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Background

m Twitter as a real-time marketing tool

m Most users do not disclose profile
(age, sex, location, occupation, etc.)
m Estimating user profile Is important
for marketing applications
targeting advertisement

National Institute of N |
Advane 5

KDDI R&D LABS



Profiling each User

m Estimating user profile from
each user's tweets [Ikeda+ 2010]

Using SVM as classifier

Input: Occurrences of characteristic words in
last 200 tweets of the target user

Training classifiers using tweets from users
who disclose profile

Choose characteristic words for each segment
using information criteria (AIC)
(about 10,000users/segment)
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Examples of Characteristic Words

nd Techinolog,
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Male Female

Government Husband

Android Mother

Wife Bath

Company Laundry

Google Lunch

10s 20s 30s 40s
Mathematics | University Work Son
School Part-time Company Holiday
Examination Seminar Business Golf

Test Job-hunting Boss Diplomacy
Physical Ed. Lecture Beer Backache
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Profiling a Population of Users

m [n some applications, estimating profile of
each user is NOT necessary

m Profiling a population of users who tweet
about a specific event, content Is required

ratio of male/female
ratio of 10s/20s/30s/40s/...

m = Class ratio estimation problem




Class Ratio Estimation

m Observation: X Class:Y

m Class ratio of the training sample and
test sample (= target population) are
different

Biased training sample

m Estimating class ratio in the target
population



Class Ratio Estimation

m A kind of transfer learning
I:)train(X’ Y) 1= Ptest(x’ Y)

m Class Ratio Estimation
Ptrain(le) — Ptest(XlY)
I:)train(Y) 1= Ptest(Y)

m cf. Covariate Shift [Shimodaira 2000]

Ptrain(le) - Ptest(le)
I:)train(x) 1= Ptest(x)
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Approaches

m Baseline: Classifying each sample and
calculate class ratios by aggregation
Time consuming when the size of the

target population is large
Classifier Is suffered from sampling bias
Pirain(Y1X) 1= Piegt(Y[X)

= Prior estimation using EM algorithm and bias
correction [Saerens 2002] -> more time consuming

m Direct Method: Class ratio estimation

without classification of each sample
o

test

echnology
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|dea of Direct Method

m Training data P(x,y) = P(x|y)P(y)
m Test data Q(X,y) = P(X|y)Q(y)

0 = ) Plxly =)0y = ©)

0'(x; ) = Z P(x|y = ¢)6,

m Choose optimal 6¢c which makes
Q'(x) similar to Q(x)
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Du Plessis and Sugiyama [icML 2012]
m Minimizing f-divergence

D (Q()[1Q"(x)) =jQ(x)f(%(( )))

m f-divergence

KL divergence (f(z) = log(z))

PE divergence (f(z) = (z-1)?)

m Using density ratio approximation for

approximating divergence
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Difficulties

m Computational Cost Is high
m Good for low dimensional continuous
INputs
m Not good for high dimensional
characteristic word vector
some thousands dimensional
discretized data
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Minimizing Difference of Means

m [nstead of minimizing divergence,
minimizing the difference of means

of Q'(x) and Q(x)
06 = [ x0@dx

Q'(x) = z HCJXP(ny = c)dx

2
6. = argmin (f xQ(x)dx — 2 0. f xP(x|y = C)dx)
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Implementation

m Mean of the test dataset: u

m Class mean of the training dataset: y.
m Class mean matrix: A = (uq, Us, ..., Uy)
m Class ratio vector: 6=(0,,...,6y)

argmin(u — A 81)2
0
0" =A" u



Experiments

m Male/female ratio
2 classes
1000 users, 200 tweets per a user
characteristic words:4000 words

m Age class ratio
4 classes(10s, 20s, 30s, over40)

/62 users, 200 tweets per a user
characteristic words: 8000 words
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Male/Female Ratio

m Condition of Experiment

600 training MSE of Class Ratio Estimation
400 test -
Training data 016 —

female/male = 1:1 0.14 o

Control female/male o1 -e-Direct-5-SVM

In test data o
Average of 10 times ®
0.08 N
m Results o \.
Direct method is 008 0\. _ -0
more stable than — i —0a 0
baseline 002 )
60 times faster ° 0.2 04 06 0.8 1 125 167 25 5

than baseline (in R) female”male
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Age Class Ratio

m Condition of Experiments ;s of the Class Ratio Estimation

458 training 01
304 test 0.09
Age ratio of 0.08 <9 o
training data 1:1:1:1 oo ,/ \o/
. o—©
Control 10s/30s in 0.06
test data 0.05
Average of 5 times 004 ———
003 — =@=Direct-m-SVM
m Results -
Direct method is 0oL
more stable but ... ;
0.25 0.5 1 2 4

Difficult to interpret
10s/30s
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Summary

m Introduce the class ratio estimation problem

m Propose a very simple direct method
without estimating profile of each user

m Apply the method to Twitter data
In the marketing context

m The simple direct method is
competitive and can be more robust
than the baseline

m Performance seems to be degraded

when the number of classes increases
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Future Work

m More detailed evaluations
Various conditions, more users

m Bias-Variance trade-off
Try baseline method with weaker classifiers
m haive Bayes, logistic classifier, etc.

m Improvement of the method

Minimize KL divergence
Introduce higher order statistics

m Performance evaluation in real services

Evaluate speed up effect
2= [ Validation of the estimated results gy
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