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Preface

The 4th International Workshop on Mining Ubiquitous and Social Environments (MUSE
2013) is held in Prague, Czech Republic, on September 23rd 2013 in conjunction with
the The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2013).

The emergence of ubiquitous computing has started to create new environments
consisting of small, heterogeneous, and distributed devices. These foster the social in-
teraction of users in several dimensions. Mining in ubiquitous and social environments
is an established area of research focusing on advanced systems for data mining in such
distributed and network-organized systems. However, the characteristics of ubiquitous
and social mining are in general rather different from common mainstream machine
learning and data mining approaches. Therefore, the analysis of the collected data, the
adaptation of well-known data mining and machine learning approaches, and finally the
engineering and development of new algorithms are challenging and exciting steps.

The goal of this workshop is to promote an interdisciplinary forum for researchers
working in the fields of ubiquitous computing, social web, Web 2.0, and social net-
works which are interested in utilizing data mining in a ubiquitous setting. The work-
shop presents contributions adopting state-of-the-art mining algorithms for analyzing
ubiquitous social data, to challenging applications, and open datasets. With this work-
shop, we thus want to accelerate the process of identifying the power of advanced data
mining operating on data collected in such ubiquitous and social environments.

Submissions and Sessions

This proceedings volume comprises the papers of the MUSE 2013 workshop. In to-
tal, we received twelve submissions, from which we were able to accept five submis-
sions, two full papers and three short papers, based on a rigorous reviewing process.
Additionally, the scientific program also featured an invited talk on the mining of infor-
mation propagation traces in social networks by Francesco Bonchi (Yahoo! Research,
Barcelona, Spain). Based on the set of accepted papers, and the invited talk, we set up
three sessions. The first session features the invited talk by Francesco Bonchi.

The second session is concerned with mining ubiquitous and social environments.
The work Aperiodic and Periodic Model for Long-Term Human Mobility Prediction
Using Ambient Simple Sensors by Danaipat Sodkomkham discusses limitations in pre-
dictability of collective human mobility. Next, the paper Subgroup Analytics and Inter-
active Assessment on Ubiquitous Data by Martin Atzmueller and Juergen Mueller dis-
cusses the discovery and assessment of descriptive patterns using subgroup analytics.
The context of this work is given by ubiquitous data, specifically noise measurements,
assigned tags, and subjective perceptions. Finally, Open Smartphone Data for Mobil-
ity and Utilization Analysis in Ubiquitous Environments by Jochen Streicher, Nico Pi-
atkowski, Katharina Morik and Olaf Spinczyk presents and discusses a new collected
mobility dataset.



The third session starts with the work Content-Based Geo-Location Detection for
Placing Tweets Pertaining To Trending News on Map by Saurabh Khanwalkar, Marc
Seldin, Amit Srivastava, Anoop Kumar and Sean Colbath. In this paper, the authors
present a novel approach for content-based geo-location. Concluding the session the
paper Learning the Shortest Path for Text Summarisation by Emmanouil Tzouridis and
Ulf Brefeld presents new insights in learning shortest paths in compression graphs for
summarising related sentences.

We would like to thank the invited speaker, all the authors who submitted papers
and all the workshop participants. We are also grateful to members of the program
committee members and external referees for their thorough work in reviewing submit-
ted contributions with expertise and patience. Also, we wish to thank the ECML PKDD
Workshop Chairs and the members of ECML PKDD Organizing Committee who made
this event possible. Special thanks go to Michelangelo Ceci for his help in organizing
an independent review process of a selected publication.

We are looking forward to a very exciting and interesting workshop.

Kassel, September 2013 Martin Atzmueller
Christoph Scholz
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Invited Talk

Mining information propagation traces in social networks

Francesco Bonchi, Yahoo! Research, Barcelona, Spain

With the success of online social networks and microblogging platforms such as
Facebook, Flickr and Twitter, the phenomenon of influence-driven propagations, has
recently attracted the interest of computer scientists, information technologists, and
marketing specialists.

In this talk we take a data mining perspective and we discuss what (and how) can
be learned from a social network and a database of traces of past propagations over the
social network. Starting from one of the key problems in this area, i.e. the identification
of influential users, by targeting whom certain desirable marketing outcomes can be
achieved, we provide an overview of some recent progresses in this area and discuss
some open problems.

Biography Francesco Bonchi is a senior research scientist at Yahoo! Research, where
he is leading the Web Mining Research group. His recent research interests include
mining query-logs, social networks, and social media, as well as the privacy issues
related to mining these kinds of sensible data. In the past he has been interested in
data mining query languages, constrained pattern mining, mining spatiotemporal and
mobility data, and privacy preserving data mining.

He is member of the ECML PKDD Steering Committee, member of the Editorial
Board of ACM Transactions on Intelligent Systems and Technology (TIST), and Asso-
ciate Editor of IEEE Transactions on Knowledge and Data Engineering (TKDE). He’s
also the organizer of the Yahoo! Research Barcelona Seminars series. He has been pro-
gram co-chair of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2010). Dr. Bonchi has
also served as program co-chair of the first and second ACM SIGKDD International
Workshop on Privacy, Security, and Trust in KDD (PinKDD 2007 and 2008), the 1st
IEEE International Workshop on Privacy Aspects of Data Mining (PADM 2006), and
the 4th International Workshop on Knowledge Discovery in Inductive Databases (KDID
2005). He earned his Ph.D. in computer science from the University of Pisa in 2003.





APP: Aperiodic and Periodic Model
for Long-Term Human Mobility Prediction

Using Ambient Simple Sensors

Danaipat Sodkomkham, Roberto Legaspi, Ken-ichi Fukui,
Koichi Moriyama, Satoshi Kurihara, and Masayuki Numao

Institute of Scientific and Industrial Research, Osaka University, Japan,
danaipat@ai.sanken.osaka-u.ac.jp

Abstract. The predictive technique proposed in this project was ini-
tially designed for the indoor smart environment wherein intrusive track-
ing techniques, such as cameras, mobile phone and GPS tracking system,
could not be utilized appropriately. Instead, we installed simple motion
detection sensors in the experimental space and observed occurred move-
ments at each area. However, the movement data recorded with this set-
ting cannot provide as much information about human mobility as the
data from the GPS or mobile phone is capable of. In this paper, we con-
ducted an exhaustive analysis on this specific dataset to determine the
predictability of future users’ mobility using only this limited dataset and
regardless of the predictive technique. Furthermore, we also proposed the
predictive technique, named APP, for long-term human mobility predic-
tion that works well on our limited dataset. Finally, evaluation on the
real dataset collected inside the smart space over 3 months of movements
and daily activities data shows that our model is able to predict future
mobility and activities of participants in the smart environment setting
with high accuracy even for a month ahead.

Keywords: Human mobility, Smart environment, Long-term prediction

1 Introduction

Understanding and predicting human mobility are crucial components in a num-
ber of real world applications. We will mention a few examples here. The PUCK
architecture[4] was introduced to intelligently provide reminders in the smart
environment since it automatically recognizes habitual activities and then re-
minds the occupant if he/she forgot some important tasks, such as forgetting to
take a medicine after a meal. This could be helpful for participants who have
dementia or mind cognitive impairment. Moreover, the ability to predict future
locations of people is also an important element in transportation planning [13,
11], bandwidth provisioning in wireless local area network [18], and targeted
advertisement dissemination [7].

In our specific example, we have an actual office environment built-in with
various sensors and actuators to enable the pervasive computing technology to
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control different settings of the environment. Our prototype smart office envi-
ronment was initially designed to create a working environment that can learn
users’ behavioral activities and react to these activities smartly. Goals of our
developing smart environment is to simplify mundane repetitive tasks, and to
make the participant live more comfortable. For example, the smart office that
predicts future occupancy of the meeting room and automatically gets electronic
facilities in the room prepared right before the meeting. The smart office that
predicts participants’ needs from their daily activities so that it always has hot
coffee ready to be served at the time they need. All of the applications mentioned
above require the ability to foresee user’s future whereabouts and mobility into
far future, as known as the open problem of long-term human mobility predic-
tion.

A smart environment, normally, has sensors installed to sense activities and
mobilities of participants inside. Different machine learning algorithms are then
employed to explore meaningful information about user behaviors and routines.
These information will be later used to build a predictor that foresees users’
needs and suggest a proper reaction to them. Therefore, one challenging problem
for every anybody who works on smart environments researches would be “to
determine the best approach to observing participants’ mobility with the least
obtrusiveness while providing enough information to build an accurate predictive
model”.

There is apparent trade-off between informativeness and conspicuousness of
the sensing technique. For a concrete example, using colored pictures from cam-
eras with a help from image processing technique and semi-supervised classi-
fication algorithm, Yu et al. [19] was able to create a system that recognizes
people and their positions. Moreover, they were able to map each individual’s
movement directly into a floor map. From this interesting example, rich mobility
information for individual users must be traded with users’ discomfort because
of surrounding cameras. Apart from camera techniques [1, 3] discussed earlier,
mobile phone data [6, 17], GPS [16, 13], and RFID tagging [2, 10] requires users
to carry (or put on) the tracking device while inside the environment, which
is not feasible in real-world implementation. On the other hand, simple sensors
such as infrared distance sensor, ultrasonic distance sensor, and magnetic sensor,
are small enough to blend into the environment, and seamlessly observe human
mobility inside the environment. It is the case, however, that simple sensors’
data is less informative than such high precision sensing technologies and they
limit the capability of the mobility predictive model that was built using their
data.

Therefore, in this paper, we investigated limits of the predictability over this
specific type of mobility dataset. Furthermore, in the latter part of this paper, we
present a novel prediction technique, named APP, particularly for the long-term
human mobility prediction problem. More specifically, the APP predicts future
location of a user at any specific time frame in far future, e.g. 21 days from now
between 10:00 and 10:05. The prediction is obtained by probabilistic models that
compute how likely a certain location will be revisited in the future at the specific
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time frame. The prediction part in APP consists of two probabilistic models.
Both probabilistic models keep track of visited time stamps, extracts contextual
features from each visit (such as what time of the day, what day of the week,
or how long after the last visit), and model their relations. The first predictive
model, named Periodic model, is based on a hypothesis that user keeps visiting
some specific locations periodically, such as every three hours, everyday, or every
month. Firstly, we analyze periodicity at each location and test this hypothesis.
If the hypothesis is accepted, we use the periodic model to predict; otherwise, the
second model is used. The second predictive model does not rely on periodicity
property in human mobility behavior; instead, it extracts significant patterns
of repetitive movements representing user mobility behavior in the past. Hence,
it is called the Aperiodic model. The aperiodic model postulates that the same
(or similar) mobility pattern tends to repeat again at any specific time frame in
the future whenever their contextual features are similar. Combining these two
models (APeriodic and Periodic, abbreviated to APP) results in a predictor that
predicts user’s location with acceptably high accuracy and precision, even for a
month ahead.

2 Limits of Predictability in Collective Human Mobility

The breakthrough analysis of predictability of human mobility has been studied
in [17]. Song et al. explored the limitation in predictability of individual’s move-
ments, disregarding quality of the prediction techniques. Despite the difference
in user’s daily behavior, their analysis over a large population monitored by their
mobile phone data shows 93% potential predictability in individual’s mobility.
In other words, predicting individual’s movements can be achieved effectively
when history data of individual’s movements is available.

When it comes to the situation when historical data of individual’s user is
not provided, but collective mobility data from multi-users, the fundamental
question of predictability on this class of data arises again, i.e.to what degree is
collective mobility predictable?

2.1 Collective Human Mobility Data

For our experimental smart environment, we have a functioning working space,
which includes individuals’ cubicle work stations, recreational space and meet-
ing areas, where a total number of 20 graduate students and faculty staff mem-
bers come to work regularly. Each individual may has different duties, different
class schedules and different daily routine, which result in different mobility pat-
terns directionally and temporally. We installed different types of sensors (see
figure 5(a)) in the environment to monitor activities and movements that hap-
pened inside. Specifically, we used two types of sensors in the experiment. First,
infrared distance sensors were mainly used to detect movement at each specific
location. Second, magnetic sensors were attached to the hinge of the refriger-
ator and the oven to observe their usages. All of these sensors are connected
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through the lab’s network and continuously feed live streams of mobility data to
a database. By employing these ambient sensors, participants needed not to be
equipped with a tracking device during the experiment period and can normally
move along without any concern of being monitored. We observed visitations and
mobility inside the experimental environment over 24 hours a day, for 3 months
(precisely 92 days) during the autumn semester. The floor plan in figure 5(b)
shows placements of sensors used to capture visitations at each location in the
space. The number of interested locations N is 30. We modeled human mobility
with two representations for different purposes as follows.

As temporal sequences of repeated visitations. Collective mobility, at each
location, is represented with the temporal sequence of repetitive visitations
visited by unknown users during the observing period. State of visitation
at a moment is denoted by a binary value: either 1 for visited, or 0 for not
visited. For instance, a sequence vx represents mobility at location x from
00:00 to 23:59, with the sample rate µ of 1 sample per hour.

vx =
(
(t′0, 0), (t′1, 1), (t′2, 0), . . . , (t′23, 1)

)

when t′i represents the observed time frame from t0 + iµ to t0 + (i+ 1)µ, and
t0 is the starting time, i.e., t0 = 00:00 and t′0 = [00 : 00, 01 : 00).

As trajectories. By increasing sample rate of the sensors µ up to 1 sample
per 200 milliseconds, we were able to count every visitations. Then, from a
temporal sequence of visitations, ((x0, t0), (x1, t1), . . . , (xw−1, tw−1)), we lin-
early searched for each transition point in the sequence where the transition
time ti+1 − ti > 30 seconds to cut it into smaller sequences that represent
trajectories.
Despite unobtrusiveness and simplicity of the ambient sensing method, the
obtained data is primarily noisy. To handle noises (such as false triggered
events, sensors blocked by obstacles, and simultaneous trajectories from dif-
ferent users) and extract movement trajectories from the collective mobility
dataset efficiently, we applied the data mining algorithm, called PrefixS-
pan [9], to extract only sub-trajectories of length-n that appeared in T more
frequently than a certain minimum number of times supportmin during the
experiment.

2.2 Limits of Predictability

Here we evaluated the predictability over the collective mobility dataset using
the same methodologies introduced by Song et al. in [17]. Namely, by employing
Fano’s’ inequality [5, 14], we estimated the upper limit of the probability of the
destination of a moving user can be predicted correctly given the most recent
trajectory and the past collective mobility data.

Let T ′i denote a movement trajectory and let Di be a destination of T ′i from
the observations, T = ((T ′0, D0), (T ′1, D1), . . . , (T ′m, Dm)). Given a predictive
technique f(T ′i ) that works well in predicting future location Di of a moving
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Fig. 1. The predictability of the collective human mobility in the smart environment.
The Πmax is the upper bound of the probability that a particular predictive algorithm
is able to predict user’s location correctly using only the collective dataset.

user based on recent length-n movement trajectory T ′ and a set of length-n
trajectories T from historical mobility data, let e denote the event of failed pre-
diction, i.e. f(T ′) 6= D, and let P (e) be its probability. According to Fano’s
inequality, the lower bound on the error probability P (e) can be found in the
following inequality.

H(D|T ′) ≤ H(e) + P (e) log(N − 1)

Thus, the probability of predicting correctly, denoted by Π, is 1−P (e). Namely,

H(D|T ′) ≤ H(e) + (1−Π) log(N − 1), (1)

where the destination D can take up to N possible locations and H(e) is the
corresponding binary entropy which is defined as follow.

H(e) = −P (e) log(P (e))− (1− P (e)) log(1− P (e))

= −(1−Π) log(1−Π)−Π log(Π) (2)

The conditional entropy H(D|T ′) appeared in the inequality (1) quantifies the
amount of information needed to predict the destination D given the correlated
recent trajectory T ′. Given the probability P (T ′) of the set of past trajectories T
containing T ′ and the joint probability P (T ′, d), the conditional entropyH(D|T ′)
is defined as follow.

H(D|T ′) =
∑

d∈D,T ′∈T
P (T ′, d) log

(
P (T ′)
P (T ′, d)

)
(3)

Then we calculated the entropy H(D|T ′) individually for each length n of
trajectories in T , and analyzed the maximum potential predictability (denoted
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by Πmax) or the probability of predicting correctly destination of a user given
the collective mobility dataset by solving for the Πmax, where Π ≤ Πmax in the
following equation, according to (1), (2) and (3).

H(D|T ′) = −(1−Πmax) log(1−Πmax)−Πmax log(Πmax)+(1−Πmax) log(N−1)

Figure 1(a) shows Πmax as functions of n, where n denotes length of the
considering trajectories. It is unsurprising that n increases the predictability
since longer trajectory gives more evidences to the predictor that help narrowing
down search space of the most probable locations. The supportmin also shows its
potential to eliminate unusual trajectories in the dataset, and gives significantly
higher potential predictability. However, there is a trade-off between the degree
of predictability and the number of predictable locations, as Figure 1(b) shows.
High threshold of the minimum support (supportmin) results less number of
locations N available to the predictive algorithm to predict.

To summarize from the analysis, despite the fact that the collective human
mobility contains cumulative movements and behaviors from different users and
seems diverge to the experimenter in the first place, the accurate prediction
of user’s location is achievable with acceptably high probability. However, this
analysis does not provide any clue about the potential predictability in the long-
term prediction configuration when the inference of user’s mobility cannot rely
on recent movement patterns and frequent historical trajectories. Moreover, a
number of researches [16, 15] have shown that predictive techniques that work
well in the short-term human mobility prediction cannot be extended to the long-
term prediction effectively. Thus, in the next section, we studied the possibility
to employ the periodicity in human behavior to foresee their mobility in far
future instead of directly modeling trajectories.

3 Periodicity in Collective Human Mobility

It can be seen easily even without a guide from data mining tool that most of
human activities are periodic to some degree. If a certain action, or movement
pattern is repeated regularly with a particular interval τ , and if this behavior
is consistent over time, it is certainly predictable with the time period τ . In
addition, the probability in predicting the correct location of a user in the future
depends on the tendency of such mobility patterns recurring at intervals. Thus
we define the periodicity probability to formally quantify this property.

Definition 1. Let Px(τ) denotes the periodicity, which is the probability of a
particular event x reoccurring regularly with the constant time interval τ , where
τ is a positive integer. Given the temporal sequence, as described in section 2.1, of
events from t′0 to t′m in which the location x was visited, the periodicity probability
Px(τ) is defined as follow.

Px(τ) = P
(
vx(t′i+τ ) = 1|vx(t′i) = 1

)
, t′i ∈ {t′0, t′1, . . . , t′m−1} (4)

where vx(t′i) indicates state of the visitation at x during the time frame t′i.
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Fig. 2. The periodicity Px1(τ) and Px2(τ) of repetitive visitations at the location x1
and x2 as a function of time period τ .

To find significant periodicity in the collective human mobility, we searched
for τ that maximizes the periodicity probability at each location separately. Fig-
ure 2 shows two sample locations where periodic behavior can be observed. The
small peaks in these plots reveal relatively high probability that these particular
locations were visited regularly with the time period τ , when τ are multiples
of 24 hours. Moreover, the maximum of predictability probabilities are found
at multiples of 168 hours. Undoubtedly, this indicates firm evidences of daily
and weekly behaviors exist in the collective mobility data. With more algorith-
mic way of finding significant period τ , the Fourier analysis also suggested that
τ = 24 hours and 168 hours correspond to two most significant frequencies of
≈ 4.167× 10−2 Hz and ≈ 5.925× 10−2 Hz respectively.

In the next section, we analyze the possibility of the collective human mobility
being predictable with the periodic behavioral patterns.

3.1 Predictability of The Periodic Model

Intuitively, the periodicity Px(τ) already estimated the precision of a periodic-
based predictive model, which is based on a strong assumption of periodically
repeated visitations. Hence, the periodicity Px(τ) can be considered as a mea-
surement for the predictability of the periodic model. In addition, we also want
to provide another predictability analysis employing an academic concept in
information theory to the periodic model.

Firstly, we assign the periodic entropy to the history data of repetitive visita-
tions at each location to determine the amount of information needed to foresee
future visit given records of repetitive visitations in history. At each location x,
the periodic entropy is computed as follows.

Definition 2. Given the collective mobility data, the entropy Sτx which quanti-
fies the degree of uncertainty of the periodicity Px(τ) in the dataset is

Sτx =
∑

ν∈{0,1}
P (vx)H(vx(t′i+τ |vx(t′i) = ν)), t′i ∈ {t′0, . . . , t′m−1}, (5)
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where P (vx) is the probability of a location x being visited, and the conditional
entropy H(vx(t′i+τ |vx(t′i) = ν) is

H(vx(t′i+τ |vx(t′i) = ν) =
∑

ϕ∈{0,1}
P (ϕ|ν) log

(
1

P (ϕ|ν)

)
, (6)

where P (ϕ|ν) stands for P (vx(t′i+τ ) = ϕ|vx(t′i) = ν).

Additionally, let Sτxf be the entropy of future visitations; namely,

Sτxf = −
∑

ϕ∈{0,1}
P (vx(t′i+τ ) = ϕ) log(P (vx(t′i+τ ) = ϕ)), t′i ∈ {t′0, . . . , t′m−1} (7)

Next, we determine the predictability for each location x of the periodic
model with the probability Πx,τ , which is defined as follow.

Definition 3. Let Πx,τ be the probability that the periodic model predicts times
of future visitations at x correctly by always predicting visited at all moments
that are kτ apart from the last visit, for k = 1, 2, . . .. Thus the associated entropy
H(Πx,τ ) of the predictability Πx,τ is

H(Πx,τ ) = −Πx,τ log2(Πx,τ )− (1−Πx,τ ) log2(1−Πx,τ ). (8)

The maximum predictability Πmax
x,τ can be determined using the Fano’s in-

equality in accordance with (1).

Sτx ≤ H(Πx,τ ) + (1−Πx,τ ) log2(N − 1) (9)

Because Πx,τ ≤ Πmax
x,τ and N = 2 prevents this bound to the binary classifi-

cation, then the following correction is required.

Sτx ≤ H(Πx,τ ) + (1−Πx,τ ) log2(N − 1) ≤ H(Πx,τ ) + (1−Πx,τ ) log2(N)

= −Πmax
x,τ log2(Πmax

x,τ )− (1−Πmax
x,τ ) log2(1−Πmax

x,τ ) + (1−Πx,τ ) log2(N)

(10)

After solving for Πmax
x,τ in (10), the predictability Πmax

x,τ determines the up-
per limit of the probability of predicting future visits of users at location x in
far future given an appropriate periodic model (with the time period τ). We
evaluated Sτ and Πmax

τ separately for each location, and the associated distri-
bution of Πmax

τ is shown in figure 3(a). Both distributions of the predictability
Πmax
τ indicate the average predictability over all locations approximately above

80%, in both daily and weekly model. The average predictability of the weekly
model is slightly higher and has lower variance than the daily model. One may
conclude from the result that the weekly model fit the collective mobility data
better than the daily periodic model.

Figure 3(b) shows differences between the periodic entropy Sτ=24
x and the en-

tropy of future visitations Sτ=24
xf at each location x. Note that as Sτx closer to zero

10



9

24 168

0.
6

0.
7

0.
8

0.
9

1.
0

τ(hours)

Π
m

ax

(a) The pre-
dictability Πmax

τ

of periodic model.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x1
0

x1
1

x1
2

x1
3

x1
4

x1
5

x1
6

x1
7

x1
8

x1
9

x2
0

x2
1

x2
2

x2
3

x2
4

x2
5

x2
6

x2
7

x2
8

x2
9

x3
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sxf
τ

Sx
τ

E
nt

ro
py

(b) Differences between the periodic entropy and the entropy of
future visits at each location.

Fig. 3. The predictability Πmax
τ and its corresponding periodic entropy.

and further from Sτxf , future visitations are more likely to depend on previous
visitations periodically. Result from this figure clearly suggests that not visiting
behavior at every location in our environment is periodic. For instance, the loca-
tions x7, x14, x17, x23, and x28 were not periodic, while the locations x1, x2, and
x20 appeared to be more periodic than others. Therefore, the periodicity-based
predictive model alone would not work in every location; hence, we have devel-
oped the integrated aperiodic and periodic model for long-term human mobility
prediction.

4 APP: Aperiodic and Periodic model for long-term
human mobility prediction

Our long-term human mobility predictive model combines two predicting paradigms
together. The first approach (Periodic approach) employs the periodic property
in human mobility to foresee future visits. On the other hand, the second ap-
proach (Aperiodic approach) does not rely on the periodicity; instead, it pre-
sumes that mobility patterns are similar to the day in the past that has similar
features. The APP uses either one of the two approaches to predict human mo-
bility at a certain location x depending on the periodicity probability Px(τ) at
that specific location x. If Px(τ) is more than the user-specific threshold P τmin,
then the APP uses the periodic approach. Otherwise, it switches to the aperiodic
approach.

4.1 APP: The Periodic Approach

The APP with the periodic predictive approach was designed to foresee times of
future visitations at each location in the smart space. To predict future locations

11
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of multi-users, the predictions are computed independently for each location,
then all the results are combined together providing a set of locations that are
likely to be visited at the specific time in far future.

The fundamental idea behind the prediction is based on the assumption of
periodicity. Say, if the visitations at x recur regularly, again and again, with a
constant time interval τ , and if this periodic behavior appears consistently over
time, then the probability P τx (t′f ) that the future visitation will occur within
the time frame t′f in the future, when the last visit happened at t′m−1, can be
computed as

P τx (t′) = P (vx(t′m−1−(k)τ+δ) = 1|vx(t′m−1−(k+1)τ+δ) = 1), k = 1, 2, . . . , bm/τc

where δ = (f −m+ 1) mod τ .
This simple, yet accurate, predictive approach works well only at certain

locations, where users’ mobility has apparent periodicity. Otherwise, the periodic
approach gets poor prediction because the mobility in those particular locations
are not governed by the periodic behavior. To address this problem, we proposed
the optional predictive approach contributed to the APP that is independent of
the periodic behavior.

4.2 APP: The Aperiodic Approach

In this second predictive technique implemented in the APP, we extract signifi-
cant patterns of repetitive visitations at each location that happened on different
days. Next, the days that have similar visiting pattern are clustered together,
resulting groups of similar days in the past history that users behaved similarly.
Then, we extract contextual features from each group of similar days. In this
project, the interested features consist of: (1) what day of week, (2) whether it
is a holiday or not. Note that unlimited additional features that might relate to
the mobility pattern can be used to characterize the day more comprehensively,
such as temperature, traffic, weather condition, or meeting schedule. However,
due to the limit in the dataset we have, only these two features are applied.

The intuition that supports this predictive approach is derived from the
weekly model in section 4.1, human mobility patterns on the same day of the
week are likely similar. Additionally, human activities on national holidays are
apparently different from normal workdays; so, we need an additional bit to ex-
plicitly specify this property. Hence, mobility pattern of a day can be modeled
individually by the visitations at each location. Recall the temporal sequence vx
in section 2.1, mobility at a certain location x can be represented with a vector:

dx =[vx, dayweek, holiday]

=[vt′0 , . . . , vt′23 , Sun,Mon, . . . , Sat,Hol]

The day vector dx consists of 32 bits. The first 24 bits model visitations at
location x during a specific time frame of a day, which is divided hourly. The
next 7 bits indicate day of week, and the last bit indicates a holiday.
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Fig. 4. Three cluster centroids that represent three mobility patterns.

Similarity between two day vectors is basically measured by the Hamming
distance [8]. Then the k -means clustering algorithm [12] is applied to a set of
day vectors to find clusters of similar days. The parameter k of the algorithm
directly implies to the number of different mobility patterns that happened on
different days. The centroid of each cluster now represents common mobility
pattern that provides predictions (probability) of visitations to be found on any
certain days in the future that have similar features. A concrete example of the
similar day clusters discovered from the real dataset is shown in figure 4. It is
striking that the cluster centroids in figure 4 clearly show 3 different visiting
patterns at that particular location. The cluster (1) contains a set of days in the
past history when the visitations rarely happened, and the majority of this set
are Saturdays, Sundays and the days specified as holiday. On the other hand, the
cluster (2) and (3) contain more active days. The days in the cluster (2), which
most of them are Monday and Wednesday, have very low visitations records
during 11.00-12.00 and 21.00-22.00; moreover, the visitations seems to occur
earlier than on the days in the cluster (3). Interestingly, this follows the fact
that we have meetings arranged in the experimental space every Monday and
Wednesday, and causes the mobility pattern to appear differently to other days.

5 Evaluating Prediction Performance

In this section, we evaluated prediction performance of our proposed long-term
human mobility predictor on a physical dataset of collective human mobility in-
side the working environment. As described in section 2.1, the dataset contains
92 days of mutual movements from every participants in the space. Data are
collected consecutively 24 hours a day, 7 days a week from ∼ 20 users using in-
frared sensors, and magnetic sensors (figure 5(a)). These sensors were installed
at 30 locations over the experimental space to detect activities and mobility at
each area. Outline of the space and installed sensors are shown in figure 5(b).
Movements and activities committed in the experiment were not scripted be-
forehand; all actions happened deliberately regarding each individual’s routine,
work schedule, and needs at that moment.

Firstly, we evaluated the periodic approach for long-term human mobility
prediction. Two months of collective mobility data was used to build the pre-
dictive model and the remaining 30 days of mobility data was used to test the
model. Details of the dataset are summarized in table 1.
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Table 1. Human Mobility Dataset

Dataset Train Test

Sample rate hourly

Number of participants ≤ 20

Observed locations 30

Size of data 62 days
(1,488 hours)

30 days
(720 hours)

(a) Infrared and Magnetic sensors
used to observe mobility in the ex-
perimental space

M
ee

tin
g 

R
oo

m

(b) Floor plan

Fig. 5. (a) Infrared and Magnetic sensors used in the experiment. (b) Placement of the
sensors.

5.1 Periodicity and Prediction Performance

We determined relations between the periodicity probability (Px(τ = 24) and
Px(τ = 168)) and the prediction accuracy, precision, and recall rate at each lo-
cation separately. Figure 6(a) and 6(d) exhibit decreasing trend of prediction
accuracy when the periodicity probability increased; yet, the periodic predictor
gets higher precision and recall rates as the dataset has higher probability of
such movements being repeated periodically. Nevertheless, the measurement of
prediction accuracy is meaningless to us because the datasets, which contain
visitations records at each location in past history, have negative skew. In other
words, naive predictor can achieve at least 60% chance of predicting visitations
(either “visited” or “not visited”) of users at a specific time frame in the future
correctly by always guessing “not visited”. Figure 6(b) and 6(e) show direct rela-
tionship between the precision rate and the periodicity probability. Likewise, the
recall rates in figure 6(c) and 6(f) show that the datasets with higher periodicity
are more predictable than the others. Moreover, when the periodicity probabili-
ties are lower than 0.4, the daily periodic approach (see figure 6(c)) clearly gets
poor results. These confirm our hypothesis that the periodic approach alone is
not effective in predicting with low periodicity probability.
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Fig. 6. Periodicity and Prediction Performance.

5.2 Prediction Performance of the Similar-day Approach

The aperiodic part in the proposed predictive technique, APP, is implemented
with the similar-day predictive approach described in section 4.2. In the previous
experiment, the periodic approach underperformed on the datasets where the
mobility were not really periodic. Especially in the daily periodic model (see
figure 6(a), 6(b), and 6(c)) when most of locations in the experimental space have
lower periodicity probability than 0.4. Hence, in this experiment, the aperiodic
part of the APP is activated where the periodicity is lower than the minimum
threshold P τmin = 0.4, the experimenter-specified threshold.

Figure 7 reveals benefit of implementing the aperiodic part into the APPpre-
dictive model. In figure 7(a), the precision rates of the APP, after implement-
ing the similar-day approach in low-periodicity data, are improved significantly,
comparing with the periodic approach alone. The precision plots of the periodic
approach on the left (periodicity ≤ 0.4) were mostly omitted because the peri-
odic predictor never predicted “visited” on those locations, resulting undefined
precision rates.

The APP also improves the recall rates, as shown in figure 7(b). It is striking
that the recall rates used to get nearly 0.0 in the periodic approach rise up to
0.6 when predicted with the APP predictive technique.

In summary, the aperiodic part in our proposed long-term human mobility
predictive technique helps improving the prediction performance especially when
the periodicity probability is too low to infer future visitations. However, the
similar-day approach that we implemented into the aperiodic part is not effective
enough to improve the predictive technique that employs the weekly periodic
approach (τ = 168). The reason is that the day of week attributes used in the
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Fig. 7. Prediction Performance of the Similar-day Approach.
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Fig. 8. Prediction Performance on Long-term Prediction.

cluster analysis already corresponded to the weekly basis, and the the holiday is
not really significant feature since there were few holidays during only 3 months
of dataset. So, the implementation of the similar-day approach (aperiodic part)
and the weekly periodic approach was not able to achieve much improvement
comparing with the weekly periodic predictive approach alone.

5.3 Performance in Long-term Prediction

In this section, we tested the robustness of the APP, Aperiodic and Periodic
approach for human mobility predictor, over long range of prediction. The set-
tings of this experiment refer to table 1. The results in figure 8 show the steady
prediction performance even when predicting for 30 days ahead. The F1-score,
which is the harmonic mean of the precision and the recall rate (in figure 8(c))
summarizes the prediction performance of 3 proposed predictive techniques as
follows. Firstly, our collective mobility dataset that seems random in the first
place contains enough information to be predicted accurately even in far future.
Activities and corresponding mobility in the dataset are likely to be periodic
on the weekly basis; hence, the weekly periodic predictive approach alone can
get the average F1-score at 0.55. On the other hand, the daily model performs
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relatively poor (average F1-score at 0.37) on this dataset because of low period-
icity probability on the daily basis. However, after implementing the similar-day
approach together with the daily predictive model, the integrated model can
achieve average F1-score at 0.52.

6 Conclusions and Future Work

In this paper, awaiting answer to the question about limitations of the pre-
dictability of the collective human mobility from simple ambient sensors inside
the smart environment has been revealed. We took a challenging decision im-
plementing non-intrusive tracking method. Our choice of tracking method with
ambient simple sensors have bold advantages from its unobtrusiveness and sim-
plicity. The limitation, however, is that they cannot distinguish people’s iden-
tities, such that its data limits a predictive model because it is impossible to
create a predictive model individually for each user’s mobility pattern.

The predictability analysis reveals potential of building a short-term next
location predictive model that predicts next movement of a moving user accu-
rately using only the collective dataset. However, implementing the short-term
predictor is outside the scope of this paper. Furthermore, we also discovered
acceptably high predictability in long-term prediction by modeling periodic be-
haviors hidden in the collective mobility data.

Next, we proposed the APP: Aperiodic and Periodic predictive model for
long-term human mobility prediction. Results from the experiment shows that
performance of the APP predictor improved significantly when predicting in
low periodicity situations using the aperiodic approach. However, the aperiodic
approach implemented in this project is not effective enough to increase the
performance of the weekly periodic predictive approach yet because very limited
features can be extracted from the collective dataset. We leave this to be our
future work.
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Abstract. This paper applies subgroup discovery for obtaining interest-
ing descriptive patterns in ubiquitous data. Furthermore, we provide a
novel graph-based analysis approach for assessing the relations between
the obtained subgroup set, and for comparing subgroups according to
their relations to other subgroups. We present and discuss first results
utilizing real-world data, given by noise measurements with associated
subjective perceptions and a set of tags describing the semantic context.

1 Introduction

Ubiquitous data mining has many facets including descriptive approaches: These
can help for obtaining a first overview on a dataset, for summarization, for
uncovering a set of interesting patterns and their inter-relations.

This paper reports first results on analyzing ubiquitous data: objective (sen-
sor) data and subjective perceptions. We apply subgroup discovery as a versa-
tile method for descriptive data mining. We utilize the VIKAMINE 3 tool [6]
for subgroup discovery and analytics in order to implement a semi-automatic
pattern discovery process. For the analysis, we apply real-world data from the
EveryAware project4 – focusing on noise measurements. The individual data
points include the measured noise in decibel (dB), associated subjective percep-
tions (feeling, disturbance, isolation, artificiality) and a set of tags for providing
semantic context for the individual measurements. We focus on the interrela-
tion between sensor measurements, subjective perceptions, and descriptive tags.
For assessing the relations between the result set of subgroups, we propose a
novel graph-based analysis approach. This method is applied for visualizing sub-
group relations, and can be utilized for comparing subgroups according to their
relationships to other subgroups. We present first results analyzing subgroups
patterns for hot-spots of low/high noise levels.

The remainder of the paper is organized as follows: Section 2 discusses related
work. Next, Section 3 introduces necessary basic notions. After that, Section 4
proposes the novel approach for graph-based subgroup analytics, and presents
first analysis results in our application setting. Finally, Section 5 concludes with
a summary and presents interesting options for future work.

3 http://www.vikamine.org
4 www.everyaware.eu
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2 Related Work

Ubiquitous data mining covers many subfields, including spatio-temporal data
mining [15], mining sensor data or mining social media with geo-referenced data,
c.f., [3]. Applications include destination recommenders, e.g., for tourist informa-
tion systems [10], or geographical topic discovery [21]. Often established problem
statements and methods have been transferred to this setting, for example, con-
sidering association rules [2]. Related approaches consider, for example, social
image mining methods, cf., [17] for a survey. The concept of collecting infor-
mation in ubiquitous systems, especially for crowd-sourced and citizen-driven
applications is discussed in [18]. Basic issues of measuring noise pollution using
mobile phones are presented in [19].

In contrast to the approaches discussed above, in this paper we focus on
descriptive patterns. This allows for the flexible adaptation to the preferences of
the users, since their interestingness can be flexibly tuned by altering the applied
quality function and target concept. There are several variants of pattern mining
techniques, e.g., frequent pattern mining [11], mining association rules [1], as well
as subgroup discovery [13], which is the method applied in this work.

For analyzing a set of subgroups, these are typically clustered according to
their similarity, e. g., [8], or based on their predictive power [14]. Other methods
for pattern set refinement and selection, e. g., [16] focus on similarities on the
instance and/or description level. In contrast to these approaches, the proposed
approach for subgroup set analytics generalizes those methods. We provide a
general approach for analyzing subgroup relations based on a freely configurable
“relationship” function, embedded in a graph-based framework for the assess-
ment of sets of subgroups.

3 Preliminaries

Data mining includes descriptive and predictive approaches [12]. In the follow-
ing, we focus on descriptive pattern mining methods. We apply subgroup dis-
covery [13], a broadly applicable data mining method which aims at identifying
interesting patterns with respect to a given target property of interest according
to a specific quality function. This section first introduces the necessary notions
concerning the data representation, subgroup patterns, basics on graphs, and
similarity measures.

Formally, a database DB = (I, A) is given by a set of individuals I and a
set of attributes A. A selector or basic pattern selai=vj is a Boolean function
I → {0, 1} that is true if the value of attribute ai ∈ A is equal to vj for the
respective individual. The set of all basic patterns is denoted by S. For a numeric
attribute anum selectors selanum∈[minj ;maxj ] can be defined analogously for each
interval [minj ;maxj ] in the domain of anum. The Boolean function is then set
to true if the value of attribute anum is within the respective range.

A subgroup description or (complex) pattern sd is then given by a set of
basic patterns sd = {sel1, . . . , sell}, which is interpreted as a conjunction, i.e.,
sd(I) = sel1 ∧ . . . ∧ sel l, with length(sd) = l.

2
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Without loss of generality, we focus on a conjunctive pattern language using
nominal attribute–value pairs as defined above in this paper; internal disjunc-
tions can also be generated by appropriate attribute–value construction methods,
if necessary. A subgroup (extension)

sgsd := ext(sd) := {i ∈ I|sd(i) = true}

is the set of all individuals which are covered by the subgroup description sd . As
search space for subgroup discovery the set of all possible patterns 2S is used,
that is, all combinations of the basic patterns contained in S.

A quality function q : 2S → R maps every pattern in the search space to
a real number that reflects the interestingness of a pattern (or the extension
of the pattern, respectively). The result of a subgroup discovery task is the
set of k subgroup descriptions res1, . . . , resk with the highest interestingness
according to the quality function. While a large number of quality functions has
been proposed in literature, many quality measures trade-off the size |ext(sd)|
of a subgroup and the deviation tsd − t0, where tsd is the average value of a
given target concept in the subgroup identified by the pattern sd and t0 the
average value of the target concept in the general population. Thus, typical
quality functions are of the form

qa(sd) = |ext(sd)|a · (tsd − t0), a ∈ [0; 1] . (1)

For binary target concepts, this includes for example the weighted relative accu-
racy for the size parameter a = 1 or a simplified binomial function, for a = 0.5.

An (undirected) graph G = (V,E) is an ordered pair, consisting of a finite
set V containing the vertices/nodes, and a set E of edges/connections between
the vertices. We freely use the term network as a synonym for graph. A weighted
graph is a graph G = (V,E) together with a function w : E → R+ that as-
signs a positive weight to each edge. The degree d(u) of a node u in a net-
work measures the number of connections it has to other nodes. In weighted
graphs the strength s(u) is the sum of the weights of all edges containing u, i. e.,
s(u) :=

∑
{u,v}∈E w({u, v}).

Given two vectors v1,v2 ∈ RX , there are a variety of similarity measures for
assessing the similarity between the contained values, e. g., [20].We can measure
vector similarity, for example, by the (normalized) Manhattan distance, defined
as follows:

simman(v1,v2) :=

∑X
i=1 |v1i − v2i|

X
, (2)

where vij denotes the j-th component of vector vi.

Another prominent measure from information retrieval is the cosine measure.
The cosine similarity between two vectors v1,v2 ∈ RX is then defined as:

simcos(v1,v2) := cos](v1,v2) =
v1 · v2

||v1||2 · ||v2||2
. (3)

3
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4 Exploratory Subgroup Analytics

In the following, we first present the novel subgroup analytics approach using
a graph-based representation for inspecting and assessing a set of subgroups.
Next, we describe the utilized dataset. After that, we discuss first results of the
analysis in our ubiquitous application context.

4.1 Overview

For subgroup analytics, we first obtain a set of the top-k subgroups for a specific
target variable. Typically, an efficient subgroup discovery algorithm needs to be
applied. In our experiments, we apply the SD-Map* [5] algorithm for efficient
subgroup discovery, which is suitable for sparse tagging data, c.f., [7]. After that,
the set of subgroups needs to be assessed and put into relation to each other.

The proposed approach especially focuses on this specific step: It considers
a relation between subgroups such that their “connections” according to this
relation can be modeled as a graph. More formally, given a certain criterion im-
plemented by a relation function rel : I × I → R we obtain a value estimating
the relationship between pairs of subgroups, identified by their respective sub-
group descriptions. Possible relations include, for example, geographic distance,
or semantic criteria. In our application setting, we focus on the latter, since we
will use the given perceptions for noise measurements as semantic proxies for
subgroup relatedness.

For assessing our result set of subgroups R, we obtain the rel -value for each
pair of subgroups (u, v). After that, we construct a subgroup assessment graph
GR for R: The nodes of GR are given by the subgroups contained in R. The edges
between node pairs (u, v) are constructed according to the respective rel(u, v)
value: If the respective value between the subgroup pair is zero, then the edge is
dropped; otherwise, an edge weighted by rel(u, v) is added to the graph.

It is easy to see that – depending on the applied relationship function rel–
this construction process can result in a fully connected graph which is hard to
interpret. Therefore, a refinement of this process utilizes a certain threshold τrel
which is used for pruning edges in the graph. If the relation “strength” rel(u, v)
between a subgroup pair (u, v) is below the threshold, i. e., rel(u, v) < τrel then
we do not consider the edge between u and v, such that the edge is dropped. By
carefully selecting a suitable threshold τrel the resulting subgroup network can
then be easily inspected and assessed.

Typically, the situation becomes interesting when the graph is split into differ-
ent components corresponding to certain clusters of subgroups. We will discuss
examples of constructed networks below. For selecting a suitable threshold, a
threshold-component visualization can be applied, see Figure 5 for an example.
This visualization plots the number of connected components of the graph de-
pending on the applied threshold. Then, the “steps” within the plot can indicate
interesting thresholds that can be interactively inspected. A related visualization
plots the used threshold against the graph density for obtaining a first impression
of the ranges of suitable threshold selections.

4
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4.2 Applied Dataset

In this paper, we utilize data from the EveryAware project, specifically, on col-
lectively organized noise measurements collected using the WideNoise Plus ap-
plication between December 14, 2011 and June 12, 2013.

WideNoise Plus allows the storage of noise measurements using ubiquitous
mobile devices, and includes sensor data from the microphone given as noise
level in dB and data from the location sensors (i.e., GPS-sensor, GSM- and
WLAN-locating) represented as latitude and longitude coordinate as well as a
timestamp. Furthermore, WideNoise Plus captures the user’s perceptions about
the recordings, expressed using the four slider feeling (love to hate), disturbance
(calm to hectic), isolation (alone to social), and artificiality (nature to man-
made). In addition, tags can be assigned to the recording. The data are stored
and processed using the EveryAware platform [9], which is based on the UBI-
CON framework [4].

In our analysis, we utilize the following objective and subjective information
for each measurement:

– Objective: Level of noise (dB).
– Subjective perceptions about the environment:

• “Feeling” (hate/love) encoded in the interval [−5; 5], where -5 is most
extreme for “hate” and 5 is most extreme for “love”.

• “Disturbance” (hectic/calm), encoded in the interval [−5; 5], where -5 is
most extreme for “hectic” and 5 is most extreme for “calm”.

• “Isolation” (alone/social), encoded in the interval [−5; 5], where -5 is
most extreme for “alone” and 5 is most extreme for “social”.

• “Artificiality” (man-made/nature), encoded in the interval [−5; 5], where
-5 is most extreme for “man-made” and 5 is most extreme for “nature”.

– Tags, e. g., “noisy”, “indoor”, or “calm”, providing the semantic context of
the specific measurement.

The applied dataset contains 5,237 data records and 1,056 distinct tags: The
available tagging information was cleaned such that only tags with a length
of at least three characters were considered. Only data records with valid tag
assignments were included. Furthermore, we applied stemming and split multi-
word tags into distinct single word tags.

Figures 1-4 provide basic statistics about the tag count and measured noise
distributions, as well as the value distributions of the perceptions and the number
of tags assigned to a measurement. As can be observed in Figure 1 and Figure 4,
the tag assignment data is rather sparse, especially concerning larger sets of
assigned tags. However, it already allows to draw some conclusions on the tagging
semantics and perceptions. In this context, the relation between (subjective)
perceptions and (objective) noise measurements is of high interest. Therefore,
we present first analysis results of interesting patterns in the case study described
below. We focus on the relation between semantics and perceptions as indicated
by the different subjective perception values.

5
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Fig. 1. Cumulated tag count distribu-
tion in the dataset. The y-axis provides
the probability of observing a tag count
larger than a certain threshold on the
x-axis.
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Fig. 2. Cumulated distribution of noise
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threshold on the x-axis.
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Fig. 4. Distribution of assigned tags
per resource/data record.

4.3 Case Study: First Results and Discussion

In the following, we present first analysis results in the context of the WideNoise
Plus data. According to the proposed approach, we applied subgroup discovery
for the target variable noise (dB) focusing on subgroups with a large deviation
comparing the mean of the target in the subgroup and the target in the whole
database. We applied the simple binominal quality function, c.f., Section 3. Ta-
ble 1 shows the resulting 20 patterns combining the two top-10 result sets.

In the table, we can identify several distinctive tags for noisy environments,
for example, craft, aircraft, plane, heathrow AND plane which relate to Heathrow
noise monitoring, c.f., [4] for more details. These results confirm the basic anal-
ysis in [4]. For more quiet environments, we can also observe typical patterns,
e. g., focusing on the tags indoor, background and work, and combinations. Some
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Table 1. Patterns: 1-10 - target: large mean noise (dB); 11-20 - target: small mean
noise (dB); Overall mean (population): 70.12 dB. The last two columns include the
node degree in the subgroup assessment graph, for τrel = 0.90 and τrel = 0.95.

id description size mean dB feeling disturbance isolation artificiality deg (t=0.9) deg (t=0.95)
1 craft 67 92.10 -3.06 -3.21 3.21 -4.61 4 1

2 air 72 89.72 -3.07 -3.10 2.97 -4.57 4 1

3 arriva 252 78.64 -0.02 -0.01 0.01 0.00 9 8

4 plane 415 76.26 -3.47 -2.61 -0.59 -3.75 5 0

5 heathrow AND plane 31 87.81 -4.61 -4.48 -0.32 -4.65 3 2

6 runway 107 79.62 -3.78 -3.45 -1.45 -3.94 3 2

7 runway AND plane 92 79.92 -3.75 -3.67 -1.38 -3.78 3 2

8 aeroporto 13 94.08 -5.00 0.00 0.00 0.00 6 1

9 ciampino 16 91.13 -4.06 0.00 0.00 0.00 10 2

10 departure 14 92.50 -0.71 0.57 -0.29 -1.36 11 8

11 home 124 45.58 1.10 1.31 -0.96 -0.99 9 7

12 bosco 17 35.35 3.29 3.53 -1.65 1.88 0 0

13 indoor 111 56.69 0.81 0.71 -0.17 -1.29 9 8

14 office 172 59.78 0.10 0.68 -0.35 -1.68 11 9

15 borgo 12 31.33 3.00 3.25 -1.00 1.67 0 0

16 background 35 48.06 0.40 2.11 -2.46 -0.97 10 9

17 work 74 55.76 -0.49 0.19 -0.35 -1.86 11 5

18 indoor AND background 22 44.32 0.55 1.91 -2.14 -0.73 10 8

19 kassel 96 58.67 -0.17 0.64 0.17 -1.41 10 9

20 work AND background 23 47.43 0.61 1.74 -2.00 -0.74 10 8

further interesting subgroups are described by the tags bosco (forest) and borgo
(village). These also show a quit distinct perception profile, shown in the respec-
tive columns of Table 1. This can also be observed in the last two columns of
the table indicating the degree in the subgroup assessment graph (see below):
The subgroups described by borgo and bosco are quite isolated.
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Fig. 5. Thresholded connected component plot
based on a minimal rel value.

In order to analyze subgroup
relations with respect to the per-
ceptions, we apply the Manhat-
tan similarity as defined in Sec-
tion 3 as our assessment relation
rel . We measure the similarity us-
ing the averaged perception vec-
tors of the respective subgroup
patterns, with normalized values
in the interval [0; 1]. Using the
Manhattan distance, we consider
the overall “closeness” of the vectors; alternatively, the cosine similarity would
focus on similar perception “profiles”, i. e., uniformly expressed perceptions.

For determining appropriate thresholds τrel , Figure 5 shows a threshold vs.
connected component plot using the Manhattan similarity defined above. Then,
appropriate thresholds can be selected by the analyst. As can be observed in
Figures 6-7 the respective networks for thresholds 0.90 and 0.95 show a distinct
structure. Starting with the lowest threshold τrel = 0.90 we can already ob-
serve the special structure of patterns 12 and 15. At this level, the remaining
graph stays connected. With threshold τrel = 0.95, several clusters emerge – the
“Heathrow cluster” (5, 6, 7), as well as the large cluster covering most of the
lower noise patterns. However, this cluster also contains some patterns from the

7
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higher noise patterns (3, 8, 9, 10), which are rather unexpected and therefore
quite interesting for subsequent analysis. The connecting subgroup patterns can
then be simply extracted by tracing the connections in the graph.
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Fig. 6. Assessment graph: τrel = 0.90.
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Fig. 7. Assessment graph: τrel = 0.95.

5 Conclusions

In this paper, we presented exploratory subgroup analytics for obtaining inter-
esting descriptive patterns in ubiquitous data. Specifically, we provided a novel
graph-based analysis approach for assessing the relations between sets of sub-
groups. Using real-world data from a ubiquitous application we presented and
discussed first analysis results. The analyzed noise measurements and associated
subjective perceptions described by a set of tags confirmed the semantic context
and provided interesting patterns towards a more comprehensive analysis.

For future work, we aim to extend the approach to diverse relationship and
similarity measures. Furthermore, we plan to investigate multi-relational repre-
sentations, i. e., multi-graphs capturing a set of relationships for assessing a set of
subgroups. A further direction for analysis concerns the interrelations between
perceptions, tags, and sentiments based on the tagging data. These can then
also be applied, for example, for enhanced event detection, recommendations, or
community mining, in combination with spatio-temporal patterns.
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Abstra
t. The development and evaluation of new data mining meth-

ods for ubiquitous environments and systems requires real data that were


olle
ted from real users. In this work, we present an open smartphone

utilization and mobility dataset that was generated with several devi
es

and parti
ipants during a 4-month study. A parti
ularity of this dataset

is the in
lusion of low-level operating system data. Additionally to the

des
ription of the data, we also des
ribe the pro
ess of 
olle
tion and the

priva
y measures we applied. To demonstrate the utility of the data, we

performed two example analyses, whi
h are also presented in this paper.

1 Introdu
tion

Today's mobile phones are able to produ
e a vast amount of valuable data. Pro-

du
ed by several physi
al and logi
al sensors, the data provides knowledge about

the owner as well as his environment. Several studies have shown that smart-

phones 
an be used as an e�e
tive tool to gain insights into patterns of human

behavior and intera
tion that were not available before. Notable examples are

the datasets of the MIT Human Dynami
s Lab like the Reality Mining dataset

[1℄ or the Lausanne Data Colle
tion Campaign [2℄. The latter was however only

available for parti
ipants of the 2012 Nokia data 
hallenge. [3℄

While smartphones are 
ertainly an ex
ellent tool for resear
h, it is not less

important to 
onsider how data 
olle
tion 
ampaigns 
an help to improve these

devi
es and the respe
tive infrastru
ture. Previous resear
h has shown that in-

sights into utilization and mobility patterns of mobile devi
es are indeed of value

for that purpose. This 
on
erns the mobile network infrastru
ture [4℄ as well as

the user experien
e with respe
t to the devi
es. A limiting fa
tor to user ex-

perien
e is 
ertainly the lifetime of a smartphone's battery. Mu
h resear
h has

been 
ondu
ted towards the use of user-spe
i�
 mobility and utilization pat-

terns to in
rease the energy-e�
ien
y of mobile devi
es, like the redu
tion of

GPS utilization via lo
ation predi
tion [5℄ or a

elerated �le prefet
hing. [6℄

Resear
h on these problems requires real data 
olle
ted on real devi
es and

from real users. While high-level data like lo
ation and phone 
all logs might
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be su�
ient for some of the problems, others also need data 
on
erning the

devi
e, not only its owner. Devi
e Analyzer

1

is an Android appli
ation 
olle
ting

data from thousands of devi
es all over the world in order to get insights into

utilization patterns, with the expli
it goal to provide 
ru
ial information for

the improvement of future smartphones. To guarantee 
omplete anonymity all

priva
y-
riti
al identi�ers (e.g., 
ell tower IDs or MAC-addresses) are hashed

with individual salts. This makes the dataset unavailable for the analysis of

so
ial intera
tion. Also, it is not 
lear when the data will be available.

Our proposed dataset shares 
ommonalities with all three mentioned exam-

ples, but features all of the following: 1.) It 
ontains operating system level

data, 2.) not all identi�ers are hashed with individual salts, and 3.) it is openly

available at http://sfb876.tu-dortmund.de/mobidata.

The remainder of this paper is stru
tured as follows: In Se
tion 2 we will

shortly des
ribe how we 
olle
ted the data and ensured the priva
y of our par-

ti
ipants, while Se
tion 3 des
ribes the resulting dataset. In Se
tion 4 we present

two exemplary analyses performed on these data. Se
tion 5 
on
ludes the paper.

2 The Colle
tion Pro
ess

We started with 11 parti
ipants, who all were members of our 
ollaborative

resear
h 
enter. During our summer s
hool in 2012, we additonally 
olle
ted

data from 11 attendees. For this purpose we used MobiDAC, our �exible infras-

tru
ture for data 
olle
tion on Android-based smartphones. MobiDAC allows

experimenters to use the parti
ipating devi
es like programmable sensor nodes.

Operators write sensing modules that perform the a
tual data a
quisition on

the devi
e. These modules may be uploaded to respe
tive devi
es and remotely

started or stopped. When a module is running, it is 
olle
ting, possibly prepro-


essing and saving data lo
ally on the devi
e. Data is sent ba
k to the experi-

menter when 
ertain 
onditions are met, like an established Wi-Fi 
onne
tion.

Currently, a modi�ed version of the S
ripting Layer for Android (SL4A)

2

is used

to exe
ute the sensing modules.

2.1 Modus Operandi

We used both the Android-API as well as Linux' virtual �le systems (VFS)

�/pro
� and �/sys� as data sour
es. When the devi
e was awake, most of the

data was 
olle
ted high-frequently (temporal resolution of two se
onds) or via


allba
ks from Android. To redu
e the amount of data that had to be transmitted

from the devi
e, we only re
orded 
hanges to data values. Every 60 se
onds, we

took a snapshot of all data from the virtual �le systems and started sensor

sampling for two se
onds with the highest possible frequen
ies. A Bluetooth

s
an was started every �ve minutes. Every two hours, the periodi
ally sampled

1

Devi
e Analyzer website: http://devi
eanalyzer.
l.
am.a
.uk/

2

SL4A 
an be found at: http://
ode.google.
om/p/android-s
ripting

30



data was re
orded 
ompletely (not only 
hanges). As opposed to Symbian-based

phones, whi
h were used for some of the data 
olle
tion 
ampaigns mentioned

in the introdu
tion, Android phones try to suspend whenever possible. This

happens, when the s
reen is o� and no appli
ation is keeping the devi
e awake

by means of a wake lo
k. During the suspended state, no data 
an be 
olle
ted

at all. Thus, we expli
itly wake the devi
e from its sleep every 60 se
onds and

perform a full a
quisition of all data values with the respe
tive intervals.

2.2 Priva
y Preservation

Sin
e this version of our dataset is truly open and available to anyone, we were

obliged to be espe
ially 
areful in the pro
ess of ensuring priva
y. We treated

data in the following ways:

� Everything that uniquely identi�es a parti
ipant is globally 
onsistently re-

pla
ed with a random value. This is also true for all identi�ers from intera
-

tion with other entities (e.g., MAC-addresses and SSIDs) as well as for the

names of installed and running appli
ation pa
kages and pro
esses.

� Mobile network 
ell information was repla
ed by lo
ally 
onsistent random

values for ea
h parti
ipant. This means that the mapping of 
ell identi�
ation

(CID) and lo
ation area 
ode (LAC) is di�erent for every parti
ipant.

3 The Data

We 
olle
ted data from various hardware and software subsystems, namely 
om-

muni
ation (Wi-Fi, Bluetooth and mobile), sensors, power supply, the Linux

kernel and Android's appli
ation framework. This se
tion 
oarsely des
ribes the


ontents of the dataset resulting after the priva
y-preserving measures.

3.1 Contents

The data may be 
ategorized into high-level user 
ontext, external sensing, and

system internals.

High-Level User Context is utilization data that 
ontains dire
t hints to the

parti
ipant's 
urrent a
tivity and 
ontext. This in
ludes the state of the

display (on/o�, brightness) and the phone (idle, ringing, or o� the hook).

Also the 
urrently running pa
kages belong to this 
ategory. Settings 
an

also indire
tly tell about the parti
ipant's 
ontext. For example, turning the

phone to silent mode, when it was set to play a ringtone before, is a hint that

the situation 
hanged to one that prohibits phone noise, like a meeting or

a 
inema. Besides audio settings, also the 
ommuni
ation settings, whether

Bluetooth or Wi-Fi is enabled, or whether the devi
e is in airplane mode,

belong to this 
ategory.
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Sensing data is obtained from various physi
al sensors as well as positioning

and 
ommuni
ation hardware. The physi
al sensors measured a

eleration,

magneti
 �eld strength, orientation and light intensity. When the parti
ipant

allowed it, also information about 
urrent altitude and speed were obtained

from the GPS hardware. Also, 
ommuni
ation devi
es 
an be used to sense

the presen
e or even the signal strength of (potential) peers. Whereas Wi-Fi

and baseband pro
essors deliver information about stationary 
ommuni
a-

tion peers (a

ess points and 
ell towers) and are thus feasible for positioning,

Bluetooth delivers information about mobile 
ommuni
ation peers.

System Internal data mainly des
ribes the overall usage of the system's re-

sour
es like the CPU, the battery, the main memory and the network in-

terfa
es. The use of Android wakelo
ks also belongs to this 
ategory. Sin
e

wakelo
ks are used to prevent the devi
e from suspending, (appli
ation) bugs

regarding their handling 
an severely in
rease energy 
onsumption.

3.2 Stru
ture

For every devi
e, our dataset 
ontains a stream of events. Every event is 
om-

posed of a timestamp, an attribute name, and the new value for this attribute.

Table 2 shows an ex
erpt of su
h a stream. For entity types with multiple in-

stan
es, like Wi-Fi a

ess points, attribute names 
ontain a unique identi�er for

this resour
e (e.g., the BSSID for Wi-Fi). The appearan
e and disappearan
e

of su
h entities is denoted with �1� or �0� respe
tively. For example, at time

1346837529394, pa
kage �gBRth� is started, whereas at 1346837579524, the a
-


ess point �PSQdw� has gotten out of rea
h. The 
omplete dataset 
onsists of

250 million of these events. Figure 1 illustrates their distribution regarding event

type and parti
ipant. Table 1 
ontains all attributes in 
ondensed form. A de-

tailed and exhaustive des
ription 
an be found at the dataset's website.

Aug Sep Oct Nov Dec

P
ar

tic
ip

an
t

Month

sensors
wakelocks
processes

wifi
cpuload

net
memory
location

signal_strengths
battery

network
packages
bluetooth

screen
sim

volumesettings
phonestate

1e+03 1e+05 1e+071e+03 1e+04 1e+06 1e+08

#Events

Fig. 1. Left: Period of parti
ipation for every parti
ipant. Right: Total number of events

for every event type (log s
ale).
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Table 1. Condensed names of 
olle
ted attributes in
luding the data Category (High-

Level, Sensing, or Internal), the sampling Interval, and the data Sour
e (AndroidAPI

or Linux VFS). The sampling interval is either given in se
onds or as the fa
t that we

re
eived the data as 
allba
k event (E) whenever it 
hanged. Values in square bra
kets

are pla
eholders for a
tual identi�ers. An asterisk means that the a

ording value (or

identi�er if in the bra
ket) was repla
ed for priva
y.

Attributes Cat. Int. Sr
.

airplanemode, phonestate H 2,E A

battery:{health, level, plugged, status, te
hnology, temperature, voltage} I E A

bluetooth:{, 
onne
ted:[ma
_address*℄, devi
e:[ma
_address*℄:{, name*, 
lass,

bondstate, prev_bondstate}}

H,S A


puload:{1min, 5min} I 2,60 V

lo
ation:{gps, network}:{time, speed, altitude, a

ura
y} S 60 A

media:{maxvolume, volume} H 2 A

memory:{Bu�ers, Ca
hed, Dirty, MemFree, MemTotal, Writeba
k} I 60 V

net:[devi
e℄:{, {r, t}x_{bytes, pa
kets, dropped, errors}, . . . } I 60 V

network:{roaming, 
ell:{
id*, la
*}, operatorid*} S 2 A

noti�
ations:vibrate, ringer:{maxvolume, silent, vibrate, volume} H 2 A

pa
kages:{laun
hable:[pa
kage*℄, running:[pa
kage*℄} H 60 A

pro
esses:[pid℄:{, 
mdline:{*, parameters*}, state, t
omm*, {u, s, 
u, 
s}time,

priority, ni
e, num_threads, start_time, vsize}

I 60 V

s
reen:{brightness, on, timeout} H 2 A

self:{skip, start}

sensors:{time, azimuth, light, pit
h, roll, time, {x,y,z}for
e, {x,y,z}Mag} S 120 A

signal_strenghts:{gsm_signal_strength, 
dma_dbm, evdo_dbm} S E A

sim:{state, operatorid*, serial*, subs
riberid*} I 300 A

wakelo
ks:[name℄:{a
tive_sin
e, {expire, wake, }_
ount, last_
hange, {max, sleep,

total}_time}

I 2 V

wi�:{, 
onne
tion:{bssid*, hidden_ssid*, ip_address*, link_speed, network_id, rssi,

ssid*, suppli
ant_state}, s
an:[bssid*℄:{, 
apabilities, frequen
y, level, ssid*}}

H,S 60 A

Table 2. Example data for one devi
e.

Timestamp Attribute Value

1346837529316 network:
ell:
id O8aal

1346837529346 wi� True

1346837529366 wi�:
onne
tion:ssid WfQ4k

1346837529394 wi�:s
an:PSQdw:ssid ZvAet

1346837529428 ringer:vibrate True

1346837529451 s
reen:on False

1346837529454 s
reen:brightness 100

1346837529468 battery:level 39

Timestamp Attribute Value

1346837529469 
pu:load:5min 3.49

1346837529512 network:operatorid obTLz

1346837529633 net:wlan0:tx_bytes 31342252

1346837530254 pa
kages:running:gBRth 1

1346837530317 sim:serial FUxuY

1346837530351 phone:state idle

1346837534507 bluetooth:devi
es:ZO
hS 1

1346837579524 wi�:s
an:PSQdw 0
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4 Exemplary Analysis

Many di�erent kinds of analysis 
an be imagined on the dataset presented here.

Among them semanti
 pla
e predi
tion [7℄, network 
ell predi
tion [4℄, trans-

portation mode dete
tion [8℄, frequent subsequen
e mining as well as the gen-

erative modeling of user or hardware behavior [9℄, [10℄. Due to the streaming

nature of our dataset, the streams abstra
tion [11℄ was used for prepro
essing

3

.

In the following, we will explain how the data 
an be in
orporated in a network


ell predi
tion task [4℄ as well as for smartphones power modeling [9℄.

Network Cell Predi
tion. Every mobile network 
onne
tion has a unique

network 
ell identi�er. A-priori knowledge about 
ells that a user will visit in near

future 
an deliver an indi
ator about up
oming 
hanges in network routing and

load. The network operator 
an automati
ally and pro-a
tively rea
t to these


hanges, for example, by reserving 
apa
ity in the predi
ted 
ell. For a given

set of Information It at time t, the network 
ell predi
tion task is to predi
t

the next network 
ell that the 
orresponding user will visit. Forward feature

sele
tion shows, that the most important sour
e of information is knowledge

about the last k 
ells. For ea
h user, one task spe
i�
 dataset is generated.

Therefore, the sequen
e of visited 
ells is extra
ted for ea
h user and a sliding

window of 10 minutes width is applied to this sequen
e. If the 
ell identi�er


hanged multiple times within a single 10 minute window, the most frequent

CID is sele
ted. Ea
h k 
onse
utive windows are then 
on
atenated to form a

data row (
ell0, 
ell−1, 
ell−2, 
ell−3), with label 
ell0 and attributes 
ell−1 to


ell−3. Here, two windows are 
onsidered as 
onse
utive if their time stamps do

not di�er more than 10 minutes. Applying a simple Naive Bayes Classi�er for

this problem yields only ≈ 30% a

ura
y on the just des
ribed data. To enhan
e

the performan
e for this task, 
ells that are only visited on
e 
an be removed

from the dataset and more sophisti
ated methods like Support Ve
tor Ma
hines

or Markov Random Fields 
an be applied [4℄.

Energy Modeling. Resear
hers have proposed a number of power models

for ubiquitous systems [9℄, [10℄, [12℄. Usually, power models are derived manually

by using a power meter atta
hed to one spe
i�
 system instan
e. As a result of

the model derivation pro
ess, the generated power model is at best a

urate

for one type of embedded system and at worst a

urate only for the spe
i�


ubiquitous system instan
e for whi
h it was built. It would require great e�ort

and time to manually generate power models for the wide range of phones now

available.

We now show how a simple linear regression power model 
an be estimated

with our dataset, whereby we follow the approa
h that was presented by Zhang

et al. [9℄. The event stream is 
onverted to a set of 
onse
utive windows as de-

s
ribed above. Sin
e the energy 
onsumption should be predi
ted, we 
onsider

the 
hange of battery level as label, i.e. y = batLevelt−batLevelt−1. The follow-

ing measurements are 
onsidered as features: mobile network and Wi-Fi signal

3

The stream 
ontainer and pro
essors that have been written to prepro
ess the data

for both tasks are available online at: http://sfb876.tu-dortmund.de/mobistream.
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Fig. 2. Energy 
onsumption of a smartphone as measured by the 
hange in battery

level over time. Left: measured 
onsumption. Right: predi
ted energy 
onsumption.

strength, Wi-Fi speed, number of outgoing/in
oming Wi-Fi and mobile network

pa
kets in the last window, display brightness, GPS usage and CPU utilization.

Figure 2 shows the measured energy 
onsumption for one user over time on the

left, and the 
orresponding predi
tion on the right. The 10-fold 
ross validated

root mean squared error of the estimated linear model is 0.604 with a deviation

of ±0.02 and the absolute error is 0.525 (±0.013).
Using su
h predi
tion models as a building blo
k within a larger learning

task 
an help to estimate the energy 
onsumption of 
ertain de
isions sin
e it


an be used to assign 
osts to mobile network, display, CPU, Wi-Fi and GPS

usage.

5 Con
lusion

We presented our open smartphone utilization dataset 
olle
ted within our 
ol-

laborative resear
h 
enter and during its summer s
hool and presented some

analysis to show its utility. We believe that open datasets greatly help to eval-

uate and improve analysis methods like these. It is interesting to see that, the

further down the software-hardware sta
k a data sour
e resides, the more data

is generated and the more data is a
tually needed to obtain meaningful results.

We see this as an indi
ation towards the need for data 
olle
tion frameworks

that allow for �exible prepro
essing and data aggregation.
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Abstract. In the last few years, social media services such as Twitter have 

proven to provide first-line information on current news events such as civil un-

rest, protests, elections, etc. The limited availability of self-identified geo-

location information makes it challenging to place such current and trending 

news on the globe. In this paper, we demonstrate a novel approach for content-

based geo-location of Arabic and English language tweets by collating contex-

tual tweets into a document using a user-tweeting-frequency based temporal 

window. We compute the distances of the content-based geo-located tweets 

against the device-based geospatial points provided natively via Twitter API as 

well as the Twitter User Profile based locations. We show that content-based 

geo-location detection provides an effective way of geo-localizing trending 

news topics, geo-political entities and Hashtags. 

 

Keywords: Geo-location, twitter, social media 

1 Introduction 

Micro-blogging services such as Twitter have become a very popular communication 

tool among Internet users, being employed for a wide range of purposes including 

marketing, expressing opinions, broadcasting events or simply conversing with 

friends. Each day, more than 200 million active users publish more than 400 million 

tweets per day in the social network, sharing significant events in their daily lives [1]. 

Additionally, Twitter allows researchers unprecedented access to digital trails of data 

as users share information and communicate online. This is helpful to parties seeking 

to understand trends and patterns ranging from customer feedback to the mapping of 

health pandemics [2]. As explained by T. Sakaki et al. [3], every Twitter user can be 

described as a sensor that can provide spatiotemporal information capable of detecting 

major news events such as earthquakes or hurricanes.  

Location is a crucial attribute to understanding the ways in which online flow of in-

formation might reveal underlying economic, social, political, and environmental 

trends. Localization facilitates temporal analyses of trending news topics from a geo-

spatial perspective, which is often useful in further analysis. Studies such as [4] and 

[5] have addressed the capability to track emergency events and how they evolve, as 

people usually first post news on Twitter, and are later broadcast by traditional media 

corporations [6]. One of the biggest challenges is identifying the location where 

events are taking place.  
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Twitter supports per-tweet geo-tagging feature which provides extremely fine-

tuned Twitter user tracking by associating each tweet with latitude and longitude co-

ordinate points. In our sampling of 20 million tweets, less than 0.70% of all tweets 

actually use the geospatial tagging functionality. When this feature is enabled, it gen-

erally functions automatically when a tweet is published with the coordinate data 

coming either from user’s device itself via GPS, or from detecting the location of the 

user’s Internet (IP) address. Additionally, these features do not provide location esti-

mates based on the content of the user-posted tweet messages.  

Effective geo-location of tweets based purely on their textual content is a difficult 

task, and although Twitter provides vast amounts of data, it introduces several natural 

language processing (NLP) challenges: 

 Multilingual posts and code-switching [7] between languages makes it harder to 

develop language models and often needs Machine Translation (MT). 

 With the limitation of 140 characters per-tweet, Twitter users often use short-

hand and non-standard vocabulary which makes named-entity detection and 

geo-location via gazetteer more challenging. 

 Twitter content tends to be very volatile, and pieces of content become popular 

and fade away within a matter of hours. 

In this paper, we present a content-based, geo-location detection approach that is 

capable of geo-locating multilingual tweets, within a time window, by exclusively 

using the textual content of these tweets. Our premise is that tweets encode geospatial 

location-specific content; either specific place names or named-entities. Additionally, 

our intuition is that within a time window, Twitter users tweet specific to their current 

location or specific to localized trending events which are of interest.  

The rest of the paper is organized as follows: in Section 2, we review the related 

work on content-based geo-location detection. In Section 3, we describe the dataset, 

and the evaluation metrics we used to benchmark our geo-location detection perfor-

mance. In Section 4, we explain our approach to content-based geo-location detection 

for placing tweets on a map. In Section 5, we present results from performance evalu-

ation of our geo-location detection algorithm, followed by examples of using geo-

location detection for placing tweets pertaining to trending news on map in Section 6. 

2 Related Work 

Recently, content-based geo-location detection techniques have been explored, some 

focusing on supervised and language model based approaches, while others focusing 

on location name-based approaches. Applications vary from providing relevant adver-

tisements, to public health awareness, user modeling and tracking trending news 

events. Cheng et al. [8] propose a probabilistic framework for estimating a Twitter 

user’s city-level location based purely on the content of that user’s tweets.  

Roller et al. [12] present a supervised, text-based geo-location using language 

models on an adaptive grid. Given training documents labeled with latitude and longi-

tude coordinates, pseudo-documents are constructed by concatenating the documents 

within a grid cell overlaid on Earth; then a location for a test document is chosen 
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based on the most similar pseudo-document. Paradesi [13] explores research that 

identifies the locations referenced in a tweet and show relevant tweets to a user based 

on that user’s location. For example, a user traveling to a new place would not neces-

sarily know all the events happening in that place unless they appear in the main-

stream media. The proposed system, called TwitterTagger geo-tags tweets in near 

real-time and shows tweets related to surrounding areas.  

The contributions of this paper towards content-based geo-location research are: 

 Novel approach for collating multilingual tweets into a temporal document us-

ing user-tweeting-frequency based time window; 

 Named-entity detection and geospatial points-based clustering; 

 Location-specific feature set calculation and document scoring for best-match 

content-based location identification for a document. 

3 Dataset, Evaluation Setup and Metrics 

We developed a process to identify Social Media users across the Middle East region 

who are influential contributors on the Twitter social media platform. Through this 

process, we created a list of Twitter users, culled from mainstream journalism feeds, 

diplomatic circles, and political circles having wide Arabic regional appeal. We col-

lected tweets over a period of 3 months (January 2013 to March 2013) using the Twit-

ter Spritzer streaming API
 
with a filter for our selected users of interest. Using this 

setup, we collected approximately 17 million multilingual tweets distributed into 85% 

Arabic, and 15% English from 2.6 million Twitter users.  

To evaluate the performance of our tweet geo-location detection algorithm, the first 

metric we consider is the Error Distance, which quantifies the distance in miles be-

tween the actual geo-location of the tweet     ( )  and the estimated geo-location 

    ( ) [8]. The Error Distance for tweet t is defined in equation (1) as – 

        ( )   (    ( )     ( )) (1) 

The overall performance of the content-based tweet geo-location detector can fur-

ther be measured using the Average Error Distance across all the geo-located tweets T 

using equation (2) – 

           ( )  
∑        ( )   

| |
 (2) 

A low Average Error Distance indicates that the detector may geo-locate tweets 

close to their geo-location on average as provided by the user profile or user device. 

This metric does not provide more insight into the distribution of the geo-location 

detection errors. We apply maximum allowed distance in miles thresholding at three 

points; 100 miles, 500 miles and 1000 miles and calculate the next metric, Accura-

cy100, Accuracy500 and Accuracy1000 using equation (3) – 

          ( )  
| |         ( )  |

| |
                              (3) 
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4 Technical Approach 

In this section, we present our approach for content-based geo-location detection as 

outlined by the processing flowchart in Fig. 1.  

 

Fig. 1. Processing flowchart for content-based geo-location showing all the stages, starting 

from tweets collection, document conversion, preprocessing and geo-location detection 

4.1 Tweets-to-Documents Generation 

We developed an approach for generating cohesive documents from tweets that can 

be used as a subject of analysis by Information Extraction (IE) algorithms. The moti-

vation for defining document was two-fold; (1) a single tweet is limited to 140 charac-

ters and may not have sufficient content for estimating location that corresponds to a 

specific topic, and, (2) most Twitter users post tweets on specific trending topics and 

move on to other topics within a certain temporal window [10]. This approach is for-

mulated in Algorithm 1. 

Algorithm 1 Tweet-to-Document Conversion 

Input: tweets: List of n tweets from m Twitter users in time window t 

minWindowSize: The minimum size of the time window in hours 

maxWindowSize: The maximum size of the time window in hours 

minTweetsInWindow: The minimum number of tweets per-user in a time window 

maxTweetsInDocument: The maximum number of tweets allowed in a document 

Output: documentList: List of documents in time window t 

Notation: { } – List, [ ] - Array 

1. startTime = currentTimeInHours 

2. epochStartTime = startTime 

3. While (True) 

4.     timeSpan = startTime – epochStartTime 

5.     windowSize =(timeSpan>=maxWindowSize)?maxWindowSize : minWindowSize 

6.     endTime = currentTimeInHours + windowSize 

7.     foreach userTweetTime in userTweetTimeTable 

8.         if (created_at   >= startTime && created_at  < endTime) 

9.             userTweetList.Insert(userTweet) 

10.     foreach userTweet in userTweetList 

11.         tweets = userTweetList[userTweet] 

12.         foreach tweet in tweets         

13.             Document.Add(tweet); 

14.             if(Document.Size >= maxTweetsInDocument) 

15.                 DocumentList.Insert(Document) 

16.     startTime = endTime 
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4.2 Preprocessing 

Once all the tweets in a time-delineated window are converted into documents, such 

that each document contains multiple tweet posts from a specific user, we preprocess 

all the documents in preparation for content-based geo-location detection. First, we 

perform n-gram based language identification [10] to identify Arabic versus English 

tweets and translate Arabic tweets into English using the SDL Language Weaver 

Machine Translation (MT) system. The geo-location detection algorithm operates on 

source English tweets and the MT-English equivalent of the Arabic tweets. 

4.3 Content-based Geo-location Detection 

Our geo-location detection algorithm has three distinct phases as shown in Fig. 2. In 

the first phase, tweets that were grouped into a time-delineated content window via 

the document generation algorithm described in section 4.1 are submitted to a named 

entity detection algorithm [11].  

T0

T1

T2

Tn

Location 
names

Name 1
Name 2
Name 3

…
Name n

Entity
Detection

P
h

as
e

 1

Location 
names

Name 1
Name 2
Name 3

…
Name n

Location
Hypothesis
Generation

Location
Hypothesis
Generation

L1 (lat,long)
L2 (lat,long)
L3 (lat,long)

…
Ln (lat,long)

Location 
Hypotheses

P
h

as
e

 2

Location 1
Location 2
Location 3

…
Location n

Identified 
Locations

Scoring & 
duplication

K-means Clustering
Rescoring

P
h

as
e

 3 Location 1
Location 2
Location 3

…
Location n

Identified 
Locations

Initial Pass

Location feature 
identification

Second Pass

Scoring of 
regions and 

locations

Feature 1
Feature 2
Feature 3

…
Feature n

Feature set
Main Location

Location x

1 2 3

4 5
6 7

8 9 10 11

 

Fig. 2. Three phases of the Content-based Geo-location Clustering and Detection Algorithm 

In phase two, the list of named entities which were discovered in phase one is now 

employed to select location records from several gazetteers. Each match is then given 

a preliminary score based on features both internal to the location record and features 

from external sources. Points are then duplicated proportionally to their scores to 

create a weighting scheme for k-means clustering. The randomly assigned points are 

then rescored based on how close they are to their cluster's center or centroid location. 

Finally, location identities are assigned to location names according to their member-

ship in the cluster with the highest score containing that name. 

The third phase is concerned with selecting the best overall location associated 

with the document. This phase begins by iterating through the locations identified in 

the previous step. During this initial pass, common features such as political adminis-

trative unit membership are identified, as well as other features such as order of oc-

currence. In a second pass, each location is scored by comparing it to the results of the 

first pass; certain features are biased and others receive an anti-bias. After each point 

is scored, the highest scoring location is returned as the estimated location. 
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5 Results and Discussion 

A key point to be noted is that our geo-location detection evaluation is based solely on 

the location of the users where they were tweeting. While these results help us assess 

the performance of geo-location detector, we believe that creating a manually anno-

tated set would allow use to demonstrate greater accuracy. This is due to the discrep-

ancy between a user’s physical location and the topic a user may be tweeting about. 

For example, a user from Boston, MA, USA might be traveling in Egypt, while tweet-

ing about trending news in Syria.  

5.1 Comparison against device-based geo-location provided by Twitter 

To minimize outliers, we filtered tweets that are from potential spammers based on 2 

criteria; (1) filter tweets that are not from our core selected users, and, (2) filter tweets 

that are auto-generated by advert spreading tools. After filtering, we had approximate-

ly 50K tweets with Twitter-provided device-based geospatial data in terms of latitude 

and longitude points. Table 1 shows the results of our content-based geo-location 

detection algorithm using metrics defined in section 3.2.  

Table 1. Performance of our content-based geo-location detection  

AvgErrDist (Miles) Accuracy100 Accuracy500 Accuracy1000 

1881.98 0.122 0.321 0.497 

 

We found that only 12% of the 50K tweets in the test set could be geo-located 

within 100 miles of their device-provided geospatial points and that the AvgErrDist 

across all 50K was 1,881 miles. The accuracy does improve close to 50% for tweets 

that could be geo-located within 1000 miles of their device-provided location.  

5.2 Comparison of results after varying algorithmic parameters 

For our baseline evaluation, we set the parameters minWindowSize and maxWin-

dowSize of our Tweet-to-Document generation (Algorithm 1 described in section 4.1) 

to 4 hours and 8 hours respectively. These values were motivated by an initial as-

sessment that users tweet on a specific topic for a short period and move on to other 

topics of interest that are trending on that specific day. The maxWindowSize parame-

ter controls the maximum time window allowed for the user’s tweets such that they 

are considered localized to specific topic or news story. In Table 2, we present some 

results with variation of these parameters. 

Table 2. Impact of Tweet-to-Document Generation parameter adjustments on content-based 

tweet geo-location 

Method AvgErrDist(Miles) Accuracy100 Accuracy500 Accuracy1000 

Base (min:4,max:8) 1881.98 0.122 0.321 0.497 

Var1 (min:2,max:8) 773.43 0.313 0.392 0.574 

Var2 (min:2,max:4) 693.24 0.377 0.412 0.581 
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In Variant 1, we changed minWindowSize parameter to 2 hours which reduced the 

contextual time window, leading to smaller length documents. We noticed that Accu-

racy100 increased by 156% relative to our baseline parameters and the AvgErrDist also 

reduced to 773 miles from 1,881 miles. This indicates that, even though shorter time 

window leads to smaller length documents, the content is more localized to a specific 

region. In Variant 2, we changed both, the minWindowSize and maxWindowSize pa-

rameters to 2 hours and 4 hours respectively. This lead to a further improvement in 

Accuracy100; 209% relative to baseline and 20% relative to Variant 1. This improve-

ment indicates that a time window of 4 hours leads to a more optimal context for all 

tweets that pertain to topic or news story. 

6 Twitter Trends on a Map 

Our application of content-based geo-location detection is to segregate tweets pertain-

ing to specific hashtags or trending news story and localize them on the global map. 

Such geo-location leads to detection of news or events that are trending in a specific 

city, country or region.  

 
Fig. 3. Examples of news trends on a map displays the output of our geo-location 

detection system as clusters of geospatially distributed tweets matching a search query  

 

As shown in Fig. 3 leftmost map, we searched our database of more than 20 mil-

lion tweets using the keyword “muslim brotherhood” and displayed the top 1000 

tweet results on the global map. As expected, the largest number of hits for this key-

word query put the tweets on Egypt. The map in the middle shows an example of an 

event “roadside bomb” that was trending in and around countries in Middle East on 

July 3, 2013 and Google News reported roadside bombs in Baghdad, Afghanistan and 

southern Thailand. The majority of tweets are distributed around Afghanistan and Iraq 

with a few outliers that mention the keyword “roadside bomb” and are geo-located in 

India and Yemen. Finally, the rightmost map shows an example of Hashtag #30June 

that was trending during July 3, 2013 and pertained to trending event “protests in 

Egypt” that happened on June 30, 2013.  

7 Conclusion 

In this paper, we present an approach that incorporates two novel algorithms; (1) user-

tweeting-frequency based time window to collate multilingual tweets into a docu-

ment, and, (2) location-entity clustering and disambiguation, for content-based geo-
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location detection. We compare our geo-location detection with Twitter-provided 

device-based and user-profile-based geospatial coordinates and show that we are able 

geo-locate 58% of the tweets in the test set within 1000 miles with algorithmic pa-

rameter adjustments. Furthermore, our content-based geo-location algorithm operates 

not only on native English but also on machine-translated English tweets, thereby, 

enabling multilingual tweet geo-location. We demonstrate an application of content-

based geo-location of tweets through examples of country-localized trending keyword 

and geo-political entity. 

8 References 

1. K. Lerman, R. Ghosh. Information contagion: An empirical study of the spread of news on 

digg and twitter social networks. In Proceedings of 4th International Conference on Web-

logs and Social Media (ICWSM), 2010. 

2. Zook, M.; Graham, M.; Shelton, T.; and Gorman, S. 2010. Volunteered geographic infor-

mation and crowdsourcing disaster relief: A case study of the Haitian earthquake. World 

Medical & Health Policy 2(2):7–33. 

3. T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-time event 

detection by social sensors. WWW ’10 Proceedings of the 19th international conference on 

World Wide Web, pages 851–860, 2010. 

4. F. Abel, C. Hau, G. J. Houben, R. Stronkman, and K. Tao. Semantics+filtering+ 

search=twitcident. Exploring information in social web streams. In Proceedings of the 23rd 

ACM conference on Hypertext and social media, page 285294, 2012. 

5. S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen. Microblogging during two natural 

hazardsevents: what twitter may contribute to situational awareness? In Proceedings of the 

28th international conference on Human factors in computing systems, 2010. 

6. A. L. Hughes and L. Palen. Twitter adoption and use in mass convergence and emergency 

events. International Journal of Emergency Management, 6(3):248260, 2009. 

7. Sebba, Mark, Shahrzad Mahootian, and Carla Jonsson. Language Mixing and Code-

Switching in Writing: Approaches to Mixed-Language Written Discourse. Routledge Crit-

ical Studies in Multilingualism. Routledge, Taylor & Francis Group. 

8. Zhiyuan Cheng, James Caverlee, and Kyumin Lee. 2010. You are where you tweet: a con-

tent-based approach to geo-locating twitter users. In Proceedings of the 19th ACM interna-

tional conference on Information and knowledge management (CIKM '10).  

9. Fabian Abel, Qi Gao, Geert-Jan Houben, Ke Tao. Analyzing Temporal Dynamics in Twit-

ter Profiles for Personalized Recommendations in the Social Web In Proceedings of ACM 

WebSci '11, 3rd International Conference on Web Science, Koblenz, Germany (June 2011) 

10. William B. Cavnar, John M. Trenkle. N-Gram-Based Text Categorization (1994). In Pro-

ceedings of SDAIR-94. 

11. S. Miller, J. Guinness, A. Zamanian. Name tagging with word clusters and discriminative 

training In Proceedings of Human Language Technology conference / North American 

chapter of the Association for Computational Linguistics annual meeting, Vol. 4 (2004). 

12. Roller, Stephen, Speriosu, Michael, Rallapalli, Sarat, Wing, Benjamin and Baldridge, Ja-

son. "Supervised Text-based Geolocation Using Language Models on an Adaptive Grid." 

Paper presented at the meeting of the EMNLP-CoNLL, 2012. 

13. Paradesi, Sharon Myrtle. "Geotagging Tweets Using Their Content." In FLAIRS Confer-

ence. 2011. 

44



Learning Shortest Paths for Word Graphs

Emmanouil Tzouridis and Ulf Brefeld

Technische Universität Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany

{tzouridis,brefeld}@kma.informatik.tu-darmstadt.de

Abstract. The vast amount of information on the Web drives the need
for aggregation and summarisation techniques. We study event extrac-
tion as a text summarisation task using redundant sentences which is also
known as sentence compression. Given a set of sentences describing the
same event, we aim at generating a summarisation that is (i) a single sen-
tence, (ii) simply structured and easily understandable, and (iii) minimal
in terms of the number of words/tokens. Existing approaches for sentence
compression are often based on finding the shortest path in word graphs
that is spanned by related input sentences. These approaches, however,
deploy manually crafted heuristics for edge weights and lack theoretical
justification. In this paper, we cast sentence compression as a structured
prediction problem. Edges of the compression graph are represented by
features drawn from adjacent nodes so that corresponding weights are
learned by a generalised linear model. Decoding is performed in polyno-
mial time by a generalised shortest path algorithm using loss augmented
inference. We report on preliminary results on artificial and real world
data.

1 Introduction

Information is ubiquitous. People are consuming information on the go by read-
ing news articles, blogs entries, checking status updates, or planning the next
vacations. However, the informed mobility comes at the cost of relevance. Users
need to manually identify relevant pieces of information in the overloaded supply
and to aggregate these pieces themselves to find an answer to their query. Thus,
there is a real need for techniques that assist the user in separating relevant from
irrelevant information and aggregating the pieces of information automatically.

In this paper we study the intelligent aggregation of related sentences to
quickly serve the information needs of users. Given a collection of sentences
dealing with the same real-world event, we aim at generating a single sentence
that is (i) a summarisation of the input sentences, (ii) simply structured and
easily understandable, and (iii) minimal in terms of the number of words/tokens.
The input collection of sentences is represented as a word graph [4], where words
are identified with nodes and directed edges connect adjacent words in at least
one sentence. The output is a sequence of words fulfilling conditions (i-iii).

In general, learning such mappings between arbitrary structured and inter-
dependent input and output spaces challenges the standard model of learning a
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mapping from independently drawn instances to a small set of labels. In order
to capture the involved dependencies it is helpful to represent inputs x ∈ X and
outputs y ∈ Y in a joint feature representation. The learning task is therefore
rephrased as finding a function f : X × Y → < such that

ŷ = argmax
y

f(x,y) (1)

is the desired output for any input x [2, 12]. The function f is a linear model in
a joint space Φ(x,y) of input and output variables and the computation of the
argmax is performed by an appropriate decoding strategy. Prominent applica-
tions of such models are part-of-speech tagging, parsing, or image segmentation.

In this paper, we cast sentence compression as a supervised structured pre-
diction problem to learn a mapping from word graphs to their shortest paths.
Edges of the graphs are labeled with costs and the shortest path realises the
lowest possible costs from a start to an end node. Thus, we aim at finding a
function f , such that

ŷ = argmin
y

f(x,y). (2)

We devise structured perceptrons and support vector machines for learning the
shortest path. The latter usually requires the use of two-best decoding algorithms
which are expensive in terms of computation time and memory. We proof that an
equivalent expression can be obtained by a generalised shortest path algorithm
using loss-augmented inference. The latter renders learning much more efficient
than using a two-best decoding strategy. Empirically, we compare our approach
to the state-of-the-art that uses heuristic edge weights [4] on artificial and real
world data and report on preliminary results.

The remainder is structured as follows. Section 2 introduces preliminaries.
Our main contribution on learning shortest paths is presented in Section 3 and
Section 4 reports on empirical results. Section 5 discusses related work and Sec-
tion 6 concludes.

2 Preliminaries

2.1 Word Graphs

Word or compression graphs have been studied for instance by [3, 4]. The idea
is to build a non-redundant representation for possibly redundant sequences by
merging identical observations. From a collection of related sentences {s1, . . . , sn},
we iteratively construct a word graph by adding sentences one-by-one as follows:
We begin with the empty graph and add the first sentence s1, where every word
in the sentence becomes a node and a directed edge connects nodes of adjacent
words. After this step, the graph is a sequence representing s1. Words from the
second sentence s2 are incorporated by differentiating two cases: (i) if the graph
already contains the word (e.g., using lowercase representations), the word is
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Fig. 1: Word graph constructed from the sentences: ”Yahoo in rumoured $1.1bn
bid to buy white-hot Tumblr”, ”Yahoo buys Tumblr as David Karp stays as
CEO”, ”Yahoo to buy Tumblr for $1.1bn”. The shortest path is highlighted.

simply mapped to the corresponding node and (ii) otherwise, a new node is in-
stantiated. In both cases, a directed edge is inserted to connect the word to its
predecessor from s2. The procedure continues until all n sentences are incorpo-
rated in the graph.

Usually, sentences are augmented by designated auxiliary words indicating
the start and the end of the sentence. The sketched procedure merges identical
words but preserves the structure of the sentences along the contained paths and
the original sentences can often be reconstructed from the compressed represen-
tation. There are many different ways to build such graphs, e.g., by excluding
punctuations, stop-word removal, or by using part-of-speech information to im-
prove merge operations. Figure 1 shows some related sentences and the corre-
sponding word graph.

2.2 Shortest Path Algorithms

Given a directed weighted graph x = (N,E), where N is the set of nodes and
E the set of edges. As the graph x defines the sets N and E, we will use N(x)
and E(x) in the remainder to denote the set of nodes and edges of graph x,
respectively. Every edge (xi, xj) ∈ E(x) is assigned a positive weight given by
a cost function cost : (xi, xj) 7→ <+. A path y in the graph x is a sequence of
connected nodes of x and the cost of such a path is given by the sum of the edge
costs for every edge that is on the path. Given the graph x, a start node xs and
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an end node xe, the shortest path problem is finding the path in x from xs to
xe with the lowest costs,

argmin
y

∑

(xi,xy)∈N(x)

yijcost(xi, xi+1)

s.t. y ∈ path(xs, xe).

There exist many algorithms for computing shortest paths efficiently [6–8]. Usu-
ally, these methods are based on relaxation integer programming, where an
approximation of the exact quantity is iteratively updated until it converges
to the correct solution. Such algorithms converge in polynomial time if there
are no negative cycles inside the graph, otherwise the problem is NP-hard. A
prominent algorithm for computing the k-th shortest paths is Yen’s algorithm
[5]. Intuitively, the approach recursively computes the second best solution by
considering deviations from the shortest path, the third best solution from the
previous two solutions, and so on. Figure 1 visualises the shortest path for the
displayed compression graph.

3 Learning the Shortest Path

3.1 Representation

To learn the shortest path, we need to draw features from adjacent nodes in the
word graph to learn the score of the connecting edge. Let xi and xj be connected
nodes of the compression graph x, that is xi, xj ∈ N(x) and (xi, xj) ∈ E(x).
We represent the edge between xi and xj by a feature vector φ(xi, xj) that
captures characteristic traits of the connected nodes, such as indicator functions
detailing whether xi and xj are part of the same named entity or part-of-speech
transitions.

A path in the graph is represented as an n × n binary matrix y with n =
|N(x)| and elements {yij} given by yij = [[(xi, xj) ∈ path]] where [[z]] is the
indicator function returning one if z is true and zero otherwise. The cost of using
the edge (xi, xj) in a path is given by a linear combination of those features
parameterised by w,

cost(xi, xj) = w>φ(xi, xj).

Replacing the constant costs by the parameterised ones, we arrive at the fol-
lowing objective function (ignoring the constraints for a moment) that can be
rewritten as a generalised linear model.

∑

(xi,xj)∈E(x)

yij w>φ(xi, xj) = w>


 ∑

(xi,xj)∈E(x)

yijφ(xi, xj)




︸ ︷︷ ︸
=Φ(x,y)

= w>Φ(x,y) = f(x,y)
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Given a word graph x, the shortest path ŷ for a fixed parameter vector w can
now be computed by

ŷ = argmin
y

f(x,y),

where f is exactly the objective of the shortest path algorithm and the argmin
consequently computed by an appropriate solver, such as Yen’s algorithm [5].

3.2 Problem Setting

In our setting, word graphs x ∈ X and the best summarising sentence y ∈ Y are
represented jointly by a feature map Φ(x,y) that allows to capture multiple-way
dependencies between inputs and outputs. We apply a generalised linear model
f(x,y) = w>Φ(x,y) to decode the shortest path

ŷ = argmin
y

f(x,y).

The quality of f is measured by the Hamming loss

∆H(y, ŷ) =
1

2

∑

(xi,xj)∈E(x)

[[yij 6= ŷij ]]

that details the differences between the true y and the prediction ŷ, where [[·]]
is again the indicator function from Section 3.1. Thus, the generalisation error
is given by

R[f ] =

∫

X×Y
∆H

(
y, argmin

ȳ
f(x, ȳ)

)
dP (x,y)

and approximated by its empirical counterpart

R̂[f ] =

m∑

i=1

∆H

(
y, argmin

ȳ
f(x, ȳ)

)
(3)

on a finite m-sample of pairs (x1,y1), (x2,y2), ...(xm,ym) where xi is a word
graph and yi its shortest path (i.e., the best summarising sentence). Minimising
the empirical risk in Equation (3) directly leads to an optimisation problem
that is not well-posed as there generally exist many equally well solutions that
realise an empirical loss of zero. We thus consider also the minimisation of the
regularised empirical risk

Q̂[f ] = Ω(f) +

m∑

i=1

∆H

(
y, argmin

ȳ
f(x, ȳ)

)
(4)

where Ω(f) places a prior on f , e.g., to enforce smooth solutions. In the remain-
der we focus on Ω(f) = ‖w‖2.
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3.3 Perceptron-based Learning

Structured Perceptrons [13, 14] directly minimise the empirical loss in Equation
(3). The training set is processed iteratively, where in the i-th iteration the
actual prediction ŷ = argminy f(xi,y) is compared with the true output yi.
If ∆H(yi, ŷ) = 0 the algorithm proceeds with the next instance. However, if
∆H(yi, ŷ) 6= 0 an erroneous prediction is made and the parameters need to be
adjusted accordingly. In case of learning shortest paths, we aim at assigning a
smaller function value to the true path than to all alternative paths. If this holds
for all training examples we have

∀ ȳ 6= yi : w>Φ(xi, ȳ)−w>Φ(xi,yi) > 0. (5)

In case one of these constraints is violated, the parameter vector is updated
according to

w← w + Φ(xi, ŷ)− Φ(xi,yi),

where ŷ denotes the erroneously decoded path (the false prediction). One can
show that the perceptron converges if an optimal solution realising R̂[f ] = 0
exists. [13, 14]

3.4 Large-margin Approach

For support vector-based learning, we extend the constraints in Equation (5) by
a term that induces a margin between the true path yi and all alternative paths.
A common technique is called margin-rescaling and implies to scale the margin
with the actual loss that is induced by decoding ȳ instead of yi. Thus, rescaling
the margin by the loss implements the intuition that the confidence of rejecting
a mistaken output is proportional to its error. In the context of learning shortest
paths, margin-rescaling gives us the following constraint

∀ȳ 6= yi : w>Φ(xi, ȳ)−w>Φ(xi,yi) > ∆H(yi, ȳ)− ξi, (6)

where ξi ≥ 0 is a slack-variable that allows pointwise relaxations of the margin.
Solving the equation for ξi shows that margin rescaling also effects the hinge loss
that now augments the structural loss ∆H ,

`∆H
(x,y, f) = max

[
0,min

ȳ

[
∆H(yi, ȳ)−w>Φ(xi, ȳ) + w>Φ(xi,yi)

]]
.

The effective hinge loss upper bounds the structural loss ∆H for every pair
(xi,yi) and therefore also

m∑

i=1

`∆H
(xi,yi, f) ≥

m∑

i=1

∆H(yi, argmin
ȳ

f(xi, ȳ))

holds. Instead of minimising the empirical risk in Equation (3), structural sup-
port vector machines [2] aim to minimise its regularised counterpart in Equation
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(4). A maximum-margin approach to learning shortest paths therefore leads to
the following optimisation problem

min
w,ξ

‖w‖2 +

m∑

i=1

ξi

s.t. ∀i∀ȳ 6= yi : w>Φ(xi, ȳ)−w>Φ(xi,yi) > ∆H(yi, ȳ)− ξi
∀i : ξi ≥ 0

The above optimisation problem can be solved by cutting plane methods (e.g.,
[2]). The idea behind cutting planes is to instantiate only a minimal subset of the
exponentially many constrains. That is, for the i-th training example, we decode
the shortest path ŷ given our current model and consider two cases: (i) The case
ŷ 6= yi the prediction is erroneous and ŷ is called the most strongly violated
constraint as it realises the smallest function value, i.e., f(xi, ŷ) < f(xi,y) for
all y 6= ŷ. Consequentially, the respective constraint of the above optimisation
problem is instantiated and influences the subsequent iterations. (ii) If instead
the prediction is correct, that is ŷ = yi, we need to verify that the second
best prediction ŷ(2) fulfils the margin constraint. If so, we proceed with the
next training example, otherwise we instantiate the corresponding constraint,
analogously to case (i). Luckily, we do not need to rely on an expensive two-best
shortest path algorithm but can compute the most strongly violated constraint
directly via the cost function

Q(ȳ) = ∆H(yi, ȳ)−w>Φ(xi, ȳ) + w>Φ(xi,yi) (7)

that has to be maximised wrt y. The following proposition shows that we can
equivalently solve a shortest path problem for finding the maximiser of Q.

Proposition 1 (Loss augmented inference for shortest path problems).
The maximum y∗ of Q in Equation (7) can be equivalently computed by min-
imising a shortest path problem with cost(xi, xj) = yij + w>φ(xi, xj).

Proof. In the proof, we treat paths y as graphs and write N(y) for the set of
nodes on the path and E(y) to denote the set of edges that lie on the path.
If, for instance, an element of the binary adjacency matrix representing path y
equals one, e.g., yij = 1, we write yi, yj ∈ N(y) and (yi, yj) ∈ E(y). First, note
that the Hamming loss can be rewritten as

∆H(yi, ȳ) =
∑

(yi,yj)∈E(y)

(1− yij ȳij) . (8)
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Using Equation (8), we have

ŷ = argmax
ȳ

∆H(yi, ȳ) + w>Φ(xi,yi)−w>Φ(xi, ȳ)

= argmax
ȳ

∆H(yi, ȳ)−w>Φ(xi, ȳ)

= argmax
ȳ

∑

(yi,yj)∈E(y)

(1− yij ȳij)−w>Φ(xi, ȳ)

= argmax
ȳ

−
∑

(yi,yj)∈E(y)

yij ȳij −w>Φ(xi, ȳ)

= argmin
ȳ

∑

(yi,yj)∈E(y)

yij ȳij + w>Φ(xi, ȳ)

= argmin
ȳ

∑

(yi,yj)∈E(y)

yij ȳij + w>


 ∑

(xi,xj)∈E(x)

ȳijφ(xi, xj)




= argmin
ȳ

∑

(xi,xj)∈E(x)

yij ȳij + w>


 ∑

(xi,xj)∈E(x)

ȳijφ(xi, xj)




= argmin
ȳ

∑

(xi,xj)∈E(x)

(yij + w>φ(xi, xj))ȳij

The output ŷ is the shortest path with costs given by yij + w>φ(xi, xj). ut
Given a parameter vector w and start and end nodes xs and xt, respectively,
the optimisation of Q can be performed with the following linear program.

min
ȳ

∑

ij

(
yij + w>φ(xi, xj)

)
ȳij

s.t. ∀k ∈ N(x)/{s, t} :
∑

j

ȳkj −
∑

i

ȳik ≤ 0

∀k ∈ N(x)/{s, t} : −
∑

j

ȳkj +
∑

i

ȳik ≤ 0

∑

j

ȳsj −
∑

i

ȳi,s ≤ 1 ∧ −
∑

j

ȳsj +
∑

i

ȳis ≤ −1

∑

i

ȳit −
∑

j

ȳtj ≤ 1 ∧ −
∑

i

ȳit +
∑

j

ȳtj ≤ −1

∀(i, j) : yij ≤ x(i,j) ∧ ∀(i, j) : yij ∈ {0, 1}
The first two constraints guarantee that every inner node of the path must have
as many incoming as outgoing edges, the third line of constraints guarantees the
path to start in xs and, analogously, the forth line ensures that it terminates
in xt. The last line of constraints forces the edges of the path ȳ to move along
existing paths of x.
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Fig. 2: Performance on artificial data for perceptrons (left) and SVMs (right).

4 Empirical Results

4.1 Artificial Data

To showcase the effectivity of our approach, we generate artificial data as follows.
We sample random graphs with |N | ∈ {10, 20, 30, 40} nodes. For every node in
a graph, we sample the number of outgoing edges uniformly in the interval

[ |N |2 , |N |]. For every outgoing edge, a receiving node is sampled uniformly from
the remaining |N |−1 nodes. The optimal path is annotated as follows. We draw

the length of the path uniformly in the interval [ |N |2 , |N |] and randomly select
the respective number of nodes from N . This gives us a sequence of nodes that
we define as the shortest path. In case two adjacent nodes are not connected by
an edge, we discard the nodes and draw again.

To ensure that the optimal path is actually the one with lowest costs, edge fea-
tures are sampled from a one-dimensional Gaussian mixture distribution, where
the generating component is chosen according to whether the respective edge
lies on the the shortest path or not. That is, we introduce two Gaussian com-
ponents G0,1, so that costs for edges lying on the shortest path are drawn from
G0(µ1, σ

2
1) while costs for all other edges are sampled from G1(µ2, σ

2
2).

The difficulty of the experimental setup is controlled by a parameter α that
measures the distance of the two means, i.e., α = |µ1 − µ2|. We initialise the
components G0,1 by drawing one of them (say q) according to a coin flip and
sample the corresponding mean from a normal distribution µq ∼ Gq(−α2 , 0.1).
Gq̄ is then initialised with µq̄ ∼ Gq̄(

α
2 , 0.1). We use σ1 = σ2 = 0.01. We report

on averages over 100 repetitions.

The results for perceptrons and SVMs are shown in Figure 2. The distance
α is depicted on the x-axis. The y-axis shows the top-one accuracy. The perfor-
mance of both algorithms highly depends on the distance of the cost-generating
components and the size of the graph. The fewer nodes and the larger the dis-
tance α, the more accurate is the prediction. Both algorithms perform similarly.
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Fig. 3: Performance on news headlines. Accuracies (left column) and average
ranks (right column) are evaluated for perceptrons (top row) and SVMs (bottom
row)

4.2 News Headlines

The real-world data originates from news articles which have been crawled from
several web sites on different days. We use categories Technology, Sports, Busi-
ness and General and focus only on the headlines. Related sets of news headlines
are manually identified and grouped together. We discard collections with less
than 5 headlines and build word graphs for the remaining sets following the pro-
cedure described in Section 2.1 where we remove stop words. Ground truth is
annotated manually by selecting the best sentence among the 20 shortest paths
computed by Yen’s algorithm [5] using frequencies as edge weights, this annota-
tion has been done by one of the authors. This process leaves us with 87 training
examples.

We aim to learn the costs for the edges that give rise to the optimal com-
pression of the training graphs. We devise three different sets of features. The
first feature representation consists of only two features that are inspired by the
heuristic in [4]. For an edge (xi, xj), we use

φ1(xi, xj) =

(
#(x1)

#(x1, x2)
,

#(x2)

#(x1, x2)

)>
,
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Table 1: Leave-one-out results for news headlines

avg. acc. avg. rank

Filipova 0.277 4.378
SVM-fset3 0.252 6.942

where # denotes the frequency of nodes and edges, respectively. The second fea-
ture representation extends the previous one by Wordnet similarity simW (x1, x2)
of the nodes and frequencies #L taken from the Leipzig corpus, to incorporate
the notion of global relatedness,

φ2(xi, xj) =

(
#(x1)

#(x1, x2)
,

#(x2)

#(x1, x2)
, simW (x1, x2),

#L(x1)

#L(x1, x2)
,

#L(x2)

#L(x1, x2)

)>
.

Finally, we use a third feature representation which is again inspired by [4].
Instead of precomputing the surrogates, we simply input the ingredients to have
the algorithm pick the best combination,

φ3(xi, xj) = (#(x1),#(x2),#(x1, x2), log (#(x1)) , log (#(x2)) , log (#(x1, x2)))
>
.

We compare our algorithms with the unsupervised approach by Filippova [4]. In
that work, the author extracts the shortest path from the word-graph that uses
#(x1)+#(x2)

#(x1,x2) as edge weights.

Figure 3 shows average accuracy (left column) and average rank (right col-
umn) for perceptrons (top row) and SVMs (bottom row) for different training
set sizes, depicted on the x-axis. Every curve is the result of a cross-validation
that uses all available data. Thus, the rightmost points are generated by a 2-fold
cross validation while the leftmost points result from using 11-folds. Due to the
small training sets, interpreting the figures is difficult. The unsupervised base-
line outperforms the learning methods although there are indications that more
training data could lead to better performances of perceptrons and SVMs. The
first feature representation shows better performances than the second. However,
these conjectures need to be verified by an experiment on a larger scale.

Finally, Table 1 shows average accuracies and average ranks for a leave-one-
out setup using the third feature representation. The results are promising and
not too far from the baseline, however, as before, the evaluation needs to be
based on larger sample sizes to allow for interpretations.

5 Related work

Barzilay et al. [9] study sentence compression using dependency trees. Aligned
trees are represented by a lattice from which a compression sentence is extracted
by an entropy-based criterion over all possible traversals of the lattice. Wan et
al. at [11] use a language models in combination with maximum spanning trees
to rank candidate aggregations that satisfy grammatical constrains.
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While the previous approaches to multi-sentence compression are based on
syntactic parsing of the sentences, word graph approaches have been proposed,
that do not make use of dependency trees or other linguistic concepts. Filippova
[4] casts the problem as finding the shortest path in directed word graphs, where
each node is a unique word and directed edges represent the word ordering in
the original sentences. The costs of these edges are a heuristic function that is
based on word frequencies. Recently, Boudin and Morin [10] propose a re-ranking
scheme to identify summarising sentences that contain many keyphrases. The
underlying idea is that representative key phrases for a given topic give rise to
more informative aggregations.

In contrast to the cited related work, we cast the problem of sentence com-
pression as a supervised structured prediction problem and aim at learning the
edge costs from a possibly rich set of features describing adjacent nodes.

6 Conclusion

In this paper, we proposed to learn shortest paths in compression graphs for
summarising related sentences. We addressed the previously unsupervised prob-
lem in a supervised context and devised structured perceptrons and support
vector machines that effectively learn the edge weights of compression graphs,
so that a shortest path algorithm decodes the best possible summarisation. We
showed that the most strongly violated constrains can be computed directly by
loss-augmented inference and rendered the use of expensive two-best algorithms
unnecessary. Empirically, we presented preliminary results on artificial and real
world data sets. Due to small sample sizes, conclusions cannot be confidently
drawn yet, although the results seemingly indicate that learning shortest paths
could be an alternative to heuristic and unsupervised approaches. Future work
will address this question in greater detail.
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