time
than SBMF-P’s, collection iterations of SBMF-P begin earlier than BPMF’s and
thus we get the initial RMSE value of SBMF-P earlier. In SBMF-S also, iterations
take less time as compared to BPMF’s iterations, except for K = 50, 100 in the
Netflix dataset, where each iteration of SBMF-S takes more time than iterations
of BPMF. We believe that in Netflix dataset, for K = 50, 100, BPMF takes
less time than SBMF-S because BPMF is implemented in Matlab where matrix
computations are efficient. On the other hand, SBMF is implemented in C++
where the matrix storage is unoptimized. As the Netflix data is large with respect
to the number of entries and the number of user and item, number of matrix
operations are more in it as compared to the other datasets. So for lower values
of K, the cost of matrix operations for SBMF-S dominates the cost incurred due
to O(K3) complexity of BPMF, thus BPMF takes less time than SBMF-S. But
with large values of K, BPMF starts taking more time as the O(K3) complexity
of BPMF becomes dominating. We leave the task of optimizing the code for
SBMF, to decrease the runtime of SBMF-S, as future work.

We can observe from the Fig. 2 that SBMF-P takes much less time in all
the experiments than BPMF and incurs only a small loss in the performance.
Similarly, SBMF-S also takes less time than the BPMF (except for K = 50, 100
in Netflix dataset) and incurs only a small performance loss. Important point
to note is that total time difference between both of the variants of SBMF and
BPMF increases with the dimension of latent factor vector and the speedup is
significantly high for K = 200. Table 3 shows the final RMSE values and the total
time taken correspond to each dataset and K. We find that the RMSE values
for SBMF-S and SBMF-P are very close for all the experiments. We also observe

5 https://github.com/avijit1990, https://github.com/rishabhmisra

Table 3. Result

K = 50 K = 100 K = 200
Dataset Method RMSE Time(Hr) RMSE Time(Hr) RMSE Time(Hr)

Movielens 10m
BPMF 0.8629 1.317 0.8638 3.517 0.8651 22.058

SBMF-S 0.8655 1.091 0.8667 2.316 0.8654 5.205
SBMF-P 0.8646 0.462 0.8659 0.990 0.8657 2.214

Movielens 20m
BPMF 0.7534 2.683 0.7513 6.761 0.7508 45.355

SBMF-S 0.7553 2.364 0.7545 5.073 0.7549 11.378
SBMF-P 0.7553 1.142 0.7545 2.427 0.7551 5.321

Netflix
BPMF 0.9057 11.739 0.9021 28.797 0.8997 150.026

SBMF-S 0.9048 17.973 0.9028 40.287 0.9017 89.809
SBMF-P 0.9047 7.902 0.9026 16.477 0.9017 34.934

that increasing the latent space dimension reduces the RMSE value in the Netflix
dataset. With high latent dimension, the running time of BPMF is significantly
high due to its cubic time complexity with respect to the latent space dimension
and it takes approximately 150 hours on Netflix dataset with K = 200. However,
SBMF has linear time complexity with respect to the latent space dimension and
SBMF-P and SBMF-S take only 35 and 90 hours (approximately) respectively on
the Netflix dataset with K = 200. Thus SBMF is more suited for large datasets
with large latent space dimension. Similar speed up patterns are found on the
other datasets also.

4 Related Work

MF [1–6] is widely used in several domains because of performance and scalabil-
ity. Stochastic gradient descent [2] is the simplest method to solve MF but it often
suffers from the problem of overfitting and requires manual tuning of the learn-
ing rate and regularization parameters. Thus many Bayesian methods [5, 11, 13]
have been developed for MF that automatically select all the model parameters
and avoid the problem of overfitting. Variational Bayesian approximation based
MF [11] considers a simplified distribution to approximate the posterior. But
this method does not scale well on large datasets. Consequently, scalable varia-
tional Bayesian methods [12, 13] have been proposed to scale to large datasets.
However variational approximation based Bayesian method might give inaccu-
rate results [5] because of its over simplistic assumptions. Thus, Gibbs sampling
based MF [5] has been proposed which gives better performance than the vari-
ational Bayesian MF counter part.

Since performance of MF depends on the latent dimensionality, several non-
parametric MF methods [14–16] have been proposed that set the number of
latent factors automatically. Non-negative matrix factorization (NMF) [3] is a
variant of MF, which recovers two low rank matrices, each of which is non-
negative. Bayesian NMF [6, 17] considers Poisson likelihood and different type
of priors and generates a family of MF model based on the prior imposed on the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Left, middle, and right columns show results for K = 50, 100, and 200, respec-
tively. {a,b,c}, {d,e,f}, and {g,h,i} are results on Movielens 10m, Movielens 20m, and
Netflix datasets respectively.

latent factor. Also, in real world the preferences of user changes over time. To
incorporate this dynamics into the model several dynamic factor models [18, 19]
have been developed.

5 Conclusion and Future Work

We have proposed the Scalable Bayesian Matrix Factorization (SBMF), which
is a Markov chain Monte Carlo based Gibbs sampling algorithm for matrix fac-

torization and has linear time complexity with respect to the target rank and
linear space complexity with respect to the number of non-zero observations.
SBMF gives competitive performance in less time as compared to the baseline
method. Experiments on several real world datasets show the effectiveness of
SBMF. In future, it would be interesting to extend this method in applications
like matrix factorization with side-information, where the time complexity is cu-
bic with respect to the number of features (which can be very large in practice).

6 Acknowledgement

This project was supported by Ericsson India Global Services Ltd.

References

1. N. Srebro and T. Jaakkola, “Weighted low-rank approximations,” in Proc. of
ICML, pp. 720–727, AAAI Press, 2003.

2. Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recom-
mender systems,” Computer, vol. 42, pp. 30–37, Aug. 2009.

3. D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in
Proc. of NIPS, pp. 556–562, 2000.

4. R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in Proc. of
NIPS, 2007.

5. R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix factorization using
markov chain monte carlo,” in Proc. of ICML, pp. 880–887, 2008.

6. P. Gopalan, J. Hofman, and D. Blei, “Scalable recommendation with Poisson fac-
torization,” CoRR, vol. abs/1311.1704, 2013.

7. M.-A. Sato, “Online model selection based on the variational Bayes,” Neural Com-
putation, vol. 13, no. 7, pp. 1649–1681, 2001.

8. M. J. Beal, “Variational algorithms for approximate Bayesian inference,” in PhD.
Thesis, Gatsby Computational Neuroscience Unit, University College London.,
2003.

9. D. Tzikas, A. Likas, and N. Galatsanos, “The variational approximation for
Bayesian inference,” IEEE Signal Processing Magazine, vol. 25, pp. 131–146, Nov.
2008.

10. M. Hoffman, D. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,”
JMLR, vol. 14, pp. 1303–1347, may 2013.

11. Y. Lim and Y. Teh, “Variational bayesian approach to movie rating prediction,”
in Proc. of KDDCup, 2007.

12. J. Silva and L. Carin, “Active learning for online bayesian matrix factorization,”
in Proc. of KDD, pp. 325–333, 2012.

13. Y. Kim and S. Choi, “Scalable variational Bayesian matrix factorization with side
information,” in Proc. of AISTATS, pp. 493–502, 2014.

14. M. Zhou and L. Carin, “Negative binomial process count and mixture modeling,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 99, no. PrePrints,
p. 1, 2013.

15. M. Zhou, L. Hannah, D. B. Dunson, and L. Carin, “Beta-negative binomial process
and poisson factor analysis,” in Proc. of AISTATS, pp. 1462–1471, 2012.

16. M. Xu, J. Zhu, and B. Zhang, “Nonparametric max-margin matrix factorization
for collaborative prediction,” in Proc. of NIPS, pp. 64–72, 2012.

17. P. Gopalan, F. Ruiz, R. Ranganath, and D. Blei, “Bayesian nonparametric Poisson
factorization for Recommendation Systems,” in Proc. of AISTATS, pp. 275–283,
2014.

18. Y. Koren, “Factorization meets the neighborhood: A multifaceted collaborative
filtering model,” in Proc. of KDD, pp. 426–434, 2008.

19. L. Xiong, X. Chen, T. K. Huang, J. Schneider, and J. G. Carbonell, “Temporal
collaborative filtering with Bayesian probabilistic tensor factorization.,” in Proc.
of SDM, pp. 211–222, SIAM, 2010.

