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... also for digital items



CONTRIBUTIONS

1. A new DM approach that learns an intensional model
of user groupings and uses this to group new items
               Identify structuring dynamics

2. New divergence measure

3. A study of grouping behaviour in a social bookmarking system
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... AND ITS DYNAMICS

• Goal: insight in structuring dynamics
           dynamic conceptual clustering that simulates
           the intellectual structuring process

• Two types of guides:

1. own prior structuring

2. structuring of peers



AT A GLANCE

Combination of 2 data mining tasks:

1. Learn model of structuring (classification)
   = intension: set of conditions for an object to belong to
                    a certain class
      (vs. extension: list of objects in class)

2. Use intension or extension to structure new items

A. based on own structuring

B. based on k peers



GROUPING GUIDANCE
BASIC NOTATION

• U: the set of all users (used symbols: u, v, w)

• T: the set of all time points {0, 1, ..., tmax}, where tmax 
represents the time at which the last item arrives

• D: the set of all items (used symbol: d)
    Dut ⊆D: the set of all d ∈ D already considered by u ∈ U at t ∈ T
       dut ∈ (D \ Dut): the item assigned to the structure by user u at t



GROUPING GUIDANCE
GROUPINGS AND CLASSIFIERS

• G: (machine-induced) groupings for each user’s items

• C: classifiers (i.e. intensions) learned for these groupings

‣OG: Observed Grouping

‣GS: Simulated Grouping, guided by self

‣Gn: Simulated Grouping, guided by n peers



INITIAL CLASSIFIER LEARNING

Goal: determine intensional definitions for
        the user-generated groupings

             Each group is regarded as a class for which
              a definition needs to be calculated

             Definitions used to assign new items to these gorups
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CLASSIFIER SELECTION

= selection of peer guides

0

0

Requires divergence measure between
groupings of non-identical item sets

... but existing measures require large overlap between sets

Inter-guide measure of diversity:



CLASSIFICATION

Selected classifiers are used to classify the item
under consideration

Two cases:

• Self-guided classification

• Peer-guided classification
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DATASET
CiteULike dataset

sampled with p-core subgraphs to overcome sparsity

# users 377

# documents 11,400

# tags 12,982

timeframe 01/2009 - 02/2010
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INITIAL GROUPING

Tagging as implicit structuring

• First 7 months to learn initial grouping

• Modularity clustering

Initial classifier learning

•High dimensional input space (BoW of abstracts)

           Naive bayes



SIMULATING GROUPINGS

• Groups represented by language models

• Jensen-Shannon divergence as inter-group divergence

•Normalized Mutual Information to compare groupigns



RESULTS



SIMILARITY DISTRIBUTION



CONCLUSIONS

• Investigate and simulate collaborative structuring

       Learning and combining classifiers for itemset structuring

•New divergence measure

• Tested on social-bookmarking platform
for literature management
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CONCLUSIONS
LIMITATIONS

•Observed groupings based on tag assignements

• Simple classifier

... but provides initial insights into grouping behaviour and
   behaviour of users in social bookmarking systems
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FUTURE WORK

• Applications: (tag) recommendation and social search

         Adds new level to individual and social measures

• Regrouping based on peers

• Hybrid measure for itemset structuring
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THANKS!

QUESTIONS?
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