
Martin Atzmueller
Andreas Hotho (Eds.)

Mining Ubiquitous and Social
Environments (MUSE 2010)
International Workshop at
the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases
in Barcelona, Spain, September 20th, 2010

Table of Contents

Table of Contents . 3

Preface . 5

Towards Adjusting Mobile Devices to User’s Behaviour 7
Felix Jungermann, Katharina Morik, Nico Piatkowski, Olaf
Spinczyk, Marco Stolpe, and Peter Fricke

Bayesian Networks to Predict Data Mining Algorithm Behavior in
Ubiquitous Environments . 23

Aysegul Cayci, Santiago Eibe, Ernestina Menasalvas, and Yucel
Saygin

A Framework for Mobile User Activity Logging . 39
Wolfgang Woerndl, Alexander Manhardt, and Vivian Prinz

Community Assessment using Evidence Networks . 55
Folke Mitzlaff and Martin Atzmueller and Dominik Benz and
Andreas Hotho and Gerd Stumme

Exploring country level gender differences in the context of online
dating using classification trees . 71

Slava Kisilevich and Mark Last

Mining Social Context with Wearable Sensors . 89
Ciro Cattuto

Predictability of Mobile Phone Associations . 91
Bjørn Sand Jensen, Lars Kai Hansen, Jan Larsen, Jakob Eg Larsen
and Kristian Jensen

Discovering Trend-Based Clusters in Spatially Distributed Data Streams . 107
Anna Ciampi, Annalisa Appice, and Donato Malerba

Preface

The emergence of ubiquitous computing has started to create new environments
consisting of small, heterogeneous, and distributed devices that foster the social
interaction of users in several dimensions. Similarly, the upcoming social seman-
tic web also integrates the user interactions in social networking environments.
Mining in ubiquitous and social environments is thus an emerging area of re-
search focusing on advanced systems for data mining in such distributed and
network-organized systems. It also integrates some related technologies such as
activity recognition, Web 2.0 mining, privacy issues and privacy-preserving min-
ing, predicting user behavior, etc.

In typical ubiquitous settings, the mining system can be implemented inside
the small devices and sometimes on central servers, for real-time applications,
similar to common mining approaches. However, the characteristics of ubiquitous
and social mining are in general quite different from the current mainstream
data mining and machine learning. Unlike in traditional data mining scenarios,
data does not emerge from a small number of (heterogeneous) data sources,
but potentially from hundreds to millions of different sources. As there is only
minimal coordination, these sources can overlap or diverge in any possible way.
Steps into this new and exciting application area are the analysis of this new
data, the adaptation of well known data mining and machine learning algorithms
and finally the development of new algorithms.

The goal of this workshop is to promote an interdisciplinary forum for re-
searchers working in the fields of ubiquitous computing, social semantic web,
Web 2.0, and social networks which are interested in utilizing data mining in
an ubiquitous setting. The workshop seeks for contributions applying state-of-
the-art mining algorithms on ubiquitous and social data. Papers focusing on the
intersection of the two fields are especially welcome. In short, we want to accel-
erate the process of identifying the power of advanced data mining operating on
data collected in ubiquitous and social environments, as well as the process of
advancing data mining through lessons learned in analyzing these new data.

This proceedings volume comprises the papers of the MUSE 2010 workshop.
In total, we received 18 submissions, from which we were able to accept seven
submissions based on a rigorous reviewing process. Additionally, the workshop
features an invited talk on the convergence of social and ubiquitous data.

Based on the set of accepted papers, and the invited talk, we set up four ses-
sions. The first session discusses the foundations and resource-aware data min-
ing. The work Towards Adjusting Mobile Devices to User’s Behaviour by Felix
Jungermann, Katharina Morik, Nico Piatkowski, Olaf Spinczyk, Marco Stolpe
and Peter Fricke discusses the optimization of mobile (and ubiquitous) devices
with respect to the behavior of users. The paper Bayesian Networks to Predict
Data Mining Algorithm Behavior in Ubiquitous Environments by Aysegul Cayci,
Santiago Eibe, Yucel Saygin and Ernestina Menasalvas describes an approach
for parameter estimation and method adaptation in the context of ubiquitous
environments with limited resources.

5

The second session is concerned with ubiquitous and social applications and
thus bridges the two general topics of the workshop and directly leads to the
topic of the invited talk. In A Framework for Mobile User Activity Logging,
Wofgang Woerndl, Alexander Manhardt and Vivian Prinz provide a unified ap-
proach for collecting user activity data on mobile devices for user modeling. This
can be seen as a prerequisite for social approaches, e.g., as described in Commu-
nity Assessment using Evidence Networks by Folke Mitzlaff, Martin Atzmueller,
Dominik Benz, Andreas Hotho and Gerd Stumme. The paper presents an com-
munity assessment approach using evidence networks of user activities; the ex-
periments indicate that (implicit) evidence networks are relatively well suited
for community ratings. In Exploring Country Level Gender Differences in the
Context of Online Dating using Classification Trees, Slava Kisilevich and Mark
Last describe the construction of classification models for characterizing gender
differences in social networking sites, specifically online dating sites for different
countries.

The third session features the invited talk Mining Social Context with Wear-
able Sensors by Ciro Cattuto, in which he presents a platform for mining social
context with wearable sensors, and illustrates it with several application studies.

The fourth session concludes the workshop with an outlook on the tech-
nology, its potential and limits. In Predictability of Mobile Phone Associations
Bjørn Sand Jensen, Lars Kai Hansen, Jan Larsen, Jakob Eg Larsen and Kristian
Jensen describe an analysis of lifelog data of sensors and mobile phones and dis-
cuss bounds for its predictability. The paper Discovering Trend-Based Clusters
in Spatially Distributed Data Streams by Anna Ciampi, Annalisa Appice and
Donato Malerba discusses an algorithm for interleaving spatial clustering and
trend discovery, with a broad application scope.

We thank all participants of the workshop for their contributions and the
organizers of the ECML PKDD 2010 conference for their support. Additionally,
we want to thank our reviewers for their careful help in selecting and improv-
ing the provided submissions. Special thanks go to Harald Sack for his help in
organizing an independent review process of a selected publication.

We are looking forward to a very exciting and interesting workshop.
Kassel, August 2010

Martin Atzmueller, Andreas Hotho

6

Towards Adjusting Mobile Devices to
User’s Behaviour

Peter Fricke1, Felix Jungermann1, Katharina Morik1, Nico Piatkowski1,
Olaf Spinczyk2, and Marco Stolpe1

1 Technical University of Dortmund,
Artificial Intelligence Group

Baroper Strasse 301, Dortmund, Germany

{fricke,jungermann,morik,piatkowski,stolpe}@ls8.cs.tu-dortmund.de,
http://www-ai.cs.tu-dortmund.de

2 Technical University of Dortmund,
Embedded System Software Group

Otto-Hahn-Strasse 16, Dortmund, Germany

olaf.spinczyk@tu-dortmund.de,
http://ess.cs.uni-dortmund.de

Abstract. Mobile devices are a special class of resource-constrained em-
bedded devices. Computing power, memory, the available energy, and
network bandwidth are often severely limited. These constrained re-
sources require extensive optimization of a mobile system compared
to larger systems. Any needless operation has to be avoided. Time-
consuming operations have to be started early on. For instance, load-
ing files ideally starts before the user wants to access the file. So-called
prefetching strategies optimize system’s operation. Our goal is to ad-
just such strategies on the basis of logged system data. Optimization
is then achieved by predicting an application’s behavior based on facts
learned from earlier runs on the same system. In this paper, we ana-
lyze system-calls on operating system level and compare two paradigms,
namely server-based and device-based learning. The results could be used
to optimize the runtime behaviour of mobile devices.

Keywords: Mining system calls, ubiquitous knowledge discovery

1 Introduction

Users demand mobile devices to have long battery life, short application startup
time, and low latencies. Mobile devices are constrained in computing power,
memory, energy, and network connectivity. This conflict between user expecta-
tions and resource constraints can be reduced, if we tailor a mobile device such
that it uses its capacities carefully for exactly the user’s needs, i.e., the services,
that the user wants to use. Predicting the user’s behavior given previous be-
havior is a machine learning task. For example, based on the learning of most

7

often used file path components, a system may avoid unnecessary probing of files
and could intelligently prefetch files. Prefetching those files, which soon will be
accessed by the system, leads to a grouping of multiple scattered I/O requests
to a batched one and, accordingly, conservation of energy.

The resource restrictions of mobile devices motivate the application of ma-
chine learning for predicting user behavior. At the same time, machine learning
dissipates resources. There are four critical resource constraints:

– Data gathering: logging user actions uses processing capacity.
– Data storage: the training and test data as well as the learned model use

memory.
– Communication: if training and testing is performed on a central server,

sending data and the resulting model uses the communication network.
– Response time: the prediction of usage, i.e., the model application, has to

happen in short real-time.

The dilemma of saving resources at the device through learning which, in turn,
uses up resources, can be solved in several ways. Here, we set aside the prob-
lem of data gathering and its prerequisites on behalf of operation systems for
embedded systems [13] [22] [3]. This is an important issue in its own right. Re-
garding the other restrictions, especially the restriction of memory, leads us to
two alternatives.

Server-based learning: The learning of usage profiles from data is performed
on a server and only the resulting model is communicated back to the de-
vice. Learning is less restricted in runtime and memory consumption. Just
the learned model must obey the runtime and communication restrictions.
Hence, a complex learning method is applicable. Figure 1 shows this alter-
native.

Device-based learning: The learning of usage profiles on the device is severely
restricted in complexity. It does not need any communication but requires
training data to be stored. Data streaming algorithms come into play in two
alternative ways. First, descriptive algorithms incrementally build-up a com-
pact way to store data. They do not classify or predict anything. Hence, in
addition, simple methods are needed that learn from the aggregated compact
data. Second, simple online algorithms predict usage behavior in realtime.
The latter option might only be possible if specialized hardware is used, e.g.,
General Purpose GPUs. Figure 2 shows this alternative.

In this paper, we want to investigate the two alternatives using logged sys-
tem calls. Server-based learning is exemplified by predicting file-access patterns
in order to enhance prefetching. It is an open question whether structural models
are demanded for the prediction of user behavior on the basis of system calls,
or simpler models such as Naive Bayes suffice. Should the sequential nature of
system calls be taken into account by the algorithm? Or is it sufficient to encode
the sequences into the features? Or should features as well as algorithm be capa-
ble of explicitly addressing sequences? We investigate the use of two extremes,

8

Fig. 1. Server-based Architecture Fig. 2. Device-based Archi-
tecture

Conditional Random Fields (CRF) and Naive Bayes (NB). In particular, we
inspect their memory consumption and runtime, both, for training and apply-
ing the learned function. Section 2 presents the study of server-based learning
for ubiquitous devices. We derive the learning task from the need of enhanc-
ing prefetching strategies, describe the log data used, and present the learning
results together with resource consumptions of NB and CRF.

Device-based learning is exemplified by recognizing applications from system
calls in order to prevent fraud. We apply the data streaming algorithm Hierar-
chical Heavy Hitters (HHH) yielding a compact data structure for storage. Using
these, the simple kNN method classifies systems calls. In particular, we investi-
gate how much HHH compress data. Section 3 presents the study of device-based
learning using a streaming algorithm for storing compact data. We conclude in
Section 4 by indicating related and future work.

2 Server-based Learning

In this section we present the first case-study, where log data are stored and ana-
lyzed on a server (data are described in Section 2.2). Learning aims at predicting
file access in order to prefetch files (see Section 2.1). The learning methods NB
and CRF are introduced shortly in Section 2.3 and Section 2.4, respectively. The
results are shown in Section 2.5.

2.1 File-access pattern prediction

A prediction of file-access patterns is of major importance for the performance
and resource consumption of system software. For example, the Linux operating
system uses a large “buffer cache” memory for disk blocks. If a requested disk
block is already stored in the cache (cache hit), the operating system can deliver
it to the application much faster and with less energy consumption than oth-
erwise (cache miss). In order to manage the cache the operating system has to
implement two strategies, block replacement and prefetching. The block replace-
ment strategy is consulted upon a cache miss: a new block has to be inserted
into the cache. If the cache is already full, the strategy has to decide which

9

block has to be replaced. The most effective victim is the one with the longest
forward distance, i.e. the block with the maximum difference between now and
the time of the next access. This requires to know or guess the future sequence
of cache access. The prefetching strategy proactively loads blocks from disk into
the cache, even if they have not been requested by an application, yet. This of-
ten pays off, because reading a bigger amount of blocks at once is more efficient
than multiple read operations. However, prefetching should only be performed if
a block will be needed in the near future. For both strategies, block replacement
and prefetching, a good prediction of future application behavior is crucial.

Linux and other operating systems still use simple heuristic implementations
of the buffer cache management strategies. For instance, the prefetching code
in Linux [2] continuously monitors read operations. As long as a file is accessed
sequentially the read ahead is increased. Certain upper and lower bounds restrict
the risk of mispredictions. This heuristics has two flaws:

– No prefetching is performed before the first read operation on a specific file,
e.g., after “open”, or even earlier.

– The strategy is based on assumptions on typical disk performance and buffer
cache sizes, in general. However, these assumptions might turn out to be
wrong in certain application areas or for certain users.

Prefetching based on machine learning avoids both problems. Prefetching can
already be performed when a file is opened. It only depends on the prediction
that the file will be read. The prediction is based on empirical data and not on
mere assumptions. If the usage data change, the model changes, as well.

2.2 System Call Data for Access Prediction

We logged streams of system calls of type FILE, which consist of various typical
sub-sequences, each starting with an open- and terminating with a close-call,
like those shown in Figure 3. We collapsed such sub-sequences to one observation
and assign the class label

– full, if the opened file was read from the first seek (if any) to the end,
– read, if the opened file was randomly accessed and
– zero, if the opened file was not read after all.

We propose the following generalization of obtained filenames. If a file is reg-
ular, we remove anything except the filename extension. Directory names are
replaced by ”DIR”, except for paths starting with ”/tmp” – those are replaced
by ”TEMP”. Any other filenames are replaced by ”OTHER”. This generaliza-
tion of filenames yields good results in our experiments. Volatile information
like thread-id, process-id, parent-id and system-call parameters is dropped, and
consecutive observations are compound to one sequence if they belong to the
same process. The resulting dataset consists of 673887 observations in 80661
sequences, a snippet3 is shown in Table 1.

3 The final dataset is available at:
http://www-ai.cs.tu-dortmund.de/PUBDOWNLOAD/MUSE2010

10

1,open,1812,179,178,201,200,firefox,/etc/hosts,524288,438,7 : 361, full

2,read,1812,179,178,201,200,firefox,/etc/hosts,4096,361

3,read,1812,179,178,201,200,firefox,/etc/hosts,4096,0

4,close,1812,179,178,201,200,firefox,/etc/hosts

Fig. 3. A sequence of system calls to read a file. The data layout is: timestamp, syscall,
thread-id, process-id, parent, user, group, exec, file, parameters (optional) : read bytes,
label (optional)

user group exec file label

201 200 firefox-bin cookies.sqlite-
journal

zero

201 200 firefox-bin default zero
201 200 firefox-bin hosts full
201 200 firefox-bin hosts full

201 200 multiload-
apple

mtab full

102 200 kmail png zero
Table 1. Snippet of the preprocessed dataset
(the marked row corresponds to the open call of
Fig. 3).

predicted\true full zero read

full 0 2 1

zero 5 0 4

read 4 2 0
Table 2. Cost matrix

exec file label

? firefox-bin ? ? cookies.sqlite-journal zero
firefox-bin firefox-bin ? cookies.sqlite-journal default zero
firefox-bin firefox-bin cookies.sqlite-journal default hosts full
firefox-bin firefox-bin default hosts hosts full

? multiload-apple ? ? mtab full

? kmail ? ? png zero
Table 3. Snippet of the final dataset using two features.

We used two feature sets for the given task. The first encodes information
about sequencing as features, resulting in 24 features, namely ft, ft−1, ft−2,
ft−2/ft−1, ft−1/ft, ft−2/ft−1/ft, with f ∈ {user, group, exec, file}. The second
feature set simply uses two features exect−1/exect and filet−2/filet−1/filet as
its only features – an excerpt of the dataset using these two features is shown in
Table 3.

Errors in predicting the types of access result in different degrees of fail-
ure. Predicting a partial caching of a file, if just the rights of a file have to be
changed, is not as problematic as predicting a partial read if the file is to be
read completely. Hence, we define a cost-matrix (see Table 2) for the evaluation
of our approach. For further research the values used in this matrix might have

11

to be readjusted based on results of concrete experiments on mobile devices or
simulators.

2.3 Naive Bayes Classifier

The Naive Bayes classifier [10] assigns labels y ∈ Y to examples x ∈ X. Each
example is a vector of m attributes written here as xi, where i = 1...m. The
probability of a label given an example is according to the Bayes Theorem:

p(Y |x1, x2, ..., xm) =
p(Y)p (x1, x2, ..., xm|Y)

p (x1, x2, ..., xm)
(1)

Domingos and Pazzani [7] rewrite eq. (1) and define the Simple Bayes Classifier
(SBC):

p(Y |x1, x2, ..., xm) =
p(Y)

p (x1, x2, ..., xm)

n∏

j=1

p (xj |Y) (2)

The classifier delivers the most probable class Y for a given example x =
x1 . . . xm:

arg max
Y

p(Y |x1, x2, ..., xm) =
p(Y)

p (x1, x2, ..., xm)

m∏

j=1

p (xj |Y) (3)

The term p (x1, x2, ..., xm) can be neglected in eq. (3) because it is a constant
for every class y ∈ Y . The decision for the most probable class y for a given
example x just depends on p(Y) and p (xi|Y) for i = 1 . . .m. These probabilities
can be calculated after one run on the training data. So, the training runtime
is O(n), where n is the number of examples in the training set. The number
of probabilities to be stored during training are |Y| + (

∑m
i=1 |Xj | ∗ |Y|), where

|Y| is the number of classes and |Xi| is the number of different values of the ith
attribute. The storage requirements for the trained model are O(mn).

It has often been shown that SBC or NBC perform quite well for many data
mining tasks [7, 11, 8].

2.4 Linear-chain Conditional Random Fields

Linear-chain Conditional Random Fields, introduced by Lafferty et al. [12], can
be understood as discriminative, sequential version of Naive Bayes Classifiers.
The conditional probability for an actual sequence of labels y1,y2, ...,ym, given a
sequence of observations x1,x2, ...,xm is modeled as an exponential family. The
underlying assumption is that a class label at the current timestep t just depends
on the label of its direct ancestor, given the observation sequence. Dependency
among the observations is not explicitly represented, which allows the use of

12

rich, overlapping features. Equation 4 shows the model formulation of linear-
chain CRF

pλ (Y = y|X = x) =
1

Z (x)

T∏

t=1

exp

(∑

k

λkfk (yt, yt−1,x)

)
(4)

with the observation-sequence dependent normalization factor

Z (x) =
∑

y

T∏

t=1

exp

(∑

k

λkfk (yt, yt−1,x)

)
(5)

The sufficient statistics or feature functions fk are most often binary indicator
functions which evaluate to 1 only for a single combination of class label(s) and
attribute value. The parameters λk can be regarded as weights or scores for this
feature functions. In linear-chain CRF, each attribute value usually gets |Y|+|Y|2
parameters, that is one score per state-attribute pair as well as one score for ev-
ery transition-attribute triple, which results in a total of

∑m
i=1 |Xi|

(
|Y|+ |Y|2

)

model parameters, where |Y| is the number of classes, m is the number of at-
tributes and |Xi| is the number of different values of the ith attribute. Notice
that the feature functions explicitly depend on the whole observation-sequence
rather than on the attributes at time t. Hence, it is possible and common to
involve attributes of preceding as well as following observations from the current
sequence into the computation of the total score exp (

∑
k λkfk (yt, yt−1,x)) for

the transition from yt−1 to yt given x.
The parameters are usually estimated by the maximum-likelihood method,

i.e., maximizing the conditional likelihood (Eq. 6) by quasi-Newton [14], [19],
[15] or stochastic gradient methods [25], [17], [18].

L (λ) =

N∏

i=1

pλ(Y = y(i)|X = x(i)) (6)

The actual class prediction for an unlabeled observation-sequence is done by the
Viterbi algorithm known from Hidden Marcov Models [21], [16].

Although CRF in general allow to model arbitrary dependencies between
the class labels, efficient exact inference can solely be done for linear-chain CRF.
This is no problem here, because they match the sequential structure of our
system-call data, presented in section 2.2.

2.5 Results of Server-based Prediction

Comparing the prediction quality of the simple NB models and the more complex
CRF models, surprisingly, the CRF are only slightly better when using the two
best features (see Tables 4 and 6). CRF outperforms NB when using all features
(see Tables 5 and 7). These two findings indicate that the sequence information
is not as important as we expected. Neither encoding the sequence into features

13

nor applying an algorithm which is made for sequential information outperforms
a simple model. The Tables show that precision, recall, accuracy, and misclas-
sification cost are quite homogeneous for CRF, but vary for NB. In particular,
the precision of predicting “read” and the recall of class “zero” differs from the
numbers for the other classes, respectively. This makes CRF more reliable.

Inspecting resource consumption, we stored models of the two methods for
both feature sets and for various numbers of examples to show the practical
storage needs of the methods. Table 10 presents the model sizes of the naive
Bayes classifier on both feature sets and for various example set sizes. We used
the popular open source data mining tool RapidMiner4 for these experiments.
Table 10 also shows the model sizes of CRF on both feature sets and various
example set sizes.

predicted\true full zero read prec.

full 1427467 19409 3427 98.43
zero 12541 2469821 40258 97.91
read 80872 217380 2467695 89.22
recall 93.86 91.25 98.26

Table 4. Result of Naive Bayes Classifier on best
two features, 10x10-fold cross-validated, accuracy:
94.45 ± 0.00, missclassification costs: 0.152 ± 0.001

full zero read prec.

1426858 21562 22717 96.99
15392 2371009 97566 95.45
78630 314039 2391097 85.89
93.82 87.60 95.21

Table 5. Result of Naive Bayes
Classifier on all 24 features,
10x10-fold cross-validated, accu-
racy: 91.84 ± 0.00, missclassifica-
tion costs: 0.218 ± 0.002

predicted\true full zero read prec.

full 1446242 7123 29051 97.56
zero 19452 2639097 133007 94.54
read 55186 60390 2349322 95.31
recall 95.09 97.51 93.55

Table 6. Result of HMM-like CRF on the best
two features, 10x10-fold cross-validated, accuracy:
95.49 ± 0.00, missclassification costs: 0.150 ± 0.000

full zero read prec.

1450147 8335 25629 97.71
14563 2639724 126403 94.93
56170 58551 2359348 95.36
95.35 97.53 93.95

Table 7. Result of HMM-like
CRF on all 24 features, 10x10-fold
cross-validated, accuracy: 95.70
± 0.00, missclassification costs:
0.143 ± 0.000

predicted\true full zero read prec.

full 1467440 4733 7503 99.17
zero 10883 2659294 108340 95.71
read 42557 42583 2395537 96.57
recall 96.49 98.25 95.39

Table 8. Result of linear-chain CRF on the best
two features, 10x10-fold cross-validated, accuracy:
96.79 ± 0.00, missclassification costs: 0.112 ± 0.000

full zero read prec.

1468095 4117 5022 99.38
10306 2662966 107859 95.75
42479 39527 2398499 96.69
96.53 98.39 95.51

Table 9. Result of linear-chain
CRF on all 24 features, 10x10-fold
cross-validated, accuracy: 96.89
± 0.00, missclassification costs:
0.110 ± 0.000

4 RapidMiner is available at: http://www.rapidminer.com

14

#Att.\#Seq. 0 67k 135k 202k 270k 337k 404k 472k 539k 606k 674k

2 nB 244 248 251 253 256 255 256 257 257 256 256
24 nB 548 561 571 577 582 585 588 590 590 585 585
2 CRF++ (HMM) 5 247 366 458 490 512 569 592 614 634 649
24 CRF++ (HMM) 12 615 878 1102 1170 1216 1367 1420 1463 1521 1551
2 CRF++ 6 523 776 978 1043 1089 1213 1260 1299 1345 1378
24 CRF++ 19 1339 1914 2415 2559 2652 2988 3095 3184 3303 3365

Table 10. Storage needs (in kB) of the naive Bayes (nB) classifier model produced
by RapidMiner, the HMM-like CRF (CRF++ (HMM)) and the linear-chain CRF
(CRF++) on different numbers of sequences and attributes.

#Att.\#Seq. 0 67k 135k 202k 270k 337k 404k 472k 539k 606k 674k

2 nB < 1 < 1 < 1 < 1 1 < 1 < 1 < 1 < 1 < 1 < 1
24 nB < 1 < 1 < 1 1 < 1 1 1 1 1 2 1
2 CRF++ (HMM) < 1 9.09 28.56 44.08 60.1 75.76 107.28 127.04 149.95 165.94 199.2
24 CRF++ (HMM) < 1 27.92 55.9 103.24 153.53 160.33 230.7 273.29 232.84 309.19 317.62
2 CRF++ < 1 16.69 50.23 85.18 113.21 145.96 173.56 200.98 234.65 260.56 325.54
24 CRF++ < 1 41.06 105.29 156.67 296.31 300.83 343.28 433.03 440.88 463.84 632.96

Table 11. Training time (in seconds) of the naive Bayes (nB) classifier model pro-
duced by RapidMiner, the HMM-like CRF (CRF++ (HMM)) and the linear-chain
CRF (CRF++) on different numbers of sequences and attributes.

We used the open source CRF implementation CRF++5 with L2-regulariza-
tion, σ = 1 and L-BFGS optimizer in all CRF experiments. Obviously, the
storage needs for a model produced by a NB classifier are lower than those for
a CRF model. This is the price to be paid for more reliable prediction quality.
CRF don’t scale-up well. Considering training time, the picture becomes worse.
Table 11 shows the training time of linear-chain or HMM-like CRF consuming
orders of magnitude more time than NB.

3 Device-based Learning

In this section, we present the second case-study, where streams of log data are
processed in order to store patterns of system use. The goal is to aggregate the
streaming system data. A simple learning method might then use the aggregated
data. The method of Hierarchical Heavy Hitters (HHH) is defined in Section 3.1.
The log data are shown in Section 3.2. For the comparison of different sets of
HHH, we present a distance measure that allows for clustering or classifying
sets of HHH. In addition to the quality of our HHH application, its resource
consumption is presented in Section 3.3.

3.1 Hierarchical Heavy Hitters

The heavy hitter problem consists of finding all frequent elements and their fre-
quency values in a data set. According to Cormode [4], given a (multi)set S

5 CRF++ is available at: http://crfpp.sourceforge.net/

15

of size N and a threshold 0 < φ < 1, an element e is a heavy hitter if its fre-
quency f(e) in S is not smaller than bφNc. The set of heavy hitters is then
HH = {e|f(e) ≥ bφNc}.

If the elements in S originate from a hierarchical domain D, one can state
the following problem [4]:

Definition 1 (HHH Problem). Given a (multi)set S of size N with elements
e from a hierarchical domain D of height h, a threshold φ ∈ (0, 1) and an error
parameter ε ∈ (0, φ), the Hierarchical Heavy Hitter Problem is that of identifying
prefixes P ∈ D, and estimates fp of their associated frequencies, on the first N
consecutive elements SN of S to satisfy the following conditions:

– accuracy: f∗p − εN ≤ fp ≤ f∗p , where f∗p is the true frequency of p in SN .
– coverage: all prefixes q 6∈ P satisfy φN >

∑
f(e) : (e � q)∧(6 ∃p ∈ P : e � p).

Here, e � p means that element e is generalizable to p (or e = p). For the
extended multi-dimensional heavy hitter problem introduced in [5], elements can
be multi-dimensional d-tuples of hierarchical values that originate from d differ-
ent hierarchical domains with depth hi, i = 1, . . . , d. There exist two variants
of algorithms for the calculation of multi-dimensional HHHs: Full Ancestry and
Partial Ancestry, which we have both implemented. For a detailed description
of these algorithms, see [6].

3.2 System Call Data for HHH

FILE COMM PROC INFO DEV

open recvmsg mmap2 access ioctl
read recv munmap getdents
write send brk getdents64
lseek sendmsg clone clock gettime
llseek sendfile fork gettimeofday
writev sendto vfork time
fcntl rt sigaction mprotect uname
fcntl64 pipe unshare poll
dup pipe2 execve fstat
dup2 socket futex fstat64
dup3 accept nanosleep lstat
close accept4 lstat64

stat
stat64
inotify init
inotify init1
readlink
select

Table 12. We focus on 54 system call types which are functionally categorized into
five groups. FILE: file system operations, COMM: communication, PROC: process and
memory management, INFO: informative calls, DEV: operations on devices.

The kernel of current Linux operating systems offers about 320 different
types of system calls to developers. Having gathered all system calls made by

16

several applications, we observed that about 99% of all calls belonged to one of
the 54 different call types shown in Tab. 12. The functional categorization of
system calls into five groups is due to [20]. We focus on those calls only, since
the remaining 266 call types are contained in only 1% of the data and therefore
can’t be frequent.

HHHs can handle values that have a hierarchical structure. We have utilized
this expressive power by representing system calls as tuples of up to three hi-
erarchical feature values. Each value originates from a taxonomy (type, path or
sequence) that either can be derived dynamically from the data itself or has to
be defined explicitly by the user. The groups introduced in Tab. 12 form the top
level of the taxonomy for the hierarchical variable type (see Fig. 4). The socket

call is a child of group COMM and FILE is the parent of calls like open and
fcntl64. Subtypes of system calls can be defined by considering the possible
values of their parameters. For example, the fcntl64 call which operates on file
descriptors has fd, cmd and arg as its parameters. We have divided the 16 differ-
ent nominal values of the cmd parameter into seven groups — notify, dflags,
duplicate, sig, lock, fflags and lease — that have become the children of
the fcntl64 system call in our taxonomy (see Fig. 4). One may further divide
fcntl64 calls of subtype fflags by the values F SETFL and F GETFL of the arg
parameter. In the same way, we defined parents and children for each of the 54
call types and their parameters.

*

COMM FILE PROC INFO DEV

socket open fcntl64

duplicate dflagsnotify sig log fflags lease

Fig. 4. Parts of the taxonomy we defined for the hierarchical variable type.

The path variable is filled whenever a system call accesses a file system path.
Its hierarchy comes naturally along with the given path hierarchy of the file
system. The sequence variable expresses the temporal order of calls within a
process. The directly preceding call is the highest, less recent calls are at deeper
levels of the hierarchy.

We collected system call data from eleven applications (like Firefox, Epiphany,
NEdit, XEmacs) with the strace tool (version 4.5.17) under Ubuntu Linux (ker-
nel 2.6.26, 32 bit). All child processes were monitored by using option -f of
strace. For each application, we logged five times five minutes and five times ten
minutes of system calls if they belonged to one of the 54 types shown in Tab. 12,
resulting in a whole of 110 log files comprising about 23 million of lines (1.8 GB).

17

3.3 Resulting Aggregation through Hierarchical Heavy Hitters

We have implemented the Full Ancestry and Partial Ancestry variants of the
HHH algorithm mentioned in Section 3.1. The code was integrated into the
RapidMiner data mining tool. Regarding run-time, all experiments were done
on a machine with Intel Core 2 Duo E6300 processor with 2 GHz and 2 GB main
memory.

Memory Run-time Similarity
Min Max Avg Min Max Avg Avg Dev

T 19 151 111 16 219 79 0.997 0.006
FA TP 25 9,971 5,988 31 922 472 0.994 0.003

TPS 736 73,403 48,820 78 14,422 6,569 0.987 0.008
T 7 105 70 15 219 74 0.985 0.010

PA TP 7 4,671 2,837 31 5,109 2,328 0.957 0.017
TPS 141 18,058 10,547 78 150,781 74,342 0.921 0.026

Table 13. Memory consumption (number of stored tupels), run-time (milliseconds)
and similarity to exact solution of the Full Ancestry (FA) and Partial Ancestry (PA)
algorithms (ε = 0.0005, φ = 0.002). Minimum (Min), maximum (Max) and average
(Avg) values were calculated over measurements for the first log file of all eleven ap-
plications with varying dimensionality of the element tupels (T = type hierarchy, P =
path hierarchy, S = sequence hierarchy).

Since we want to aggregate system call data on devices that are severely
limited in processing power and available memory, measuring the resource usage
of our algorithms was of paramount importance. Table 13 shows the run-time
and memory consumption of the Full Ancestry and Partial Ancestry algorithms
using only the type hierarchy, the type and path hierarchy, or the type, path, and
sequence hierarchy. Minimum, maximum and averages were calculated over a
sample of the ten gathered log files for each of the eleven application by taking
only the first log file for each application into account.

Memory consumption and run-time increase with the dimensionality of the
elements, while at the same time approximation quality decreases. Quality is
measured as similarity to the exact solution. Full Ancestry has a higher ap-
proximation quality in general. The results correspond to observations made by
Cormode and are probably due to the fact that Partial Ancestry outputs bigger
HHH sets, which was the case in our experiments, too. Note that approximation
quality can always be increased by changing parameter ε to a smaller value at
the expense of a longer run-time.

Even for three-dimensional elements, memory consumption is quite low re-
garding the number of stored tuples. The largest number of tuples (73,403), only
equates to a few hundred kilobytes in main memory! The longest run-time of
150,781 ms for Partial Ancestry in three dimensions relates to the size of the
biggest log file (application Rhythmbox).

Figure 5 shows the behaviour of our algorithms on the biggest log file (appli-
cation Rhythmbox) for three dimensions with varying ε and constant φ. Memory

18

consumption and quality decrease with increasing ε, while the run-time increases.
So the most important trade-off involved here is weighting memory consumption
against approximation quality — the run-time is only linearly affected by pa-
rameter ε. Again, Full Ancestry shows a better approximation quality in general.

7 Ressourcenbedarf der Algorithmen

!!
!

!!!
!!!
!
!!!!!!!!
!!!
!!!
!
!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!
!!!
!!!!
!
!!
!!
!!
!!!!
!!!
!!!!!!!
!!
!!!!!!
!!!
!
!!!
!
!!
!!!!
!
!!!
!!!
!!!!!!!!!!!
!
!!!
!
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!
!!

!!!!!!!!!!!!!!!!!!!!!!
!!!

!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!
!!!!
!!!!!!!!!!!!!!!!!!!!
!!

!!!!!!!!!!!!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!
!!!!!!!!!!!!!!
!!!!
!!!!!!!!!!
!!!!
!!!!!!!!!!
!!!!!
!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!

0.000 0.002 0.004 0.006 0.008 0.010

0
5

0
1

0
0

1
5

0

FullAncestry, Speicherbed., eindim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

!

!

!

!

!

!

!
!
!

!

!

!

!

!!

!

!

!!
!
!

!

!!!!!!

!!
!!!
!
!
!
!!
!
!!!!!
!
!
!!!!
!!!
!
!!!!!
!
!!!!!!!!!!
!!!
!!!

!
!!!!!
!
!!!!!!!!!!!!!!!!
!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!
!!

0.000 0.002 0.004 0.006 0.008 0.010

0
4

0
0

0
8

0
0

0

FullAncestry, Speicherbed., zweidim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!
!

!
!

!

!
!

!

!
!!

!
!

!
!
!!

!

!

!
!!
!
!
!!
!!
!

!
!
!
!
!
!!!
!

!!!!
!
!!!
!
!!!!!
!!!
!
!!

!!
!!!!!
!!!

!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!
!!!!!!!!
!!!!
!!!!!
!!!!
!!!!!
!!!!!
!
!!!!!!!!
!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!
!!!

0.000 0.002 0.004 0.006 0.008 0.010

0
2

0
0

0
0

4
0

0
0

0

FullAncestry, Speicherbed., dreidim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

!!!!!!
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!
!
!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!
!!!!!!!
!
!!!!!!
!!!!!!!!!!!!!!!!!!
!!

!!!!!!!!!!!!!!
!!!

!!
!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!

!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!

0.000 0.002 0.004 0.006 0.008 0.010

0
5

0
1

0
0

1
5

0

PartialAncestry, Speicherbed., eindim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

!
!
!!
!
!
!
!!

!
!!!!!!
!!!!!!
!!!

0.000 0.002 0.004 0.006 0.008 0.010

0
4

0
0

0
8

0
0

0

PartialAncestry, Speicherbed., zweidim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

!!!!!!!
!!!!!!!!!!!
!!

0.000 0.002 0.004 0.006 0.008 0.010

0
2

0
0

0
0

4
0

0
0

0

PartialAncestry, Speicherbed., dreidim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

Abbildung 7.1: Speicherbedarf (in Tupeln) für verschiedene Dimensionen bei
Variation von ε am Beispiel der größten Logdatei Rhythmbox 4

72

7 Ressourcenbedarf der Algorithmen

!!
!

!!!
!!!
!
!!!!!!!!
!!!
!!!
!
!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!
!!!
!!!!
!
!!
!!
!!
!!!!
!!!
!!!!!!!
!!
!!!!!!
!!!
!
!!!
!
!!
!!!!
!
!!!
!!!
!!!!!!!!!!!
!
!!!
!
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!
!!

!!!!!!!!!!!!!!!!!!!!!!
!!!

!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!
!!!!
!!!!!!!!!!!!!!!!!!!!
!!

!!!!!!!!!!!!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!
!!!!!!!!!!!!!!
!!!!
!!!!!!!!!!
!!!!
!!!!!!!!!!
!!!!!
!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!

0.000 0.002 0.004 0.006 0.008 0.010

0
5

0
1

0
0

1
5

0

FullAncestry, Speicherbed., eindim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

!

!

!

!

!

!

!
!
!

!

!

!

!

!!

!

!

!!
!
!

!

!!!!!!

!!
!!!
!
!
!
!!
!
!!!!!
!
!
!!!!
!!!
!
!!!!!
!
!!!!!!!!!!
!!!
!!!

!
!!!!!
!
!!!!!!!!!!!!!!!!
!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!
!!

0.000 0.002 0.004 0.006 0.008 0.010

0
4

0
0

0
8

0
0

0

FullAncestry, Speicherbed., zweidim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!
!

!
!

!

!
!

!

!
!!

!
!

!
!
!!

!

!

!
!!
!
!
!!
!!
!

!
!
!
!
!
!!!
!

!!!!
!
!!!
!
!!!!!
!!!
!
!!

!!
!!!!!
!!!

!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!
!!!!!!!!
!!!!
!!!!!
!!!!
!!!!!
!!!!!
!
!!!!!!!!
!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!
!!!

0.000 0.002 0.004 0.006 0.008 0.010

0
2

0
0

0
0

4
0

0
0

0

FullAncestry, Speicherbed., dreidim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

!!!!!!
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!
!
!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!
!!!!!!!
!
!!!!!!
!!!!!!!!!!!!!!!!!!
!!

!!!!!!!!!!!!!!
!!!

!!
!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!

!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!

0.000 0.002 0.004 0.006 0.008 0.010

0
5

0
1

0
0

1
5

0

PartialAncestry, Speicherbed., eindim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

!
!
!!
!
!
!
!!

!
!!!!!!
!!!!!!
!!!

0.000 0.002 0.004 0.006 0.008 0.010

0
4

0
0

0
8

0
0

0

PartialAncestry, Speicherbed., zweidim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l

!!!!!!!
!!!!!!!!!!!
!!

0.000 0.002 0.004 0.006 0.008 0.010

0
2

0
0

0
0

4
0

0
0

0

PartialAncestry, Speicherbed., dreidim.

!!

M
a

x
.

A
n

z
.

T
u

p
e

l
Abbildung 7.1: Speicherbedarf (in Tupeln) für verschiedene Dimensionen bei

Variation von ε am Beispiel der größten Logdatei Rhythmbox 4

72

7.1 Speicherbedarf und Laufzeiten

!

!!!!!!!!!!!!!!!!
!!!!!!!!
!!!!!!!
!!!!!!!!!!!
!!!!!!
!!!!!!!!
!
!!!
!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!
!!

!!
!

!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!
!!!
!!!
!!!!!
!!!!
!!!!!!!!!
!!!!
!!!!!!!!!!!!!!!!!!
!
!!!!
!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!!!!
!
!!!
!!!!!!
!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!
!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!
!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!
!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!
!!!!!!!!!!
!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!!!!!!!!!!!!!!!!!
!!!!!!
!!
!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!
!!!!!!!!!!!!!!!
!
!!!!!!
!!!!!!!!!!!
!!!
!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!
!
!!!!!!!!!
!!

0.000 0.002 0.004 0.006 0.008 0.010

0
2

0
0

4
0

0
6

0
0

FullAncestry, Rechenzeit, eindim.

!!

Z
e

it
 i
n

 m
s

!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!

!!!
!!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!

!!!
!!

!!!
!!

!!
!!

0.000 0.002 0.004 0.006 0.008 0.010

0
1

0
0

0
2

5
0

0

FullAncestry, Rechenzeit, zweidim.

!!

Z
e

it
 i
n

 m
s

!!!!!!!!!!!!!!!!!!!!!!
!!!

!!
!!!

!!!
!!!

!!!
!!

0.000 0.002 0.004 0.006 0.008 0.010

0
e

+
0

0
4

e
+

0
4

8
e

+
0

4

FullAncestry, Rechenzeit, dreidim.

!!

Z
e

it
 i
n

 m
s

!
!!!

!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!
!!!!!!!!!!
!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!
!!!!!!!!
!!!!!!
!!!!!!!!!!!!!!!
!!!!!
!!!!!!!!!!!!!!!!!
!!!
!
!!!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!!
!!!!!!!!!!!!
!!!!
!!!!!!!!!
!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!

!

!!
!!!!!
!!!!!!!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!
!!!!!!!!!!
!!!!!!!!!!!!
!!!!!
!!!!!!
!!!!!
!!!!!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!
!!!!
!!!!!!!!!!!
!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!
!
!!!!!
!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!!!
!!!!!!!
!!!!!!
!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!
!!!!!!!!!!!
!!!!!!!!!
!
!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!
!!!
!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!
!
!!!!!!!!!!!
!!!!!!!!
!!!!!
!
!!!!!!!
!
!!!!!!!
!!!!!!!!!!!!!
!
!!
!!!!!!!!!!!!!!!!!!!!!
!

0.000 0.002 0.004 0.006 0.008 0.010

0
2

0
0

4
0

0
6

0
0

PartialAncestry, Rechenzeit, eindim.

!!

Z
e

it
 i
n

 m
s

!!!!!!!!
!!!!!!!!!
!!!!!!
!
!!!!
!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!
!!!!!!!
!!

!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!
!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!

!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!
!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!
!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!
!!!

!!!
!!!

!!!

0.000 0.002 0.004 0.006 0.008 0.010

0
1

0
0

0
2

5
0

0

PartialAncestry, Rechenzeit, zweidim.

!!

Z
e

it
 i
n

 m
s

!!!!!
!!!!!!!!!!
!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!
!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!

!!!
!!

!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!

!!!
!!!

!!!
!!!!!!!!!!!!!!!!
!!

!!!
!!

!!!

0.000 0.002 0.004 0.006 0.008 0.010

0
e

+
0

0
4

e
+

0
4

8
e

+
0

4

PartialAncestry, Rechenzeit, dreidim.

!!

Z
e

it
 i
n

 m
s

Abbildung 7.2: Rechenzeit (in ms) für verschiedene Dimensionen bei Variation
von ε am Beispiel der größten Logdatei Rhythmbox 4

73

7.1 Speicherbedarf und Laufzeiten

!

!!!!!!!!!!!!!!!!
!!!!!!!!
!!!!!!!
!!!!!!!!!!!
!!!!!!
!!!!!!!!
!
!!!
!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!
!!

!!
!

!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!
!!!
!!!
!!!!!
!!!!
!!!!!!!!!
!!!!
!!!!!!!!!!!!!!!!!!
!
!!!!
!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!!!!
!
!!!
!!!!!!
!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!
!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!
!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!
!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!
!!!!!!!!!!
!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!!!!!!!!!!!!!!!!!
!!!!!!
!!
!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!
!!!!!!!!!!!!!!!
!
!!!!!!
!!!!!!!!!!!
!!!
!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!
!
!!!!!!!!!
!!

0.000 0.002 0.004 0.006 0.008 0.010
0

2
0

0
4

0
0

6
0

0

FullAncestry, Rechenzeit, eindim.

!!

Z
e

it
 i
n

 m
s

!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!

!!!
!!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!

!!!
!!

!!!
!!

!!
!!

0.000 0.002 0.004 0.006 0.008 0.010

0
1

0
0

0
2

5
0

0

FullAncestry, Rechenzeit, zweidim.

!!

Z
e

it
 i
n

 m
s

!!!!!!!!!!!!!!!!!!!!!!
!!!

!!
!!!

!!!
!!!

!!!
!!

0.000 0.002 0.004 0.006 0.008 0.010

0
e

+
0

0
4

e
+

0
4

8
e

+
0

4

FullAncestry, Rechenzeit, dreidim.

!!

Z
e

it
 i
n

 m
s

!
!!!

!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!
!!!!!!!!!!
!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!
!!!!!!!!
!!!!!!
!!!!!!!!!!!!!!!
!!!!!
!!!!!!!!!!!!!!!!!
!!!
!
!!!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!!
!!!!!!!!!!!!
!!!!
!!!!!!!!!
!!
!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!

!

!!
!!!!!
!!!!!!!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!
!!!!!!!!!!
!!!!!!!!!!!!
!!!!!
!!!!!!
!!!!!
!!!!!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!
!!!!
!!!!!!!!!!!
!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!
!
!!!!!
!
!!!!!!!!!!!!!!
!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!!!
!!!!!!!
!!!!!!
!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!
!!!!!!!!!!!
!!!!!!!!!
!
!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!
!!!
!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!!!!!!!!!!!!
!!!!!!!
!
!!!!!!!!!!!
!!!!!!!!
!!!!!
!
!!!!!!!
!
!!!!!!!
!!!!!!!!!!!!!
!
!!
!!!!!!!!!!!!!!!!!!!!!
!

0.000 0.002 0.004 0.006 0.008 0.010

0
2

0
0

4
0

0
6

0
0

PartialAncestry, Rechenzeit, eindim.

!!

Z
e

it
 i
n

 m
s

!!!!!!!!
!!!!!!!!!
!!!!!!
!
!!!!
!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!
!
!!!!!!!
!!

!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!
!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!

!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!
!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!
!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!
!!!

!!!
!!!

!!!

0.000 0.002 0.004 0.006 0.008 0.010

0
1

0
0

0
2

5
0

0

PartialAncestry, Rechenzeit, zweidim.

!!

Z
e

it
 i
n

 m
s

!!!!!
!!!!!!!!!!
!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!
!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!

!!!
!!

!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!

!!!
!!!

!!!
!!!!!!!!!!!!!!!!
!!

!!!
!!

!!!

0.000 0.002 0.004 0.006 0.008 0.010

0
e

+
0

0
4

e
+

0
4

8
e

+
0

4

PartialAncestry, Rechenzeit, dreidim.

!!

Z
e

it
 i
n

 m
s

Abbildung 7.2: Rechenzeit (in ms) für verschiedene Dimensionen bei Variation
von ε am Beispiel der größten Logdatei Rhythmbox 4

73

7.3 Approximationsgüte

! !

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

FullAncestry, MOGM, eindim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

! !

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

FullAncestry, MOGM, zweidim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

! ! ! ! ! ! ! ! ! ! ! !
! ! ! !

!
!

!

!

!

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

FullAncestry, MOGM, dreidim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

! ! !
! ! ! ! !

! ! ! ! ! ! ! ! ! !
!

!
!

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

PartialAncestry, MOGM, eindim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

! ! !

!
! ! ! ! !

!

! !
! ! ! ! !

! !
!

!

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

PartialAncestry, MOGM, zweidim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

!
!

!
!

! !
! !

! !

!

!
!

! !
! !

! ! ! !

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

PartialAncestry, MOGM, dreidim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

Abbildung 7.3: Approximationsgüte bei Variation von ε. Der Wert φ wurde auf
10−3 gesetzt, Logdatei ist Rhythmbox 4.

77

7.3 Approximationsgüte

! !

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

FullAncestry, MOGM, eindim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

! !

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

FullAncestry, MOGM, zweidim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

! ! ! ! ! ! ! ! ! ! ! !
! ! ! !

!
!

!

!

!

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

FullAncestry, MOGM, dreidim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

! ! !
! ! ! ! !

! ! ! ! ! ! ! ! ! !
!

!
!

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

PartialAncestry, MOGM, eindim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

! ! !

!
! ! ! ! !

!

! !
! ! ! ! !

! !
!

!

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

PartialAncestry, MOGM, zweidim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

!
!

!
!

! !
! !

! !

!

!
!

! !
! !

! ! ! !

2e!04 4e!04 6e!04 8e!04 1e!03

0
.7

5
0

.8
5

0
.9

5

PartialAncestry, MOGM, dreidim.

!!

Ä
h

n
lic

h
k
e

it
 z

u
 e

x
a

k
t

Abbildung 7.3: Approximationsgüte bei Variation von ε. Der Wert φ wurde auf
10−3 gesetzt, Logdatei ist Rhythmbox 4.

77

Full Ancestry, memory Partial Ancestry, memory

Full Ancestry, run-time Partial Ancestry, run-time

Full Ancestry, approximation Partial Ancestry, approximation

0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010

0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010

0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010

0
20

00
0

40
00

0

0
20

00
0

40
00

0

0
40

00
0

80
00

0

0
40

00
0

80
00

0

0.
75

0.
85

0.
95

0.
75

0.
85

0.
95

M
ax

. n
o

of
 tu

pe
ls

ɛ ɛ

ɛ ɛ

ɛ ɛ

M
ax

. n
o

of
 tu

pe
ls

Ru
n-

tim
e

in
 m

s

Ru
n-

tim
e

in
 m

s

Si
m

. t
o

ex
ac

t s
ol

ut
io

n

Si
m

. t
o

ex
ac

t s
ol

ut
io

n

a) b)

c) d)

e) f)

Fig. 5. Memory consumption (a, b), run-time (c, d) and similarity to exact solution
(e, f) of HHH algorithms (three-dimensional) with varying ε, φ = 0.001 on biggest log
file of application Rhythmbox.

Classification results For the 110 log files of all applications, we determined
the HHHs, resulting in sets of frequent tupels of hierarchical values. Interpreting
each HHH set as an example of application behaviour, we wanted to answer the
question if the profiles could be separated by a classifier. So we estimated the
expected classification performance by a leave-one-out validation for kNN.

Therefore, we needed to define a distance measure for the profiles determined
by HHH algorithms. The data structures of HHH algorithms contain a small
subset of prefixes of stream elements. The estimated frequencies fp are calculated
from such data structure by the output method and compared to φ, thereby

19

generating a HHH set. The similarity measure DSM operates not on the HHH
sets, but directly on the internal data structures D1, D2 of two HHH algorithms:

sim(D1, D2) =

∑
p∈P1∩P2

contribDSM(p)

|P1 ∪ P2|
.

Be f ip the estimated frequency of prefix p for data structure Di as normally
calculated by the HHH output method. The contribution of individual prefixes
to overall similarity can then be defined as

contribDSM(p) =
2 ·min(f1p , f

2
p)

min(f1p , f
2
p) + max(f1p , f

2
p)
.

The so defined similarity measure is independent from the choice of φ, as no
HHH sets need to be calculated.

The classification errors for different values of k, hierarchies and distance
measures are shown in Tab. 14. The new DSM distance measure which is in-
dependent of parameter φ shows the lowest classification error in all validation
experiments. As a baseline, we also determined the relative frequencies (TF,
term frequencies) of call types per log file and classified them using kNN (with
Euclidean distance). The error for profiling by HHH sets is significantly lower
than for the baseline.

T TS
k DSM TF DSM TF

3 10.3 17.0 7.7 17.0
5 12.7 18.7 8.7 18.7
7 14.0 21.7 8.7 21.7
9 14.0 21.0 9.0 21.0

Table 14. Results for kNN (k = 3, 5, 7, 9), ε = 0.0005, φ = 0.002 and distance
measures DSM and TF, when only the type hierarchy or type and sequence hierarchy
together are used.

4 Conclusion

Server-based and device-based learning has been investigated regarding resource
constraints. Further experiments to measure resource consumption and predic-
tion accuracy will be conducted on real mobile devices, like Android mobile
phones, whose operating system is also based on the Linux kernel.

Aggregation using HHH worked successfully for the classification of applica-
tions. Further work will exploit HHH aggregation for other learning tasks and
inspect other data streaming algorithms. Concerning server-based learning, we
may now answer the questions from the introduction, whether structural models
are demanded for the prediction of user behavior on the basis of system calls,

20

or simpler models such as Naive Bayes suffice. Should the sequential nature of
system calls be taken into account by the algorithm? Or is it sufficient to en-
code the sequences into the features? Or should features as well as algorithm
be capable of explicitly addressing sequences? We have compared CRF and NB
with respect to their model quality, memory consumption, and runtime. Neither
encoding the sequence into features nor applying an algorithm which is made
for sequential information (i.e., CRF) outperforms a simple model (i.e., NB).

This is in contrast with studies on intrusion detection, where it was shown
advantageous to take into account the structure of system calls, utilizing Con-
ditional Random Fields (CRF) [9] and special kernel functions to measure the
similarity of sequences [23]. Structured models in terms of special tree kernel
functions outperformed n-gram representations when detecting malicious SQL
queries [1]. Possibly, for prefetching strategies, the temporal order of system
calls is not as important as we expected it to be. In the near future the result-
ing improvements in terms of cache hit rate and file operation latencies will be
evaluated systematically based on a cache simulator and by modifying the Linux
kernel.

Given regular processors, CRF are only applicable in server-based learning.
Possibly, the integration of special processors into devices and a massively par-
allel training algorithm could speed up CRF for device-based learning. Further
work will implement CRF on a GPGPU (general purpose graphic processing
unit). GPGPUs will soon be used by mobile devices. It has been shown that
their energy efficiency is advantagous [24].

References

1. C. Bockermann, M. Apel, and M. Meier. Learning sql for database intrusion de-
tection using context-sensitive modelling. In Proc. 6th Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 196 – 205. Springer, 2009.

2. D. Bovet and M. Cesati. Understanding the Linux Kernel, Third Edition. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2005.

3. B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumentation
of production systems. In Proc. of USENIX ATEC ’04, Berkeley, USA, 2004.
USENIX.

4. G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding hierarchical
heavy hitters in data streams. In VLDB ’2003: Proceedings of the 29th international
conference on Very large data bases, pages 464–475. VLDB Endowment, 2003.

5. G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Diamond in the rough:
finding hierarchical heavy hitters in multi-dimensional data. In SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD international conference on Management
of data, pages 155–166, New York, NY, USA, 2004. ACM.

6. G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding hierarchical
heavy hitters in streaming data. ACM Trans. Knowl. Discov. Data, 1(4):1–48,
2008.

7. P. Domingos and M. Pazzani. Beyond independence: Conditions for the optimality
of the simple bayesian classifier. In Machine Learning, pages 105–112. Morgan
Kaufmann, 1996.

21

8. A. Frank and A. Asuncion. UCI machine learning repository, 2010.
9. K. Gupta, B. Nath, and K. Ramamohanarao. Conditional random fields for in-

trusion detection. In 21st Intl. Conf. on Adv. Information Netw. and Appl., pages
203–208, 2007.

10. T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning.
Springer, corrected edition, July 2003.

11. J. Huang, J. Lu, and L. C. X. Ling. Comparing naive bayes, decision trees, and
svm with auc and accuracy. In in: Third IEEE International Conference on Data
Mining, ICDM 2003, pages 553–556. IEEE Computer Society, 2003.

12. J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. Proc. 18th International Conf.
on Machine Learning, pages 282–289, 2001.

13. D. Lohmann, W. Hofer, W. Schröder-Preikschat, J. Streicher, and O. Spinczyk.
CiAO: An aspect-oriented operating-system family for resource-constrained em-
bedded systems. In Proc. of USENIX ATEC, Berkeley, USA, 2009. USENIX.

14. R. Malouf. A comparison of algorithms for maximum entropy parameter esti-
mation. In COLING-02: proceedings of the 6th conference on Natural language
learning, pages 1–7, Morristown, NJ, USA, 2002. Association for Computational
Linguistics.

15. J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of
Computation, 35(151):773–782, 1980.

16. L. R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, Feb 1989.

17. N. N. Schraudolph and T. Graepel. Conjugate directions for stochastic gradient
descent. In ICANN ’02: Proceedings of the International Conference on Artificial
Neural Networks, pages 1351–1358, London, UK, 2002. Springer-Verlag.

18. N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-Newton method for
online convex optimization. In M. Meila and X. Shen, editors, Proc. 11th Intl.
Conf. Artificial Intelligence and Statistics (AIstats), volume 2, pages 433–444, San
Juan, Puerto Rico, 2007. Society for Artificial Intelligence and Statistics.

19. F. Sha and F. Pereira. Shallow parsing with conditional random fields. In NAACL
’03: Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology, pages
134–141, Morristown, NJ, USA, 2003. Association for Computational Linguistics.

20. A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. Wiley
Publishing, 2010.

21. C. Sutton and A. McCallum. An Introduction to Conditional Random Fields for
Relational Learning. In L. Getoor and B. Taskar, editors, Introduction to Statistical
Relational Learning. MIT Press, 2007.

22. R. Tartler, D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk. Dynamic As-
pectC++: Generic advice at any time. In The 8th Int. Conf. on Software Method-
ologies, Tools and Techniques, Prague. IOS Press. (to appear).

23. S. Tian, S. Mu, and C. Yin. Sequence-similarity kernels for SVMs to detect anoma-
lies in system calls. Neurocomput., 70(4–6):859–866, 2007.

24. C. Timm, A. Gelenberg, F. Weichert, and P. Marwedel. Reducing the Energy Con-
sumption of Embedded Systems by Integrating General Purpose GPUs. Technical
Report 829, Technische Universität Dortmund, Fakultät für Informatik, 2010.

25. S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy.
Accelerated training of conditional random fields with stochastic gradient methods.
In ICML ’06: Proceedings of the 23rd international conference on Machine learning,
pages 969–976, New York, NY, USA, 2006. ACM.

22

Bayesian Networks to Predict
Data Mining Algorithm Behavior

in Ubiquitous Environments

Aysegul Cayci, Santiago Eibe, Ernestina Menasalvas, and Yucel Saygin∗

Sabanci University, Istanbul, Turkey,
Facultad de Informatica, Universidad Politecnica, Madrid, Spain

aysegulcayci@su.sabanciuniv.edu

{emenasalvas,seibe}@fi.upm.es

ysaygin@sabanciuniv.edu

Abstract. The growing demand of data mining services for ubiquitous
environments motivates deployment of data mining algorithms that use
context to adapt their behavior to present circumstances. Despite the
efforts and results so far for efficient parameter tuning, there is a need
to develop new mechanisms that integrate also the context information.
Thus, in this paper, Bayesian networks are used to extract the effects of
data mining algorithm parameters on the final model obtained, both in
terms of efficiency and efficacy in a given situation. Based on this knowl-
edge, we propose to infer future algorithm configurations appropriate
for situations. Instantiation of the approach for association rules is also
shown in the paper and the feasibility of the approach is validated by
the experimentation.

Key words: automatic data mining, data mining configuration, ubiq-
uitous data mining

1 Introduction

Ubiquitous computing, still an immature computing paradigm, brings new chal-
lenges to software designers and also to designers of data mining software. In
ubiquitous computing, processing takes place on the restricted resource devices
that are embedded or spread in the environment which is subject to change all
the time. This means that, ubiquitous computing paradigm implies lack of expert
involvement on tuning the software where it is most needed due to scarcity of
resources and variability of the context. Consequently, automatic configuration
is required under changing context and resource constrained environments.

There is an increasing demand for intelligent applications on ubiquitous de-
vices while data mining methods has been the main way to provide such intelli-
gence. As an example, knowledge discovery and data mining can be an enabling

∗ This work has been partially financed by Spanish Ministry of Innovation under
project TIN2008-05924.

23

2 Bayesian Networks to Predict Data Mining Algorithm Behavior

technology for more adaptive, dynamic, and autonomous social networking. Con-
sider the scenario where mobile devices have the data mining ability for predict-
ing the current activity and even the mood of the user. Combined with context
information such as location and time enriched with more semantics, the mobile
device can offer recommendations to the user taking into account the state of
the other people in the social network of the user. For example if the user is at
home but still not tired and in a jolly mood, the mobile device can communicate
with the (mobile devices of the) friends of the user who are in the vicinity and
in a similar mood to form an ad-hoc going-out group. Such an application will
require mining of the data collected through various sensors to recognize the
activity of the user and his/her mood taking into account the context as well.

Nevertheless, important challenges need to be addressed on the ubiquitous
data mining design, which two of them will be focused on in this paper. First
of all, the factors such as the context and the resource limitations of the device
should be considered when deciding how to configure the data mining algorithm.
Secondly, there is a need to develop methods for the autonomous and adaptable
execution of data mining. Several context-aware and resource-aware data mining
approaches have been proposed in the literature to deal with the issues posed
due to ubiquity ([11] [12]). The proposed approaches consider the current context
and/or resource availability to adjust parameters of data mining process or to
determine the configuration setting of data mining in order to make autonomous
decisions. However, in these approaches, knowledge from the past experiences
is not incorporated into the decision mechanism of the parameter setting. As a
result, settings are not adaptable in the sense that they do not improve over time
based on past experience. A mechanism that adapts the data mining algorithm’s
configuration setting decisions according to the experiences learned, is lacking. In
order to fulfill this deficiency, we propose to use machine learning techniques for
deciding parameter settings according to past behavior of the algorithm under
a given situation.

Automatic parameter tuning research area has gained much interest in the
recent years. A number of studies have been published offering optimization and
machine learning techniques to solve the problem. The main idea behind the opti-
mization techniques is to determine the performance criteria to be optimized and
the configuration that satisfies best this criteria. Optimization methods proposed
for automatic parameter tuning are as follows: racing algorithm by Birattari et
al ([4]); iterated local search approach by Hutter, Hoos and Stutzle ([15]); al-
gorithm portfolios paradigm by Gagliolo and Schmidhuber ([10]); experimental
design combined with local search by Diaz and Laguna ([9]). Other prevailing
technique proposed for automatic parameter tuning is based on machine learning
classifiers. In general terms, classifiers are used to learn the parameters to set the
configuration. Srivastava and Mediratta ([20]) suggest usage of decision trees for
automatic tuning of search algorithms. Through classification of previous runs
of the algorithm by means of Bayesian network, Pavon, Diaz and Luzon ([18])
have automatized the parameter tuning process.

24

Bayesian Networks to Predict Data Mining Algorithm Behavior 3

Interest on automatic parameter tuning originates in alleviating configura-
tion setting of algorithms with a plethora of parameters most of the time but not
to provide autonomy. In general, the argument of current work on automatic pa-
rameter setting is to find a configuration regardless of the circumstances. In the
current proposed methods, neither the state of the device nor the requirements
of the current situation are considered. However, in the ubiquitous environments,
state of device and current situation are important factors to determine the ap-
propriate parameter settings and to make the device behave autonomously under
any circumstance. In our mechanism, we consider the relationship between situ-
ations and parameters. Specifically, context in which the device is in when data
mining request is received and the availability of the resources are incorporated
in the parameter setting decision.

Cao, Gorodetsky and Mitkas ([6]) discuss the contribution of data mining to
agent intelligence. They argue that a combination of autonomous agents with
data mining supplied knowledge provides adaptability whereas knowledge ac-
quisition with data mining for adaptability relies on past data (past decisions,
actions, and so on). Our approach to provide adaptability is similar: we use
machine learning approach in order to generate adaptable parameter setting de-
cisions and enhance ubiquitous data mining with autonomy and adaptability.
Our mechanism is based on Bayesian networks because Bayesian networks en-
able (1) the finding of the probabilistic relationships between the circumstances,
parameters, and performance criteria, (2) considering several factors rather than
a single criteria when determining the setting and (3) adaptability by learning
from the past experiences. Pavon, Diaz, Laza and Luzon also proposed Bayesian
networks for parameter tuning in [18]. The innovative feature of our mecha-
nism is that we use not only information on parameters but also information on
context and resources (what we call circumstances) to discover the appropriate
configuration of a data mining algorithm for a given situation. When determin-
ing the best configuration, both efficiency and efficacy of the final model are
taken into account.

The rest of the paper is organized as follows: Section 2, presents the proposed
approach and instantiates it for a case. In Section 3, we explain the experiment
that we performed in order to validate of the proposed approach. Finally, future
work is described in Section 4.

2 Proposed Approach

We present a mechanism to determine the algorithm configuration in a resource-
aware and context-aware manner with respect to a data mining request issued.
The mechanism is based on learning from past experiences, that is, learning from
the past executions of the algorithm in order to improve the future decisions.

25

4 Bayesian Networks to Predict Data Mining Algorithm Behavior

2.1 Analysis of the Problem

The main objective can be stated as ”to determine automatically the configura-
tion of a data mining algorithm which will run on an ubiquitous device”. This
objective requires understanding the elements influencing the solution:

– the resources that the algorithm needs in order to accomplish its task,
– the algorithm parameters to determine their effect on the resource usage and

the efficacy of the data model,
– the context features which may have an effect on the efficacy of the data

mining model and the efficiency of data mining,
– the semantics of data,
– the features of mining data set,
– the quality indicators which show the efficacy of the data mining model and

efficiency of data mining.

In addition, the most important issue is how to change or improve configuration
setting decisions as the circumstances change. The decisions must be adaptable
to changing conditions as a data miner expert adapts his decisions when the
conditions change.

2.2 Bayesian Networks

Bayesian networks which represent the joint probability distributions for a set of
domain variables are proved to be useful as a method of reasoning in several re-
search areas. Medical diagnosis([3]), language understanding ([7]), network fault
detection([14]) and ecology([2]) are just a few of the diverse number of applica-
tion areas where Bayesian network modeling is exploited.

A Bayesian network is a structure that shows the conditional dependencies
between domain variables and may also be used to illustrate graphically the
probabilistic causal relationships among domain variables. A Bayesian network
consists of a directed acyclic graph and probability tables. The nodes of the net-
work represent the domain variables and an arc between two nodes (parent and
child) indicates the existence of a causal relationship or dependency among these
two nodes. Associated with each node there exist a probability table (PT). If the
node has no parents, its probability table contains the prior probabilities else the
conditional probabilities between the node and its parents. Although the domain
variables can be continuous, they are discretized most of the time for simplicity
and efficiency. Besides representing the dependencies between domain variables,
a Bayesian network is used for inferencing the probability of a variable given the
observations of other variables. In depth knowledge on Bayesian networks can
be found in [19].

Learning the Bayesian network structure from data rather than drawing the
structure by analyzing the dependencies of domain variables, is a field of research
which was studied extensively. Algorithms that learn the structure are most
useful when there is a need to construct a complex network structure or when
domain knowledge does not exist as in an ubiquitous environment. A discussion
of the literature can be found in [5].

26

Bayesian Networks to Predict Data Mining Algorithm Behavior 5

2.3 Basis of the Approach

We propose machine learning as the main mechanism to learn from past ex-
ecutions of data mining algorithms. Without a loss of generality, we selected
Apriori [1] as the prototype algorithm for automatic configuration but the pro-
posed mechanism is also applicable to any other algorithm. In particular, we
propose to construct a Bayesian Belief Network using the information collected
during algorithm’s previous executions in order to predict future behaviors. The
content of the information is determined by considering the elements that in-
fluence the solution of the problem (given in subsection 2.1). This information
which is recorded as history of execution records is divided into three groups:

– Circumstantial: Information about the conditions of the resources and the
context states that is obtained prior to execution of the algorithm.

– Configuration Parameters: The values that the algorithm parameters receive.
– Quality Measurements: Efficiency and efficacy related information. They in-

clude resource consumption measurements such as duration of the data min-
ing, average memory used or indicators of model quality such as minimum
support or confidence of an association rule model.

Groups are determined by taking into account the relationships that we want to
examine by building a Bayesian network. Moreover, the content of the groups
cover all the elements given in subsection 2.1 except the ones related to the data
to be mined as we focus on the ubiquitous aspect in this work.

Once the Bayesian Network is built, the steps that lead to automatic param-
eter configuration are as follows (See Fig. 1 for details):

– Association rules are needed for a specific data set,
– Current circumstance and the quality requirements of the data model are

determined to be used for the configuration setting,
– The algorithm which will discover the association rules is configured au-

tonomously by inferencing from the Bayesian Belief Network that represents
circumstances, parameters and quality measurements,

In the next subsections we describe in more detail the process of building the
Bayesian network.

2.4 Definitions

Algorithm Configuration: Configuration of the algorithm is defined by a set
of ordered pairs (p,v) where p stands for a parameter and v is the value it
takes.

Circumstance: Circumstance is defined by a set of ordered pairs (f,s) where f
is either a resource or context feature and s is the state of this feature.

Quality Criteria: Quality criteria is defined by a set of ordered pairs (q,l)
where q is a quality measurement and l is the required level for this mea-
surement. Quality measurements are metrics of efficiency or efficacy of the
algorithm. Quality criteria define either the expected efficiency of data min-
ing or efficacy of the model or both under the given circumstances.

27

6 Bayesian Networks to Predict Data Mining Algorithm Behavior

2.5 Mechanism to Predict Ubiquitous Data Mining Configuration

We propose to build a Bayesian network using data collected from past execu-
tions of the data mining algorithm. The Bayesian network reflects the conditional
dependency between the fields of execution records. Configuration is inferred
from the Bayesian network. More specifically, the most likely configuration is
determined from the Bayesian network by estimating the probabilities of possi-
ble configuration settings from previous Apriori runs in execution circumstances
similar to current in order to obtain quality levels similar to the required.������ �����	
� ��� �� ��� ����

�� ����� � ���� ���� �� ����� ������� �� ��
 � �� ����������� � ����� ���	 �� �� ����� ������� �� ���� �� � �
� �� �������� ��� �� ��� ��	� �� ���	 �� � ���������� ���� �� ����� ����� �� ���� � ���� ���� ����� ����
�� �	�� ������ �
 ���� ��� ��� ��� ���� �	�� ������ �•

�� �� ����� ���� � ��	� ������ �
•
�� �	�� ������ � �� �� ���� ��
•
 �� ���� ���� ��� �� ��� � ������!�� ���� ����� �
�!�� ���� � ���� �
" �� ���� �� ����� ���� ���� �	�� ������ �� � �� �������� ���� �� ��
�� �	� �� ����� ��#��� ����$� �!�� ���� ����� �
�#��� ����$�
���� �
�#��� ��� �� � �� ��� ��	 ��� �� �� �� #� ��� �� ��� ���� %� �� ���

�& '() �*�)��+ �(�� ' '�),& �-(�� �� � �� ����� �� �� ������� � ��
�� � �� ���
.��� �� ��� ��
Fig. 1. Bayesian Network construction steps and data mining configuration mechanism.

We used the K2 algorithm proposed by Cooper and Herskovits([8]) as the
basis for constructing Bayesian network. Before building the Bayesian network,
we preprocessed the historical information and discretized the fields of execu-
tion records. We made use of the open source code of Weka software([13]) to
construct the network and updated it to fit our needs. The original algorithm
seeks relationships among all the variables. In our case, we have three groups of
variables. The relationships among the variables within a group are not interest-
ing. For example, we are not interested in the relationship among circumstantial
variables such as location and memory available. For this reason, we modified the
K2 algorithm accordingly and looked for relationships among nodes belonging
to different groups of variables. Furthermore, we assigned a level to each group
based on the possible cause-effect relationship between them and we used the
levels to prevent the nodes in the lower level groups to be the parents of the

28

Bayesian Networks to Predict Data Mining Algorithm Behavior 7

nodes in the upper level groups. Fig. 1 illustrates Bayesian network construction
steps that we propose.

The Bayesian network that we construct from historical data represents the
probabilistic relationship between circumstance states, discretized possible pa-
rameter settings, and measured as well as discretized quality measurements.
Appropriate setting of an algorithm’s parameter is extracted from the Bayesian
network.

2.6 Instantiation of the Approach for Apriori

In this section, automatic configuration setting is instantiated for the well known
association rule mining algorithm Apriori. A possible instantiation of the ap-
proach is shown by assignments made to the parameters of Apriori, circum-
stances and quality criteria.

Parameters. We use the parameters for the implementation of Apriori available
by Weka software ([13]). The list of parameters that we selected for tuning are
as follows:

– upperBoundMinSupport: upper bound for minimum support.
– delta: the factor which minimum support is decreased each time Apriori is

iterated.
– lowerBoundMinSupport: lower bound for minimum support.
– numRules: number of strong association rules.
– minMetric: minimum confidence.

A possible configuration that is obtained as a result of inferences made from the
Bayesian network, is as follows:
Configuration = {(upperBoundMinSupport, 0.9), (lowerBoundMinSupport, 0.5),
(delta, 0.05),(numRules, 15),(minMetric, 0.9)}

Circumstance. We restrict the instantiation of circumstance to a small number
of resources and context. Resources that we use are memory and CPU. Context
features considered in the instantiation are location and time. We discretized
the actual figures that we obtained for the availability measures and converted
to states. We define five states for the resource availability measures numbered
from one to five where small numbered states indicate scarcity of the resource;
high numbered ones, the opposite. Location refers to physical location and time
slots of the day are used when discretizing time. Some possible instantiations of
circumstances are as follows:
Circumstance 1= {(memory available, 4), (location, home)}
Circumstance 2= {(CPU available, 1),(memory available, 2),(location, office)}

Quality Criteria. Quality measurements selected for the instantiation are di-
vided into two in relation to the kind of criteria they measure (Table 1). The
ones for measuring efficiency can be obtained by calling system primitives. On

29

8 Bayesian Networks to Predict Data Mining Algorithm Behavior

the other hand, it is possible to extract the efficacy related ones from the data
mining model generated. Some possible instantiations of quality criteria are as
follows:
Quality Criteria 1 ={(average memory usage, 1)}
Quality Criteria 2 ={(total CPU time, 1), (number of rules discovered, 3)}

Table 1. Quality measurements for efficiency and efficacy.

Efficiency Efficacy
Average memory usage Minimum support of the resulting model
Maximum memory usage Number of iterations
Total CPU time Number of rules discovered
Total number of CPU cycles Minimum confidence obtained
Duration

3 Experimental Evaluation

We proposed an automatic parameter setting mechanism in which the decisions
are based on Bayesian network of data mining algorithm’s past executions. Our
aim in conducting experiments is to validate that it is possible to establish the
configuration of the algorithm by making use of the proposed mechanism. In or-
der to do that, we created Bayesian network of Apriori executions to be used for
understanding the behavior of Apriori. Besides, we employed another approach,
full factorial experiment design to compare and verify the results obtained from
the Bayesian network. In full factorial experiment design, we examined the ef-
fects of the parameter settings of the algorithm against a quality metric. Same
data used for the Bayesian network construction is supplied to the full factorial
experiment design. Finally, we compared the inferences made from the Bayesian
network against the results of the full factorial experiment design. There should

��� �������� 	
��
��� ����
��������
����� � �������������
� ������� !" �!#$"% &��! �&"�&"% �'��! �&"(!�!�))��*�!#� +,)!���)�)" � -���-���
���������� ./ 0�������1����� �2�3 �������4
��5�6 ���3
�7 0��
��8������ ���������� ���� 9:;<=>?@A B;<@CDE .6 ����� �� F�4�33 ��������� 0����G���� ����
Fig. 2. Experiment phases.

30

Bayesian Networks to Predict Data Mining Algorithm Behavior 9

be a sufficient number of Apriori executions in order to obtain a sound and re-
liable Bayesian network. Considering this requirement, we preferred to use full
factorial design where all combinations of parameters for the determined levels
are utilized during the tests. We divide the experiment into three phases:

1. Multi-level full factorial design is used to reveal the factors (parameters) that
are effective on the quality indicators under a given circumstance.

2. Bayesian network is constructed in order to infer the probabilistic relation-
ships among parameters, circumstances and quality criteria.

3. The accuracy of the proposed mechanism is assessed by comparing the results
of two phases.

In order to generate historical data, we used an ubiquitous data mining simulator.
Fig. 2 shows the interaction of the experiment phases and the ubiquitous data
mining simulator.

3.1 Ubiquitous Data Mining Simulator and Experiment Data

We have developed a simulator in order to incorporate the features of ubiquitous
data mining that we are interested in while creating records of Apriori executions
for the experiment. While running Apriori, a possible circumstance consisting
of resources states and context is given as input to simulator for each Apriori
execution. An execution environment according to the circumstance provided is
simulated. For example, if the stated resource state is the scarcity of memory, the
simulator starts dummy processes to use up the memory in order to run Apriori
in a memory constrained situation. In the same way, information given about
context is stored in the execution record as part of circumstantial information.
Briefly, the data mining simulator reads circumstance and Apriori parameters
from a file, generates the resource scarcity conditions if the given circumstance
requires and runs Apriori by calling Weka with the given parameters. Upon
completion, an execution record is written consisting of input context fields,
fields showing resources availability, Apriori parameters, resource usage fields
and the data mining model.

While generating possible parameter values of Apriori, all combinations of
determined levels of process factors are considered as in full factorial design. Full
factorial design is one of the Design of Experiment (DoE) methods [17] which
is statistically determining the effects of factors of a process to its response by
systematically varying the levels of factors during testing of the process. In DoE
terminology, response is the output variable of the process, factors are its input
variables and level is a possible setting for a factor. In our case, Apriori param-
eters correspond to full factorial experiment design factors and possible settings
of Apriori parameters correspond to levels in factorial design terminology. Hence,
we determined possible settings for Apriori parameters (Table 2) and run for all
combinations of levels.

We simulate an ubiquitous device by composing different availability of re-
source and context. Therefore we determined two groups of levels to be used

31

10 Bayesian Networks to Predict Data Mining Algorithm Behavior

Table 2. Levels used for parameters.

Circumstance Mnemonic Parameter Levels

Group 1

U upper bound minimum support 0.7, 0.8, 0.9
M lower bound minimum support 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
D delta 0.01, 0.05, 0.1, 0.15, 0.2
N number of association rules 1, 5, 10, 15, 20
C minimum confidence 0.5, 0.6, 0.7, 0.8, 0.9

Group 2

U upper bound minimum support 0.7, 0.8, 0.9
M lower bound minimum support 0.4, 0.5, 0.6
D delta 0.01, 0.05, 0.1, 0.15, 0.2
N number of association rules 15, 20
C minimum confidence 0.8, 0.9

on different circumstances (Table 2). We run Apriori for every combination of
levels so the number of distinct settings in the groups are 2250(3x6x5x5x5) and
180(3x3x5x2x2) respectively. The states of the context and resource features that
we used in forming the circumstances are {home, office} and {short on memory,
cpu bottleneck, none} respectively. All the resource states are simulated for each
context state, resulting in six circumstances. Each group is used for one context
state as in the first group for home and the second group for office.

3.2 Multi-level Full-Factorial Experiment Design

In this phase, we apply multi-level full factorial design using Apriori execution
records generated in the manner explained in the previous section. Applying
multi-level full factorial design to the history of Apriori execution data deter-
mines which Apriori parameters (factors) effect which quality measurement (re-
sponse). Since we run Apriori by simulating specific circumstances, we are able
to analyze the effects for each circumstance. We obtained an ”effects table” of
quality measurements by parameters for each circumstance.

We used experiment software Minitab([16]) to calculate the estimated effects
and to plot the analysis results. In this paper, we limited our discussion of results
to six quality measurements: average memory use, total CPU time, duration,
maximum memory use, total CPU cycles, minimum support of the model. We
determined the effects of five Apriori parameters to each of the quality measure-
ment under a single, different circumstance. For example, when home-memory
low, we examined the effects of five Apriori parameters to average memory use
or when office-CPU bottleneck, the effects of parameters to total CPU cycles and
so on.

Fig. 3 illustrates the full factorial design results obtained for home-memory
low. We analyze the results for this circumstance in detail in order to explain the
method. In the figure, the means of quality measurements for the utilized levels
of parameters are plotted. In quadrants of Fig. 3, plots for average memory
use, total CPU time, duration and minimum support of the model are given
respectively. Each plot (U, M, D, N, C) within a quadrant is for a parameter.
The mean of the measured value is plotted for every level we tested for that
parameter in the experiment. If the plot is not flat which indicates the means of
measured values vary with different value assignments of this parameter, then

32

Bayesian Networks to Predict Data Mining Algorithm Behavior 11

�
� �

�
Fig. 3. Main effects plot of 4 quality measurements for home-short on memory.

this parameter is effective on the measured value. For example, we analyze the
main effects plot for average memory use in quadrant 1 and we observe that
D is most effective on average memory use since varying its value causes big
differences on the mean average memory use. The plots of means give an insight
on understanding the effect of a certain parameter to a quality measure. On the
other hand, we considered the F test values that are supplied by Minitab([16])
to determine the significance of the effect.

The next step is to determine the appropriate value of the parameter which
is designated as effective on the measured criteria. We choose the value that has
the smallest mean of response for its factor level combinations as the appropriate
value. We present the results of full factorial experiment design in Table 3 where
we compare against the results of the Bayesian network.

3.3 Parameter Setting by Bayesian Network Inferences

In this phase, we apply our mechanism and obtain the results, that is, the param-
eter settings of Apriori from the Bayesian network. First, we explain in detail
our considerations while constructing the Bayesian network before presenting
the results of this phase.

Execution records generated by ubiquitous data mining simulator are first
discretized, then they are used to construct the Bayesian network (Fig. 4). We
made use of the K2 algorithm ([8]) but we grouped the nodes while constructing
the network and searched for causal relationship among these groups of nodes.

33

12 Bayesian Networks to Predict Data Mining Algorithm Behavior

The nodes in the upper level represent the circumstance, middle level nodes
represent Apriori parameters, and finally the lowest level nodes are quality mea-
sures.

Fig. 4. Bayesian network of Apriori runs.

The cause and effect relationships between circumstances and parameters
present which parameter settings are appropriate under which circumstances,
whereas the cause and effect relationships between parameters and quality met-
rics show which parameters are effective on which quality measures.

While producing the experiment data for this Bayesian network, we did not
determine appropriate parameter settings for circumstances but we ran Apriori
for every combination of parameters in each circumstance because our purpose
is to find the effect of parameters to quality measurements in the first place.
Therefore, at this stage the relationships between circumstances and parameters
is not meaningful. We assumed each circumstance variable relates to each pa-
rameter node in order to include circumstances in the inference mechanism. The
relationships between the parameter nodes and quality measure nodes represent
the effectiveness of parameters against quality measurements. The Bayesian net-
work in Fig. 4 shows that minimum confidence and requested rules are related
only to efficacy; delta to all efficiency measurements as well as lower and upper
bound minimum support, are related to all.

We determined parameter settings of parameters by inferencing from the
Bayesian network given in Fig. 4. In particular, we evaluated p(x|E) which is the
conditional probability of x (parameter variable) given E (circumstantial and
quality measure variables). A pseudo code of this calculation is given below. We
estimate from previous Apriori runs, the support for assigning a certain value
to a parameter when execution circumstances similar to current and quality
levels similar to the required were observed. Given the circumstances and quality

34

Bayesian Networks to Predict Data Mining Algorithm Behavior 13

requirements, we repeat the estimation of the most likely assignment for every
parameter of the algorithm.

Pseudo code of parameter setting estimation from the Bayesian network

Definitions:

Let C be the set of circumstance sets Ck
where (fkj,skj) is a feature, state pair in Ck,

ck is the number of pairs in Ck.

Qk is the corresponding quality criteria set of Ck
where (qkj,vkj) is a quality measure, state pair in Qk,

nk is the number of pairs in Qk.

P is the set of parameters sets Px
where pxy is a parameter setting in Px,

rx is the number of possible settings for Px.

Pseudo Code:

for every Ck in C

let E be all fkj=skj (forall j <= ck) and qkl=vil (forall l <= nk)

for every Px in P

for every pxy in Px (forall y <= rx)

calculate Prxy = Probability (Px = pxy | E)

pxy with highest Pr is the appropriate setting of Px for Ck.

The parameter settings that we obtained by applying the pseudo code above
to the Bayesian network given in Figure 4 are presented in Table 3 and are
compared against the parameter settings of full factorial design.

3.4 Comparison of Results

We propose to use Bayesian network for automatizing the parameter tuning of
data mining algorithms. We discovered the relationships among circumstantial
variables, parameters and quality measures to use this information for proba-
bilistically estimating the appropriate parameter settings. In order to validate
the results that are obtained from the Bayesian network, we used another ap-
proach, full factorial design to achieve the same goal. In full factorial design,
regression is used to determine the effect of a parameter to a quality measure.
Both of the approaches can be used to determine the parameter settings of an
algorithm where the outcomes of Bayesian network and full factorial design are
summarized as follows:

– Full factorial design provides
• The list of parameters which are not effective on a quality measure
• The parameter setting which has the highest/lowest least square mean
for a quality measure

– Inference from Bayesian network provides
• The list of parameters which are not related to a quality measure
• Most likely parameter setting given the circumstance(s) and the quality
measure(s) as evidence

35

14 Bayesian Networks to Predict Data Mining Algorithm Behavior

In factorial design, the effects of factors can be analyzed against a single
response at a time. Although, this restriction does not apply to Bayesian infer-
ences, we used a single quality measure in order to analyze and compare the
results of the Bayesian inference with the full factorial design results. The flex-
ibility of using multiple variables on forming the evidences of inferences is one
of the strengths of Bayesian network over full factorial design. We simulated a
specific circumstance each time we analyzed the effects of parameters onto a sin-
gle quality measure. In both approaches, we aimed to estimate the appropriate
values for five parameters considering six circumstance-quality measures. Table
3 shows the results we obtained from both approaches. Minimum confidence is
not included in Table 3, since it is observed that minimum confidence is not
related to any of the considered quality measures in both of the approaches. The
first parameter value given on each column is obtained by inferring from the
Bayesian network whereas the second one is from the full factorial design (B/F).

Table 3. Parameter settings by circumstance.

Circumstance Quality Measure U M D N

home-short on memory average memory usage B/F 0.9/0.9 0.6/0.6 0.2/0.2
home-CPU bottleneck total CPU time B/F 0.7/- 0.6/0.6 0.2/0.2 -/1
home-no constraints model’s minimum support B/F 0.7/0.7 0.6/0.6 20/20
office-short on memory maximum memory usage B/F 0.9/0.7 0.6/0.6 0.2/0.2
office-CPU bottleneck total CPU cycles B/F 0.7/0.7 0.6/0.6 0.2/0.2
office-no constraints duration B/F 0.7/0.7 0.6/0.6 0.2/0.2

It is possible to say based on the results in Table 3, that in majority of the
cases, parameters that are found to have effect on a quality measure under a
circumstance in full factorial design, are represented as related to that quality
measure under the same circumstance in the Bayesian network. The appropriate
parameter settings decided in order to optimize a quality measure in full factorial
design is identical in most of the cases to the parameter settings inferred from
the Bayesian network given the same quality measure.

4 Conclusion

Anticipating the importance of autonomous and adaptable behavior incorpo-
ration in ubiquitous data mining enabled us to propose Bayesian network for
understanding the algorithm behavior and determining the appropriate parame-
ters. Considering the characteristics of ubiquitous environments, we stressed the
usage of circumstance on determining appropriate parameter values. We also
aimed at recommending the parameter settings that most likely satisfies the
required quality. Thus, we analyzed the effects of parameter settings to quality
measures which are related to both efficiency of data mining process and efficacy
of the data mining model.

36

Bayesian Networks to Predict Data Mining Algorithm Behavior 15

As the result of our simulation experiment, satisfactory parameter and qual-
ity measure relationships to recommend parameter settings, are formed in the
Bayesian network. We also validated our proposal by comparing the parame-
ter settings obtained from the Bayesian network against another approach, full
factorial experiment design. Experiment on association rule mining shows that
proposed method gives parameter settings almost identical to the optimal setting
obtained from full factor analysis which is a completely different approach.

In the future, we will assess the adaptability of the proposed approach by
conducting experiments using recommended parameter values obtained in this
work. We aim to extend this work by constructing Bayesian network structures
for alternative variety of circumstantial variables and quality measures. Assessing
the accuracy and the cost of the estimation and analyzing when to update the
network are still the open issues in which we also plan to work in the near future.

Acknowledgments. Authors would like to thank Can Tunca and Engin Do-
gusay from Sabanci University who contributed to this study by developing the
supporting software.

References

1. Agrawal, R. and Srikant R.: Fast Algorithms for Mining Association Rules. In :
Proceedings of the Int. Conf. on Very Large Data Bases (VLDB’94), pp. 487–499.
Morgan Kaufmann, San Francisco (1994)

2. Amstrup, S. C., Marcot, B. G., and Douglas, D. C.: A Bayesian Network Modeling
Approach to Forecasting the 21st Century Worldwide Status of Polar Bears. In :
Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications.
Geophysical Monograph 180, 487–499. American Geophysical Union, Washington,
DC (2008)

3. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., and Cooper, G.E.: The ALARM
Monitoring System: A Case Study with two Probabilistic Inference Techniques for
Belief Networks. In : Proceedings of the Second European Conference on Artificial
Intelligence in Medicine, pp. 247–256. London (1989)

4. Birattari, M., Stutzle, T., Paquete,L. and Varrentrapp, K.: A Racing Algorithm for
Configuring Metaheuristics. In : GECCO ’02 Proceedings of the Genetic and Evo-
lutionary Computation Conf., pp. 11–18. Morgan Kaufmann, San Francisco (2002)

5. Buntine, W.: A Guide to the Literature on Learning Probabilistic Networks from
Data. IEEE Trans. on Knowl. and Data Eng. 8, 195–210 (1996)

6. Cao, L., Gorodetsky, V. and Mitkas, P.A.: Agent Mining: The Synergy of Agents
and Data Mining. IEEE Intelligent Systems, 24, 64–72, (2009)

7. Charniak, E., and Goldman, R.: A Semantics for Probabilistic Quantifier–Free First–
Order Languages with Particular Application to Story Understanding. In: Proceed-
ings of the Eleventh International Joint Conference on Artificial Intelligence, pp.
1074-1079. Menlo Park, California (1989)

8. Cooper, G. F. and Herskovits, E.: A Bayesian Method for Constructing Bayesian
Belief Networks from Databases. In: Seventh Conference on Uncertainty in Artificial
Intelligence, pp. 86–94. Morgan Kaufmann, San Francisco (1991)

37

16 Bayesian Networks to Predict Data Mining Algorithm Behavior

9. Adenso-Diaz, B. and Laguna, M.: Fine-Tuning of Algorithms Using Fractional Ex-
perimental Designs and Local Search. Oper. Res. 54, 99-114 (2006)

10. Gagliolo, M. and Schmidhuber, J.: Learning Dynamic Algorithm Portfolios. Annals
of Mathematics and Artificial Intelligence 47, 295-328 (2006)

11. Gaber, M.M. and Yu, P. S.: A Framework for Resource-Aware Knowledge Discovery
in Data Streams: a Holistic Approach with its Application to Clustering. In:ACM
Symposium on Applied Computing, pp. 649–656. ACM, NY (2006)

12. Haghighi, P.D., Zaslavsky, A., Krishnaswamy, S., and Gaber, M.M.: Mobile Data
Mining for Intelligent Healthcare Support. In: 42nd Hawaii international Conference
on System Sciences, pp. 1–10. IEEE Computer Society, Washington,DC (2009)

13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H.:
The WEKA Data Mining Software: An Update. SIGKDD Explorations, 11, (2009)

14. Hood, and C., Ji, C.: Proactive Network Fault Detection. In: Sixteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Driving
the Information Revolution, INFOCOM, pp. 1147. IEEE Computer Society, Wash-
ington, DC (1997)

15. Hutter, F., Hoos, H. H., and Stutzle, T.: Automatic Algorithm Configuration Based
on Local Search. In: 22nd National Conference on Artificial Intelligence, pp. 1152–
1157. AAAI Press, (2007)

16. Minitab Inc., http://www.minitab.com/en-US/
17. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley and Sons,

(2006)
18. Pavon, R., Diaz, F., Laza, R., and Luzon, V.: Automatic Parameter Tuning with

a Bayesian Case-Based Reasoning System. A Case of Study. Expert Syst. Appl. 36,
3407–3420 (2009)

19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, (1988)

20. Srivastava, B. and Mediratta, A.: Domain-Dependent Parameter Selection of
Search-Based Algorithms Compatible with User Performance Criteria. In: 20th Na-
tional Conference on Artificial Intelligence, pp. 1386–1391. AAAI Press (2005)

38

A Framework for Mobile User Activity Logging

Wolfgang Woerndl, Alexander Manhardt, Vivian Prinz

TU Muenchen, Chair for Applied Informatics / Cooperative Systems (AICOS)

Boltzmannstr. 3, 85748 Garching, Germany
{woerndl, manhardt, prinzv}@in.tum.de

Abstract. The goal of this work is a unified approach for collecting data about
user actions on mobile devices in an appropriate granularity for user modeling.
To fulfill this goal, we have designed and implemented a framework for mobile
user activity logging on Windows Mobile PDAs based on the MyExperience
project. We have extended this system with hardware and software sensors to
monitor phone calls, messaging, peripheral devices, media players, GPS
sensors, networking, personal information management, web browsing, system
behavior and applications usage. It is possible to detect when, at which location
and how a user employs an application or accesses certain information, for
example. To evaluate our framework, we applied it in several usage scenarios.
We were able to validate that our framework is able to collect meaningful
information about the user.

Keywords: user modeling, mobile, activity logging, personal digital assistant,
sensors

1. Introduction

Mobile devices like Smartphones and personal digital assistants (PDAs) are becoming
more and more powerful and are increasingly used for tasks such as searching and
browsing Web pages, or managing personal information. However, mobile
information access still suffers from limited resources regarding input capabilities,
displays, network bandwidth etc. Therefore, it is desirable to tailor information access
on mobile devices to data that has been collected and derived about the user (the user
model).

When adapting information access, systems often apply a general user modeling
process [1]. Thereby, we can identify three main steps (Fig. 1): 1. collecting data
about the user, 2. analyzing the data to build a user model, 3. using the user model to
adapt information access.

39

Fig. 1. User modeling process [1]

In this work, we focus on the first step of this user modeling process: the collection

of data about the user in a mobile environment. The goal of this work is a unified
approach for recording user actions on mobile devices in a granularity appropriate for
user modeling. To fulfill this goal, we have designed and implemented a framework
for mobile user activity logging on Windows Mobile PDAs. The framework handles
different kinds of hardware and software sensors in a combined and consistent way.

The remainder of this paper is organized as follows. The next section describes
requirements and related work. In Section 3 we explain the design and
implementation of our framework for mobile user activity logging. Section 4 covers
the evaluation of our approach. Finally, we give a summary and outlook for future
work in Section 5.

2. Requirements and Related Work

2.1. Requirements

The most important feature of our mobile user activity logger is to cover all user
actions that can occur on a mobile device with associated sensor data. Since the goal
of this work is collecting data for a specific purpose (user modeling), it is important to
consider the granularity of the data recording. To test the usability of a mobile
software application, for example, it may be necessary to record movements on a

40

touch screen, single keystrokes or exactly where a user hits a button. This may lead to
too much data that has to be handled and stored. On the other hand, if a system only
records that a user has been starting the mobile web browser, for example, this
information may not be sufficient to be able to derive knowledge about what the user
is interested in. For our purpose of user modeling, it is useful to also collect which
web sites the user has visited or which keywords she has entered for a web search, for
instance.

For hardware sensors, an activity logging system shall record data when user
actions lead to a change in the situation the user is in. For example, the system should
log when a user is driving or walking around and thus changing her position.
Alternatively, the system could record a snap shot of the sensor status at fixed time
intervals. This may lead to a lot of redundant data and is not preferable since
resources such as storage capacity are limited on the mobile device.

Another focal point to consider is implicit versus explicit user profile acquisition.
Due to the limitation of the mobile user interface, necessary user interactions should
be kept at a minimum. Users do not like to fill out forms or answer questions on a
mobile device. In addition, the system should take into consideration the mobile-
users’ limited attention span while moving, changing locations and contexts, and
expectations of quick and easy interactions [2]. Therefore, the data collection should
be based on observing the user in her ongoing activities without distracting her too
much. It is desirable to collect real usage data as it occurs in its natural setting [3].
Explicit user interaction could be optionally used to augment the implicitly collected
data from hardware and software sensors. For example, the system could optionally
ask whether a user is in a “work” or “leisure” setting in a particular location. By doing
so, the user modeling system could later aggregate information from different
“leisure” situations.

Finally, every system that collects data about the user has to consider users’
privacy concerns. For mobile user modeling this is especially important since
additional information such as the user position is available. Sensor data may be even
more sensible than information users provide in a web form. Therefore, it is desirable
to keep the collected data on the mobile device and not send it to a server over a
network. By doing so, the user can always shut down the data recording or delete the
data. She thus is able to retain control over the collected data. In addition, the user
should have an option to manually disable individual sensors. This option is also
beneficial to be able to save battery power. An example is to disable the GPS sensor
when a user is inside a building for a whole day.

2.2. Related Work

In a nutshell, existing related work is either focused on gathering data in a non-mobile
desktop setting, do collect data from specific sensors only (e.g. analysis of user
location based on GPS logs) or were created for different purposes other than user
modeling.

An example for activity logging in a desktop setting is the approach by Chernov
et.al. [4]. Similar to our aim, their goal is to collect data sets about user behavior using
a single methodology and a common set of tools. One of their main considerations is

41

to protect the data from unauthorized access. Because all the data is stored directly on
the user’s computer, it is up to the user to decide to whom and in what form the data
should be released. However, it is not available and usable for mobile devices.

There is plenty of work in capturing and analyzing user movement using GPS and
other positioning technologies. An example is the Geolife project [5]. The goal is to
mine interesting locations and classical travel sequences in a given geospatial region
based on GPS trajectories of multiple users. Their model infers the interest of a
location by taking several factors into account. However, this work and other similar
approaches in mobile user modeling only focus on single or a few sensors such as
GPS and do not attempt to record all user actions on mobile devices.

The Mobile Sensing Platform described in [6] is an interesting system designed for
embedded activity recognition. It incorporates multimodal sensing, data processing
and inference, storage, all-day battery life, and wireless connectivity into a single
wearable unit. However, it is an extra device the user has to carry, and the system
cannot capture all the everyday activities users perform on their PDAs.

MobSens is a system to derive sensing modalities on smart mobile phones [7]. The
authors discuss experiences and lessons learned from deploying four mobile sensing
applications on off-the-shelf mobile phones in the framework that contains elements
of health, social, and environmental sensing at both individual and community levels.
However, the system’s focus is on hardware sensors. Actions that users perform with
software on a mobile device are not integrated.

MyExperience is an interesting project as it allows for capturing both objective and
subjective in situ data on mobile computing activities [3]. The purpose of
MyExperience is to understand how people use and experience mobile technology to
be able to optimize the design of mobile applications, for example. Hence the system
is not tailored towards user modeling, but it can serve as a foundation for our
implementation, since the framework is extensible. We will therefore describe the
MyExperience project in more detail in the next section.

3. Design and Implementation of the Mobile User Activity Logger

In this section we discuss issues concerning the design and implementation of our
mobile user activity logger including the various hardware and software sensors. The
logger is based on the MyExperience framework.

3.1. The MyExperience Project

MyExperience is a software tool for Windows Mobile PDAs and smartphones based
on the Microsoft .NET Compact Framework 2.0 and the Microsoft SQL Compact
Edition database. The software is available as a BSD-licensed open source project [8].
MyExperience runs continuously with minimal impact on people’s personal devices.
It has an event-driven, “Sensor-Trigger-Action” architecture that efficiently processes
a variety of sensed events [3]. The collected data is enhanced by direct user feedback
to enable capturing both objective and subjective information about user actions.

42

MyExperience is based on a three-tier architecture of sensors, triggers and actions.
Triggers use sensor event data to conditionally launch actions. One novel aspect of
MyExperience is that its behavior and user interface are specified via XML and a
lightweight scripting language similar to the HTML/JavaScript paradigm on the web
[8].

3.2. Overview of our mobile activity logger

As part of this work, we implemented 27 new hardware and software sensors and we
used 11 existing sensors from the MyExperience project. Figure 2 gives an overview
of available hardware and software sensors. Note that in our work a “sensor” more
precisely is a piece of code that either connects to an actual hardware sensor on the
mobile device, or reacts to software events or user input.

Fig. 2. Available sensors

MyExperience allows for configuring sensors via an XML file [8]. Note that the

configuration not only controls which sensors to use for data recording, but
MyExperience sensors also trigger actions such as starting an explicit user dialogue
(Fig. 3, left). Since it is not viable to ask the end user to modify XML files on the
mobile device, we have implemented an easy-to-use interface to activate and
deactivate individual sensors (Fig. 3, right). Users may want to disable sensors for
privacy reasons, and also to reduce power consumption or CPU load on the mobile
device. The activity logger itself can be started and shut down manually by the user if
necessary.

43

Fig. 3. Requesting explicit user feedback (left), and selecting sensors (right)

The implementation of sensors for implicit data acquisition can be summarized

into the following categories:
- Application information such as visited web sites is usually stored in log files

and local databases.
- Some sensors such as battery power status can be queried by using

“SystemState” members of the .NET Compact Framework.
- Information about the location of local log files and some system information,

such as display orientation and brightness, is available via the registry of the
mobile device.

We will explain the available hardware and software sensors and issues concerning

their implementation in more detail in the following subsections.

3.3. Sensors

3.3.1. Phone Calls

Making phone calls is one of the most important features of mobile devices. The
fundamental parameters of a phone call are the phone numbers, the direction of the
connection (outgoing, incoming, calls not accepted), the timestamp and the duration
of the call. Furthermore, if the number of the other party can be found in the user’s

44

address book, additional information like name and group membership (e.g. family,
friend) can be determined. This information could be used to suggest a callee’s phone
number, for example, when a user accesses the phone function of her device at a
certain day and time of the week.

The .NET Compact Framework offers a possibility to setup an event handler for
incoming calls. However, a handle to log outgoing calls is not provided. Yet logging
outgoing calls is important for mobile user modeling, because they are the direct
result of a user action. Therefore, we implemented a sensor to log the stated
information about all phone calls. This sensor uses a list of all calls the Windows
Mobile operating system keeps in a file in the Embedded Database (EDB) format.
Our framework uses this list to retrieve the call parameters, and conducts a reverse
search in the user’s address book to determine more information about the other party
of a call if available.

We integrated sensors to count missed calls, for GSM signal strength and searching
for service from the MyExperience project without modification.

3.3.2. Messaging and Personal Information Management (PIM)

Windows Mobile provides the Microsoft Office Outlook Mobile Tool for managing
Emails and SMS messages. The program splits information about messages by
different accounts. Access to the internal Outlook database is possible with a wrapper
library “MAPIdotnet” in the “Messaging API” of the .NET Compact Framework. We
used this API to retrieve information about incoming and outgoing messages. Our
corresponding software sensor records one log entry for every Email/SMS/MMS
message. Similar to phone calls, we store additional information of the sender or
recipient of a message if the person can be found in the user’s address book.

Outlook Mobile is also the default tool for personal information management
(PIM) on a Windows Mobile device. Appointments (calendar), contact data or tasks
(ToDo lists) are interesting categories of data for user modeling as well. We have
implemented sensors to log changes a user makes in her PIM data. Basically, there are
two options. The first one is to monitor the data in the local Outlook database
“pim.vol”. We can recognize changed entries by comparing the Outlook IDs before
and after the usage of Outlook. We have implemented separate but similar sensors for
calendar, contacts and tasks. These sensors are triggered when the system recognizes
that Outlook is called up or shut down. The second option to log Outlook data is
based on an event handler. In this case, the system is immediately modified when the
user adds, modifies or deletes data in Outlook. Our sensor then generates a log entry
that includes the ID of the corresponding data item.

3.3.3. Web Browsing

Analyzing the web browsing activities on the mobile device is an important part of
mobile user modeling. We have created a MyExperience action to capture the usage
of the Pocket Internet Explorer (PIE). It is not possible to directly query visited web
sites in the .NET Compact Framework. However, the PIE manages information about

45

visited web sites, cookies and temporary internet files (cache) in three local files in
different folders. The location of these files can be determined using the Windows
Mobile registry. Access to these file is not permitted by the system if the PIE is
running. Therefore, our sensor checks access to these files on start-up, and
synchronizes the data with the activity log. The system keeps a timestamp of every
accessed URL and visited web sites can hence be added to the activity log later on.

It is not only interesting for user modeling that a user has visited a web site, but
also which keywords she has used for web searching. This information can be
determined by analyzing the URL of web searches. For example, a query with Google
leads to an URL similar to “http://www.google.com/search?q=activity+logging” in
the log file. URLs to other search engine are comparable. We analyze and store the
search keywords of about 20 search engines including Google, Yahoo and Bing, and
also the query strings when accessing Wikipedia. Figure 5 (below) includes an
example snapshot of recorded web browsing information.

3.3.4. Positioning

Obviously, one of most important differences between mobile and non-mobile
systems is that the current user location is important in a mobile environment.
Therefore it is important to log the user position in a mobile user modeling
framework. There are a lot of work going on with regard to positioning systems,
including approaches based on cell ID and WLAN access points. Since more and
more mobile devices are equipped with a Global Position System (GPS) sensor, we
decided to integrate GPS positioning in our framework.

The MyExperience project already includes a “GpsLatLongSensor” to trace GPS
position. This sensor records GPS coordinates every one second. However, this leads
to a lot of redundant GPS coordinates being stored in the user activity log which is not
relevant for mobile user modeling. Therefore, we have extended this sensor with an
option to configure a threshold. The threshold triggers when the parameterized
distance to the last recorded location in meters is surpassed. Figure 4 shows an
example configuration for our GPS logging sensor.

Fig. 4. Configuration of the “GpsLatLongThresholdSensor” sensor

46

First tests with this sensor revealed problems with weak GPS signals. Especially
when activating the GPS sensor, or leaving a building with no signal, the first log
entries sometimes deviated from the actual position by several kilometers on our test
devices. In addition, the system sometimes recorded “(0, 0)” coordinates with no
signal. These phenomena are not a problem when using GPS for navigation, for
example, because the system quickly calibrates itself and then provides correct
coordinates. However, we aimed at avoiding these false values in our user activity
logs. Thus, we implemented a solution based on the “dilution of precision” (DOP)
parameter of GPS sensors. This value is determined by the GPS sensor itself and
specifies the additional multiplicative effect of GPS satellite geometry on GPS
precision. The lower the value, the more accurate the measurement. We obtained
good results – i.e. inaccurate log entries were eliminated – with a minimum DOP
value of 5 in our tests.

3.3.5. Networking and Peripheral Devices

State-of-the-art mobile devices usually support several technologies for wireless
connectivity, including GSM, Wireless-LAN/Wifi and Bluetooth. A mobile system
could utilize information about networking usage to automatically activate and
deactivate connections based on past user behavior. We give a detailed example as a
case study in our evaluation in Section 4. We have implemented different sensors to
log when the user has turned on WiFi access, when the system is actually connected
to a WiFi access point, and the Bluetooth connection status. Furthermore, our
framework provides sensors to monitor peripheral devices such as a headset or
Bluetooth hands free kits often used in cars.

3.3.6. Application Usage and Media Player

A mobile user modeling framework should be able to derive a possible correlation
between application usage and sensor data. MyExperience offers a sensor to retrieve
the title of the active window and thus determine the active application. However, it is
possible that some applications are missed because this sensor queries the system
periodically to determine this value. Therefore, we have modified this sensor using an
event handler. In addition, our framework offers a sensor to log installed applications.

Logging user action inside an application is difficult in the Windows Mobile
operating system, because this information is generally available inside the active
process only. Therefore it is not possible to record the text a user enters on the virtual
keyboard in a text processing program directly, for example. As an exception, the
keystrokes on the hardware keys on a Windows Mobile device can be retrieved.

It is possible to build sensors for specific applications to be able to log more
detailed information about application usage. As an example, we have implemented a
sensor that logs the played tracks in the Windows Media Player. This information
could be utilized later to provide context-aware media recommendations to the user.

47

3.3.7. System State

Finally, the last category of implemented sensors in our mobile user activity
framework includes sensors that query the system state. Changes in the system state
can be either triggered by user actions or an indirect result from usage of the device,
for example battery power. Both are interesting for user modeling. Figure 2 lists the
sensors we have implemented with regard to system state. An example is a sensor
logging the input method a user selects. This information can be utilized to
automatically select the appropriate input method based on previous user behavior.
Windows Mobile devices with a touch screen usually offer a virtual keyboard and
handwriting-recognition method such as Block Recognizer, Letter Recognizer or
Transcriber. We implemented most of these system sensors by querying
“SystemState” members in the “Microsoft.WindowsMobile.System” namespace of
the .NET Compact Framework. The selected signaling type (vibration or ring) can be
determined by querying a registry entry, in this case the variable
“HKC\\ControlPanel\Sounds\RingTone0”.

3.4. MyExperience Analyzer tool

The MyExperience framework stores all the information in a Microsoft SQL CE
(Compact Edition) database on the mobile device [8]. The most important database
table for our purposes is “SensorHistory” which stores the implicitly recorded data
from the explained sensors. The MyExperience framework includes an “Analyzer”
tool to manage and query the SQL CE database. We have extended this program with
options to save and categorize queries. Queries are kept in an XML file, so it is
possible to use them outside of the Analyzer tool.

Figure 5 depicts a screenshot of the extended Analyzer tool. On the left side, you
can see the query library. This list corresponds to the implemented sensors in the
categories explained above. On the right side of the window, an example query is
shown. On top is the SQL CE query necessary to retrieve the Pocket Internet Explorer
log entries.

Joining information from different sensors is possible but lead to rather complex
SQL CE queries if done directly in the database. The Analyzer tool is intended to
roughly check the collected data, not to interpret the gathered log data. For analysis
and interpretation, the data can be exported from the database and further processed in
data mining or other tools. For example, it is straight-forward to analyze where the
user has performed certain actions. This is also included in the following evaluation
section.

48

Fig. 5. Analyzer screenshot

4. Evaluation

In this section, we explain the evaluation of our approach. Note that we have focused
on the collection of user data only at this time. Therefore, our approach and the
evaluation do not cover the whole user modeling process (see introduction, Section
1), just the first step.

4.1. Experiences

We tested our sensors during implementation to make sure they perform accurately.
Afterwards, we conducted a test run of the system lasting several weeks and included
all sensors. During this time, 6748 log entries were recorded. In addition, we looked
at scenarios to find out whether the recorded data can lead to meaningful data for user
modeling. We describe one of these scenarios as a case study in chapter 4.2. We did

49

not include explicit user feedback (Fig. 3, left) in these tests, but this function could
have been integrated easily.

Figure 6 depicts a visualization of parts of the logged data. For this visualization,
the GPS position data was converted into the GPS Exchange Format (GPX) for
Google Maps. The (blue) markers show locations where the user performed some
activity on the mobile device. The figure depicts a typical scenario when a user travels
from home to office during a work day. When looking at the data more closely, we
were able to assess that the log files reproduced the user actions very well and in
reasonable granularity for user modeling. Another example of the logged data is
shown in the screenshot of the analyzer in Figure 5 (above). Thereby, the user was
using her Pocket Internet Explorer to perform some web searches and the keywords of
the searches were detected by the system.

Fig. 6. Visualization of log data

Overall, our mobile logging framework performed well. There were a few program

crashes in the prototype implementation but these occurred only very seldom. When
the user was very active on her device and all sensors were enabled, the system
performance degenerated somewhat. However, it is possible and assumed that not all
sensors are active at all times. It is possible to deactivate sensors as explained above
(Chapter 3.2). Overall, the logging did not obstruct the user experience significantly.
Thus, our system complied with one of our main requirements: the implicit, non-
distracting observation of user actions.

50

Apart from that, we have to note that, for an ongoing recording of sensor data, an
active system status is required. Windows Mobile PDAs are usually configured to be
hibernated when the user is inactive for some time. When this occurs, our logger is
also stalled of course. However, with an inactive system, no meaningful user actions
can be recorded anyways. If the user just turns off the display of her device, the
recording of sensors such as battery power or GPS position continues. The battery
power is shortened to a couple of hours at most without charging when all sensors are
activated, but again the power consumption can be reduced by deactivating costly
sensors such as the GPS module. It seems reasonable to define profiles with different
sensors active (e.g. “indoor” with a disabled GPS sensor, or “light” with only a small
subset of sensors active). Users would only have to choose among predefined profiles,
not all sensors. But this profiling feature has not been implemented yet.

4.2. Case Study: WLAN Activation Based on User Position

Fig. 7. WLAN activation based on position

In this scenario, we had a closer look on whether it is possible to identify locations

where a user usually activates the WiFi/WLAN connection on her mobile device. The
overall goal is that the system would then be able to automatically turn on WiFi when
the user enters such a region. Thus, a combination of the
“GpsLatLongThresholdSensor” with the “WiFiConnectedSensor” is investigated. In
this test, the user moved her mobile device in an area with two WLAN access points.
The GPS logging was set to store one log entry every 10 meters. The recorded
position data was combined with the WiFiConnectedSensor data based on the
timestamps of log entries. Figure 7 shows the graphical interpretation of the data.
Dark (red) dots mark GPS positions with no WLAN activated, while the light (green)
markings denote positions where the user has turned on WLAN. The (manually)
highlighted areas indicate these geographic regions where the user usually activated
her WLAN connection.

51

The recorded data corresponds very well with the actual WLAN access areas. We
noticed that some of the points were slightly off when the user was moving fast. This
behavior is due to slight delays when the system is observing and logging the
deactivation of WLAN access. Overall, the recorded data seemed to be very useful for
our purpose. Note again that the goal of this scenario was to evaluate whether the
collected data can lead to meaningful results for user modeling. The scenario showed
that a combination of sensors can be used to implement an adaptive function to
automatically activate the WiFi/WLAN connection on the mobile device based on
location. We have not investigated the actual data mining methods needed to identify
such patterns so far. Yet our tests showed that our mobile user activity logger
produced data in appropriate granularity for user modeling.

5. Conclusion and Outlook

The goal of this work is a unified approach for collecting data about user actions on
mobile devices in a granularity appropriate for user modeling. To realize this first step
of the user modeling process, we have designed and implemented a framework for
mobile user activity logging on Windows Mobile PDAs based on the MyExperience
project. We have extended this system with hardware and software sensors to monitor
phone calls, messaging, peripheral devices, media players, GPS sensors, networking,
personal information management, web browsing, system behavior and application
usage. Our evaluation showed that it is possible to detect when, at which location and
how a user uses an application or accesses certain information, for example.

Note that collecting data about user actions is more complicated on a mobile
device than a desktop setting. This is due to restrictions in the available programming
interfaces of the mobile platforms, in our case the Windows Mobile operating system,
respective the .NET Compact Framework. We have explained some of the details of
implementing the sensors in Section 3. The granularity or level of detail of the data
collection is obviously dependent on the purpose of a subsequent user modeling task.
We have aimed at selecting and designing sensors that lead to information which
seems beneficial for learning user behavior in general. For example, our web
browsing sensor records search keywords, but not single keystrokes a user may
perform to fill in a web form. The framework can be used to implement new or
modified sensors to fit special data collection purposes. In addition, properties of
some sensors can be configured to adapt the data collection in more detail.

Future work includes integrating additional sensors. State-of-the-art mobile devices
are more and more equipped with sophisticated sensors such as gravitation sensors or
cameras that could be utilized for eye tracking. It is easy to integrate additional
sensors in the MyExperience project and our framework. Portability and
interoperability are also important issues. So far, our framework is tailored for the
Microsoft Windows Mobile framework but similar tools can be implemented on other
platforms like iPhone and Android. We are also investigating standards for
interoperability of data collected on different platforms or logging frameworks.
Existing relevant initiatives include the Attention Profiling Markup Language
(APML) [9] and the Contextualized Attention Metadata framework (CAMf) [10].

52

One of the most important next steps of our work is also to investigate the analysis
of the collected data using data mining and machine learning methods, and hence
studying the second step of the user modeling process (see Section 1). It is also
important to collect more substantial data sets in this regard.

Finally, our work focuses on observing one user so far. It may also be useful to
take other users’ logs into account and thus performing a “social” mobile user activity
logging. The goal could be to identify situations where similar behaving users have
performed certain actions, and personalize the mobile experience for the active user
accordingly. In addition, our system also collects data about social interactions that
can be utilized for analysis of social behavior.

References

1. Brusilovsky, P., Maybury, M.T.: From Adaptive Hypermedia to the Adaptive Web.
Communications of the ACM, vol. 45, no, 5, pp. 30-33 (2002)

2. Subramanya, S.R., Yi, B.K.: Enhancing the User Experience in Mobile Phones. IEEE
Computer, vol. 40, no. 12, pp. 114-117 (2007)

3. Froehlich, J., Chen, M., Consolvo, S., Harrison, B., Landay, J.,: MyExperience: A System
for In situ Tracing and Capturing of User Feedback on Mobile Phones. In Proc. of MobiSys
conf., San Juan, Puerto Rico (2007)

4. Chernov, S., Demartini, G., Herder, E., Kopycki, M., Nejdl, W.: Evaluating Personal
Information Management Using an Activity Logs Enriched Desktop Dataset. In Proc. of 3rd
Personal Information Management Workshop (PIM 2008), CHI conf., Florence, Italy (2008)

5. Zheng, Y., Zhang, L., Xie, X., Ma, W.: Mining Interesting Locations and Travel Sequences
From GPS Trajectories. In Proc. of International Conference on World Wild Web (WWW
2009), Madrid, Spain, ACM Press, pp. 791-800 (2009)

6. Choudhury, T. et.al.: The Mobile Sensing Platform: An Embedded Activity Recognition
System . IEEE Pervasive Computing, vol. 7, no. 2, pp. 32-41 (2008)

7. Kanjo, E., Bacon, J., Roberts, D., Landshoff, P.: MobSens: Making Smart Phones Smarter.
IEEE Pervasive Computing, vol. 8, no. 4, pp. 50-57 (2009)

8. MyExperience project web site. http://myexperience.sourceforge.net/. Accessed June 2010.
9. APML web site. http://apml.areyoupayingattention.com/. Accessed June 2010.
10. CAMf web site. http://www.ariadne-eu.org/index.php?option=com_content&task=view&

id=39&Itemid=55. Accessed June 2010.

53

Community Assessment using Evidence Networks

Folke Mitzlaff1, Martin Atzmueller1, Dominik Benz1,
Andreas Hotho2, and Gerd Stumme1

1 University of Kassel, Knowledge and Data Engineering Group
Wilhelmshöher Allee 73, 34121 Kassel, Germany

2 University of Wuerzburg, Data Mining and Information Retrieval Group
Am Hubland, 97074 Wuerzburg, Germany

{mitzlaff, atzmueller, benz, stumme}@cs.uni-kassel.de, hotho@informatik.uni-wuerzburg.de

Abstract. Community mining is a prominent approach for identifying (user)
communities in social and ubiquitous contexts. While there are a variety of meth-
ods for community mining and detection, the effective evaluation and validation
of the mined communities is usually non-trivial. Often there is no evaluation data
at hand in order to validate the discovered groups. This paper proposes evidence
networks using implicit information for the evaluation of communities. The pre-
sented evaluation approach is based on the idea of reconstructing existing social
structures for the assessment and evaluation of a given clustering. We analyze and
compare the presented evidence networks using user data from the real-world so-
cial bookmarking application BibSonomy. The results indicate that the evidence
networks reflect the relative rating of the explicit ones very well.

1 Introduction

Social applications and social networks provide a wealth of data that can be utilized
for improving the user experience of the system. Appropriate recommendations for
the users, for example, are an important criterion. Then, a peer group, or community of
users similar to the targeted user is often a helpful resource for automatic approaches. In
order to identify communities, community mining and community detection methods are
applied, in order to identify groups of users which share a common interest or expertise.

While there are a lot of prominent methods for community detection, e.g., [18, 19,
9], the resulting models need to be assessed and evaluated. However, often there is no
evaluation data at hand in order to evaluate the discovered groups comprehensively.
Usually only one data source is available, for example, relational data on user–resource
information, or also link data between users. Therefore, an accurate effective evaluation
is non-trivial, since reliable (secondary) evaluation data is sparse or non-existent.

Parallel to the rise of the Social Web, mobile phones became more and more pow-
erful and are equipped with more and more sensors, giving rise to Mobile Web applica-
tions. Today, we observe the amalgamation of these two trends, leading to a Ubiquitous
Web, whose applications will support us in many aspects of the daily life at any time
and any place. Data now become available that were never accessible before. We ex-
pect therefore that the approach presented in this paper will be extendable to ubiquitous
applications especially to sensor networks as well.

55

This paper proposes an approach for the evaluation of communities using implicit
information formalized in so-called evidence networks. Our context is given by social
applications such as social networking, social bookmarking, and social resource sharing
systems. The proposed evaluation paradigm is based on the notion of reconstructing
existing social structures: This paradigm suggests to measure the quality of a given
division of the users by assessing the corresponding community structure in an existing
social structure: We basically project the different clusters according to the division
of users on an existing network, and assess the created structures using measures for
community evaluation.

Considering our own system BibSonomy3[3] as an example, we distinguish explicit
and implicit relations. The friend graph, for example, indicates explicit friendship rela-
tions. Then, these graphs directly indicate communities according to the link structure.
Implicit relation networks capture the implicit relations, that is, links derived from user
behavior, e.g., visiting a page, clicking on a link, or copying a resource. Explicit net-
works are usually sparse and small and often only capture the characteristics of selected
communities. In this respect, implicit networks capture more information and can be
used for an evaluation directly, or for complementing explicit networks [22]. Further-
more, using implicit information captured by user actions and behavior is usually more
cost-effective than starting expensive user-studies. We introduce several (implicit) ev-
idence networks and discuss their features. Additionally, we present a comprehensive
evaluation using user data from the BibSonomy system.

Similar interaction networks accrue in the context of ubiquitous applications (e. g.,
users which are using a given service at the same place and time). Unfortunately no
dataset containing such interaction was available during the evaluation, but these in-
teractions lead to implicit user relationships which naturally fit into the framework of
evidence networks described in this section.

The rest of the paper is structured as follows: Section 2 introduces the proposed ap-
proach for community evaluation using evidence networks. It outlines the basic notions
of the approach, and discusses evidence networks and their characteristics. After that,
we analyze and compare in Section 3 the features of the networks using data from the
real-world BibSonomy system. Finally, Section 4 concludes the paper with a summary
and interesting directions for future work.

2 Evidence Networks for Community Evaluation

In the following, we briefly introduce basic notions, terms and measures used in this
paper. For more details, we refer to standard literature, e.g., [9]. After that, we describe
and define several explicit and implicit networks for the evaluation of communities.
Finally, we discuss related work.

2.1 Preliminaries

This section summarizes basic notions and terms with respect to graphs, explicit and
implicit relations, communities, and community measures.

3 http://www.bibsonomy.org

56

A graph G = (V,E) is an ordered pair, consisting of a finite set V which consists
of the vertices or nodes, and a set E of edges, which are two element subsets of V . A
directed graph is defined accordingly: E denotes a subset of V × V . For simplicity,
we write (u, v) ∈ E in both cases for an edge belonging to E and freely use the term
network as a synonym for a graph. The degree of a node in a network measures the
number of connections it has to other nodes. The adjacency matrixAij , i = 1 . . . n, j =
1 . . . n of a set of nodes S with n = |S| contained in a graph measures the number of
connections of node i ∈ S to node j ∈ S.

A path v0 →G vn of length n in a graph G is a sequence v0, . . . , vn of nodes with
n ≥ 1 and (vi, vi+1) ∈ E for i = 0, . . . , n − 1. A shortest path between nodes u and
v is a path u →G v of minimal length. The transitive closure of a graph G = (V,E)
is given by G∗ = (V,E∗) with (u, v) ∈ E∗ iff there exists a path u →G v. A strongly
connected component (scc) of G is a subset U ⊆ V , such that u→G∗ v exists for every
u, v ∈ U . A (weakly) connected component (wcc) is defined accordingly, ignoring the
direction of edges (u, v) ∈ E.

For a set V , we define a relationR as a subsetR ⊆ V ×V . A relationR is naturally
mapped to a corresponding graph GR := (V,R). We say that a relation R among
individuals U is explicit, if (u, v) ∈ R only holds, when at least one of u, v deliberately
established a connection to the other (e. g., user u added user v as a friend in an online
social network). We call R implicit, if (u, v) ∈ R can be derived from other relations,
e.g., it holds as a side effect of the actions taken by u and v in a social application.
Explicit relations are thus given by explicit links, e.g., existing links between users.
Implicit relations can be derived or constructed by analyzing secondary data.

A community is intuitively defined as a set of nodes that has more and/or better
links between its members than with the rest of the network. Formally, communities
can be defined using certain criteria, for example, edge counts within a community
compared to the edge counts outside, cf. [14]. The criteria are formalized using quality
measures for communities. There are a variety of measures for community analysis,
cf. [14]. In the context of evaluation measures for evidence networks we consider two
measures: Conductance and Modularity. These consider the evaluation from two dif-
ferent perspectives. Modularity mainly focuses on the links within communities, while
the conductance also takes the links between communities into account.

Conductance can be defined as the ratio between the number of edges within the
community and the number of edges leaving the community. Thus, the conductance
C (S) of a set of nodes S is given by C (S) = cS/(2mS + cS) where cS denotes the
size of the edge boundary, cS := |{(u, v) : u ∈ S, v /∈ S}| and mS denotes the number
of edges within S, mS := |{(u, v) ∈ E : u, v ∈ S}|. More community-like partitions
exhibit a low conductance, cf. [14]. The conductance of a set of clusters is then given
by the average of the conductance of the single clusters.

The modularity function is based on comparing the number of edges within a com-
munity with the expected such number given a null-model (i.e., a randomized model).
Thus, the modularity of a community clustering is defined to be the fraction of the edges
that fall within the given clusters minus the expected such fraction if edges were dis-
tributed at random. This can be formalized as follows: The modularity M (S) of a set

57

of nodes S in graph G with its assigned adjacency matrix A ∈ Nn×n is given by

M (A) =
1

2m

∑

i,j

(
Ai,j −

kikj
2m

)
δ(ci, cj) ,

where ci is the cluster to which node i belongs, m denotes the number of edges in
G and cj is the cluster to which node j belongs; ki and kj denote i and j’s degrees
respectively; δ(ci, cj) is the Kronecker delta symbol that equals 1 iff ci = cj , and 0
otherwise. For directed networks the modularity becomes

M (A) =
1

m

∑

i,j

(
Ai,j −

kin
i k

out
j

m

)
δ(ci, cj) ,

where kin
i and kout

j are i and j’s in- and out- degree respectively [13].

2.2 Evidence Networks

Social networks and social resource sharing systems like BibSonomy usually capture
links between users explicitly, e.g., in a friend-network or a follower-network. How-
ever, besides these explicit relations, there are a number of other implicit evidences of
user relationships in typical social resource sharing systems. These are given by, e. g.,
clicklogs or page visit information. In some systems, it is also possible to copy content
from other users. Then, the logging information can be transformed into a user-graph
structure, for example, into a click-graph, a visit-graph, or into a copy-graph of users.

In the following sections, we define typical explicit and implicit networks in the
context of social bookmarking applications. All of these are implemented in the social
resource sharing system BibSonomy, but are typically also found in other resource shar-
ing and social applications. Even more implicit user interaction occur in the context of
ubiquitous web applications. Examples are users which are using a given service at the
same place and time, or communication relationships based on proximity sensors [23],
among many others. During our evaluation period we did not have access to such sensor
data, but these interactions lead to implicit user relationships which naturally fit into the
framework of evidence networks described in this section.

Explicit Relation Networks In the context of the BibSonomy system, we distinguish
the following explicit networks: The follower-graph, the friend-graph, and the group
graph that are all established using explicit links between users. Formally, these graphs
can be defined as follows:

– The Follower-Graph G1 = (V1, E1) is a directed graph with (u, v) ∈ E1 iff user u
follows the posts of user v, i.e., user u monitors the posts and is able to keep track
of new posts of user v.

– The Friend-Graph G2 = (V2, E2) is a directed graph with (u, v) ∈ E2 iff user u
has added user v as a friend. In the BibSonomy system, the only purpose of the
friend graph so far is to restrict access to selected posts so that only users classified
as "friends" can observe them.

– The Group-Graph G3 = (V3, E3) is an undirected graph with {u, v} ∈ E3 iff user
u and v share a common group, e.g., defined by a special interest group.

58

Implicit Relation Networks Concerning implicit relationships, we propose the fol-
lowing networks: The click-graph, the copy graph, and the visit graph that are built by
analyzing the actions of users, i.e., clicking on links, copying resources, and visiting
pages of other users, respectively. Formally, the graphs are defined as follows:

– The Click-Graph G4 = (V4, E4) is a directed graph with (u, v) ∈ E4 iff user u has
clicked on a link on the user page of user v.

– The Copy-Graph G5 = (V5, E5) is a directed graph with (u, v) ∈ E5 iff user u has
copied a resource, i.e., an publication reference from user v.

– The Visit-Graph G6 = (V6, E6) is a directed graph with (u, v) ∈ E6 iff user u has
navigated to the user page of user v.
Each implicit graphGi, i = 4, . . . , 6 is given a weighting function ci : Ei → N that

counts the number of corresponding events (e. g., c5(u, v) counts the number of posts
which user u has copied from v).

2.3 Evaluation Paradigm

Several approaches exist for assessing the quality of a given set of communities. Consid-
ering users as points in appropriate feature spaces, objective functions based on the re-
sulting distribution of data points can be applied (e. g., overlaps of the user’s tag clouds,
[11]). Modeling inter-user relations in terms of graphs, various graph indices defined
for measuring the quality of graph clusterings can be applied (see, e. g., [10] for a sur-
vey). These indices capture the intuition of internally densely connected clusters with
sparse connections between the different clusters. Furthermore, based on the analysis
of several social networks, Newman defines the modularity measure [18]: It is based on
the observation, that communities within social networks are internally more densely
connected than one would expect in a corresponding null model, i.e., in a random graph.

Accordingly, most methods for community detection try to optimize the produced
community division with respect to a given quality measure. However, care must be
taken, since different measures might exhibit certain biases, i.e., they tend to reward
communities with certain properties which might lead to respectively skewed commu-
nity structures [14]. Given the diversity of user interests, no single quality measure can
potentially reflect all reasons for two users being contained within the same or different
communities (or even both). Ultimately, a user study can quantify, how well a given
community structure coincides with the actual reception of the users.

Dealing with the related task of user recommendations, Siersdorfer [22] proposed an
evaluation paradigm, which is based on the reconstruction of existing social structures.
Applied to the community detection setting in the context of a social bookmarking sys-
tem as BibSonomy, this paradigm suggests to measure the quality of a given division
of the users by assessing the corresponding community structure in an existing social
structure. For our evaluation paradigm we therefore transform this principle to evaluat-
ing community structures using (implicit) evidence networks: Our input is given by an
arbitrary community clustering of a given set of users – independent of any community
detection method. This clustering is then assessed using the implicit evidence networks.
We show in the evaluation setting that this procedure is consistent with applying explicit
networks that contain explicit user links but are rather sparse compared to the evidence
networks.

59

Concerning our application setting, BibSonomy incorporates three relations among
users, all of which potentially can serve as a basis for such an evaluation, namely the
Friend-Graph, the Follower-Graph and the Group-Graph. Before such a network can
be utilized as a reference for quality assessments, it has to be thoroughly analyzed,
since different structural properties may influence the resulting assessment, cf., [17].
But more importantly, one has to cope with the sparsity of the explicit user relations:
The Friend-Graph of BibSonomy, for example, only spans around 1000 edges among
700 users of all 5600 considered users and all possible 30 million edges. Thus, feature
spaces for users, for example, using tags or resources as describing elements potentially
capture a richer set of relations than those modeled in the graphs. In the following,
we therefore consider the much more dense implicit evidence networks as discussed
in [17], which can be typically observed in a running resource sharing system. In our
analysis, we investigate whether they are consistent with the existing explicit networks
in BibSonomy as a reference for evaluating community detection methods.

2.4 Related Work

Despite the absence of well-established gold-standards, the growing need for auto-
mated user community assessment is reflected in a considerable number of proposed
paradigms. Evaluation approaches of generated links between users can broadly be di-
vided in content-based and structure-based methods (relying on given links between
users). In the following, we discuss related work concerning evaluation measures, met-
rics and evaluation paradigms.

Karamolegkos et al. [11] propose metrics for assessing user relatedness and com-
munity structure by considering user profile overlap. They evaluate their metrics in a
live setting, focussing on the optimization of the given metrics. Using a metric which is
purely based on the structure of graphs, Newman presents algorithms for finding com-
munities and assessing community structure(s) [19]. A thorough empirical analysis of
the impact of different community mining algorithms and their corresponding objective
function on the resulting community structures is presented in [14].

Recently Siersdorfer et al. [22] proposed an evaluation technique for recommenda-
tion tasks in folksonomies which is based on the reconstruction of existing links (e. g.,
friendship lists). The performance of a given system is assessed by applying quality
measures which are derived from established measures used in information retrieval.
Schifanella et al. [21] investigated the relationship of topological closeness (in terms of
the length of shortest paths) with respect to the semantic similarity between the users.

Another aspect of our work is the analysis of implicit link structures which can be
obtained in a running Web 2.0 system and how they relate to other existing link struc-
tures. Baeza-Yates et al. [2] propose to present query-logs as an implicit folksonomy
where queries can be seen as tags associated to documents clicked by people making
those queries. Based on this representation, the authors extracted semantic relations be-
tween queries from a query-click bipartite graph where nodes are queries and an edge
between nodes exists when at least one equal URL has been clicked after submitting the
query. Krause et al. [12] analyzed term-co-occurrence-networks in the logfiles of inter-
net search systems. They showed that the exposed structure is similar to a folksonomy.

60

Analyzing Web 2.0 data by applying complex network theory goes back to the anal-
ysis of (samples from) the web graph [6]. Mislove et al. [16] applied methods from so-
cial network analysis as well as complex network theory and analyzed large scale crawls
from prominent social networking sites. Some properties common to all considered so-
cial networks are worked out and contrasted to properties of the web graph. Newman
analyzed many real life networks, summing up characteristics of social networks [20].

3 Evaluation

In the following, we first describe the data used for the evaluation of the evidence net-
works. We used publicly available data from the social bookmark and resource sharing
system BibSonomy. After that, we describe the characteristics of the applied evidence
networks, and present the conducted experiments. We conclude with a detailed discus-
sion of the experimental results.

3.1 Evaluation Data and Setting

Our primary resource is an anonymized dump of all public bookmark and publication
posts until January 27, 2010, from which we extracted explicit and implicit relations.
It consists of 175,521 tags, 5,579 users, 467,291 resources and 2,120,322 tag assign-
ments. The dump also contains friendship relations modeled in BibSonomy concerning
700 users. Additionally, it contains the follower relation, which is explicitly established
between user u and v, if u is interested in v’s posts and wants to stay informed about
new posts, as discussed above. Furthermore, we utilized the “click log” of BibSonomy,
consisting of entries which are generated whenever a logged-in user clicked on a link in
BibSonomy. A log entry contains the URL of the currently visited page together with
the corresponding link target, the date and the user name4. For our experiments we con-
sidered all click log entries until January 25, 2010. Starting in October 9, 2008, this
dataset consists of 1,788,867 click events. We finally considered all available apache
web server log files, ranging from October 14, 2007 to January 25, 2010. The file con-
sists of around 16 GB compressed log entries. We used all log entries available, ignoring
the different time periods, as this is a typical scenario for real-world applications.

Copy Visit Click Follower Friend Group
|Vi| 1427 3381 1151 183 700 550

|Ei| 4144 8214 1718 171 1012 6693

|Vi|/|U | 0.25 0.58 0.20 0.03 0.12 0.10

#scc 1108 2599 963 175 515 90

largest scc 309 717 150 5 17 228

#wcc 37 11 55 37 140 89

largest wcc 1339 3359 1022 83 283 228
Table 1. High level statistics for all relations where U denotes the set of all users in BibSonomy.

4 Note: For privacy reasons a user may deactivate this feature!

61

3.2 Characteristics of the Networks

In the following, we briefly summarize the link symmetry characteristics and degree
distribution of the extracted networks and discuss its power-law distribution. The anal-
ysis is restricted to the large (weakly) connected components of the network.

Link symmetry: Mislove et al. [16] showed for Flickr, LiveJournal and YouTube
that 60-80% of the direct friendship links between users are symmetric. Among others,
one reason for this is that refusing a friendship request is considered impolite. However,
the friendship relation of BibSonomy differs significantly. Only 43% of the friendship
links between users are reciprocal.

When more features are available exclusively along friendship links (e. g., sending
posts), the friendship graph’s structure will probably change and links will get more and
more reciprocal. But concerning the implicit networks we will see, that link asymmetry
is determined by a structure common to all our implicit networks.

Degree distribution: One of the most crucial network properties is the probability
distribution ruling the likelihood p(k), that a node v has in- or out-degree k respectively.
In most real life networks, the so called degree distribution follows a power law [8],
that is p(k) ∼ k−α where α > 1 is the exponent of the distribution. Online social
networks [16], collaborative tagging systems [7], scientific collaboration networks [1]
among others are shown to expose power law distributions.

For comparability, we calculated a best fitting power law model for each distribution
using a maximum likelihood estimator [8] and noted the corresponding Kolmogorov-
Smirnov goodness-of-fit metrics in Table 2 for reference. All in- and out-degree dis-
tributions except those from the groups graph show a power law like behavior, though
there are significant deviations.

Copy Visit Click Follower Friend Group
αin 2.48 2.9 2.86 2.48 3.47 3.5
αout 1.75 2.2 2.7 2.78 2.24 3.5

Din 0.0603 0.0227 0.023 0.0278 0.0617 0.1503
Dout 0.0571 0.0364 0.0394 0.0919 0.0939 0.1503

Table 2. Power law parameters

3.3 Applied Clustering Method

Starting our experiments we faced a vicious circle: For assessing the quality of a com-
munity structure, we need a preferably good method for obtaining such a structure in
the beginning. However, since we do not want to examine a particular clustering algo-
rithm and prove its performance, we use a rather simple approach which is on the one
hand easy to understand, on the other hand, it can be broadly parameterized and allows
the construction of a randomized variety of initial clusterings.

First experiments were conducted using the well known k-means algorithm [15].
For that, each user u is represented by a vector (u1, . . . , uT) ∈ RT where T is the total
number of tags and ui is the total number of times user u assigned the tag i to resources
in BibSonomy (i = 1, . . . , T). The resulting clusters had poor quality, assigning most

62

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Copy

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Visit

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Click

10
0

10
1

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Follower

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Friends

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Groups

Fig. 1. In-degree distribution of the different evidence networks

users to a single cluster. Due to the sparsity of the considered high dimensional vec-
tor space representation (there are more than 170, 000 tags), the underlying search for
nearest neighbors fails (cf.,e. g., [4] for a discussion).

To bypass this problem, we reduced the number of dimensions. There are a variety
of approaches for dimensionality reduction. We chose to cluster the tags for building
“topics”, consisting of associated sets of tags. A user u is thus represented as a vector
u ∈ RT ′ in the topic vector space, where T ′ � T is the number of topics.

For our experiments, we used a latent dirichlet allocation [5] method for building
topics, which efficiently build interpretable tag clusters and has been successfully ap-
plied in similar contexts to tagging systems (cf. [22]). In the following, our models
are denoted with “LDA-n-kMeans-k”, where n denotes the number of topics and k the
number of clusters. In total we obtained 40 different basic clusterings.

3.4 Experiments and Results

Our experiments aim at examining whether the implicit evidence networks described in
Section 2.2 are admissible complements for the sparse explicit networks. This would
justify using, e. g., the Visit-Graph and thus allow to assess more than 53% of the active
users (in contrast to only 12% covered by the Friend-Graph) applying the evaluation
paradigm “reconstruction of existing social structures” described in Section 2.3.

The most fundamental property of a sound measure is the relative discrimination of
“better” and “worse” community structures, allowing algorithms to approximate opti-
mal structures stepwise by applying local heuristics. For analyzing how quality assess-
ment by applying the different evidence networks is sensitive to small disturbances, we
conducted a series of randomized experiments.

We started with community structures constructed by the basic feature clustering
described above, using 10, 50, 100, and 500 topics, and constructing clusterings rang-
ing from 10 to 1,000 clusters in total. Any clustering or community detection method

63

could be used here (e. g., we also conducted the same series of experiments applying a
graph clustering algorithm). We focussed on the applied method as it is easy to under-
stand and can be broadly parameterized; it allows for a simple generation of a variety
of (randomized) initial clusterings. We gradually added noise to these initial structures
and at each step assessed the resulting community structure by calculating the quality
measures described in Section 2.1 for the different evidence networks: Two different
approaches for adding noise to a given division into communities were applied. The
first approach (from now on called “Random” for short) randomly chooses a node u be-
longing to some community cu. This node is than assigned to another randomly chosen
community c′ 6= cu. Note that this kind of disturbance leads to a different distribution of
cluster sizes. The second approach (from now on called “Shuffle”) randomly swaps the
community allocation of randomly chosen nodes belonging to different communities,
which leads to community structures with the same community size distribution.

Figures 2 and 3 show the corresponding results of calculating the modularity for
each evidence network at every level of disturbance in the underlying community struc-
ture (higher modularity values indicate stronger community structure). Similarly, Fig-
ures 4 and 5 show the results of calculating the conductance. For the ease of presen-
tation, we selected from all considered clusterings a subset which represents a broad
range of assessed community qualities. We emphasize that this experiment does not
aim at selecting a “best” community structure, rather than examining the relative rating
of slightly worse structures when applying the different evidence networks (based on
the assumption, that randomly disturbing communities decreases their quality).

We see that the modularity on every evidence network is consistent with the level
of disturbance, that is, the modularity value monotonically decreases with increasing
percentage of disturbed nodes. Slight deviations (e. g., looking at the alternating gradi-
ents of the Follower-Graph) are most likely statistical effects due to the limited size of
the corresponding evidence network. These results are supported by the figures show-
ing the corresponding plots for the conductance values, since lower conductance values
indicate stronger clustering. Note that conductance and modularity give precedence to
different community structures. In particular, structures with many small communities
are preferred according to their conductance (k = 500, 800, 1000), whereas smaller
numbers of clusters are preferred according to their modularity (Figure 6 exemplary
shows two corresponding cluster size distributions). This behavior is consistent with
the corresponding bias of the applied measures as discussed in [14].

The preceding results consider the different evidence networks independently. How-
ever, we ultimately want to use the implicit networks as supplement for the sparse ex-
plicit social structures (in particular the Friend-Graph). We therefore expect the assess-
ment of community structures applying the implicit networks to be consistent with the
application of the explicit networks. This motivates the following experiment: We cal-
culated the Pearson correlation coefficient for each of the implicit networks and one of
the explicit networks. Table 3 shows the corresponding correlation coefficients for the
Friend-Graph and each of the graphs in Figures 2-5 (averaged per measure and random-
ization type). The averaged correlation coefficients suggest a surprisingly high correla-
tion between the measures calculated on the implicit networks and those calculated on
the friend graph. Especially the conductance graphs show high correlation coefficients

64

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(a) Follower-Graph (randomized left, shuffled right).

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(b) Friend-Graph (randomized left, shuffled right).

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(c) Group-Graph (randomized left, shuffled right).

Fig. 2. Modularity calculated on different clusterings at varying levels of disturbed cluster assign-
ments relative to explicit evidence networks

with low standard deviations. In comparison, repeating the same experiment with the
group graph as the most dense existing social structure shows lower correlation coeffi-
cients with higher standard deviation, cf. Table 4.

3.5 Discussion

The experimental results presented in the previous section indicate that implicit evi-
dence networks used for assessing the quality of a community structure are surprisingly

65

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(a) Copy-Graph (randomized left, shuffled right).

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(b) Click-Graph (randomized left, shuffled right).

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 20 40 60 80 100

m
od

ul
ar

ity

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(c) Visit-Graph (randomized left, shuffled right).

Fig. 3. Modularity calculated on different clusterings at varying levels of disturbed cluster assign-
ments relative to implicit evidence networks

consistent with the expected behavior as formalized by the existing explicit social struc-
tures, in particular concerning the Friend-Graph. In our experiments (considering 40
models per experiment) we observed a high correlation between the quality measures
calculated on the implicit and explicit networks supporting this hypothesis.

The implicit networks show a lower correlation with the group graph. At the first
glance, this looks like a disappointing result. But the analysis of the group graph shows,
that its properties significantly differ from typical social networks as discussed in [17,
16]. Most strikingly, its degree distribution follows not a power law and its distribution

66

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(a) Follower-Graph (randomized left, shuffled right).

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(b) Friend-Graph (randomized left, shuffled right).

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(c) Group-Graph (randomized left, shuffled right).

Fig. 4. Conductance calculated on different clusterings at varying levels of disturbed cluster as-
signments relative to explicit evidence networks

of strongly connected components differs. Therefore, we obtain a ranking of the explicit
graphs: It is thus more desirable to model the friend graph’s behavior more closely than
the group graph’s.

Furthermore, as exemplary shown in Figures 6, we observe in our experiments that
known biases of the considered quality measures [14] can be directly transferred from
the implicit networks used for calculating the measures to the assessed community
structure. This indicates that the assessed quality of the implicit network is an indirect
indicator for the quality of the present community structure.

67

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(a) Copy-Graph (randomized left, shuffled right).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(b) Click-Graph (randomized left, shuffled right).

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

co
nd

uc
ta

nc
e

% of disturbed cluster asssignments

LDA-100-kMeans-25
LDA-100-kMeans-75
LDA-10-kMeans-50

LDA-10-kMeans-800
LDA-50-kMeans-500

LDA-50-kMeans-1000

(c) Visit-Graph (randomized left, shuffled right).

Fig. 5. Conductance calculated on different clusterings at varying levels of disturbed cluster as-
signments relative to implicit evidence networks

4 Conclusions

In this paper, we have presented evidence networks for the evaluation of communities.
Since explicit graph data is often sparse and does not cover the whole instance space
well, evidence networks provide a viable alternative and complement to explicit net-
works, if available. We have discussed several possible evidence networks, and their
features. The presented evaluation paradigm is based on the idea of reconstructing ex-
isting social structures for the assessment and evaluation of a given clustering. The

68

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

nr
. o

f o
cc

ur
re

nc
es

community size

LDA-50-kMeans-1000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200 1400 1600 1800

nr
. o

f o
cc

ur
re

nc
es

community size

LDA-100-kMeans-25

Fig. 6. Two opposed community size distributions as preferred by conductance (left) and modu-
larity (right).

Evidence Network R/M S/M R/C S/C
Follower-Graph 0.86± 0.17 0.90± 0.12 0.89± 0.28 0.83± 0.41
Group-Graph 0.91± 0.13 0.95± 0.08 1.00± 0.01 0.96± 0.17

Copy-Graph 0.82± 0.17 0.87± 0.12 0.99± 0.03 0.98± 0.09
Click-Graph 0.80± 0.17 0.86± 0.13 0.99± 0.04 0.98± 0.07
Visit-Graph 0.72± 0.25 0.80± 0.18 0.97± 0.06 0.98± 0.08

Table 3. Averaged Pearson correlation coefficient ρGi,G2 together with it’s empirical standard
deviation for each of the experiments “Shuffle” (S) and “Randomize” together with the consid-
ered objective functions modularity (M) and conductance (C) on the different implicit evidence
networks Gi and the friend graph G2.

Evidence Network R/M S/M R/C S/C
Friend-Graph 0.91± 0.13 0.95± 0.08 1.00± 0.01 0.96± 0.17
Follower-Graph 0.72± 0.30 0.83± 0.20 0.89± 0.27 0.82± 0.40

Copy-Graph 0.67± 0.35 0.80± 0.23 0.98± 0.05 0.93± 0.29
Click-Graph 0.68± 0.35 0.80± 0.23 0.98± 0.04 0.94± 0.29
Visit-Graph 0.60± 0.42 0.73± 0.28 0.96± 0.07 0.93± 0.27

Table 4. Averaged Pearson correlation coefficient ρGi,G3 together with it’s empirical standard
deviation for each of the experiments “Shuffle” (S) and “Randomize” together with the consid-
ered objective functions modularity (M) and conductance (C) on the different implicit evidence
networks Gi and the group graph G3.

evaluation of this approach using real-world data from the social resource sharing tool
BibSonomy indicated the soundness of the approach considering the consistency of
community structures and the applied measures.

For future work, we aim to investigate, how the single evidence networks can be
suitably combined into a weighted network. For this, we need to further analyze the
individual structure of the networks, and the possible interactions. Furthermore, we
plan to extend our experiments for a larger count of networks and clusterings in order
to generalize the obtained results further.

69

References
1. Almendral, J.A., Oliveira, J., López, L., Mendes, J., Sanjuán, M.A.: The Network of Sci-

entific Collaborations within the European Framework Programme. Physica A: Statistical
Mechanics and its Applications 384(2), 675 – 683 (2007)

2. Baeza-Yates, R., Tiberi, A.: Extracting Semantic Relations from Query Logs. In: Proc. 13th
ACM SIGKDD Conference. p. 85. ACM (2007)

3. Benz, D., Hotho, A., Jäschke, R., Krause, B., Mitzlaff, F., Schmitz, C., Stumme, G.: The
Social Bookmark and Publication Management System BibSonomy – A Platform for Eval-
uating and Demonstrating Web 2.0 Research. VLDB. In Press. (2010)

4. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When Is ”Nearest Neighbor” Mean-
ingful? In: ICDT. LNCS, vol. 1540, pp. 217–235. Springer (1999)

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. JMLR 3, 993–1022 (2003)
6. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A.,

Wiener, J.: Graph Structure in the Web. Computer Networks 33(1-6), 309–320 (2000)
7. Cattuto, C., Schmitz, C., Baldassarri, A., Servedio, V., Loreto, V., Hotho, A., Grahl, M.,

Stumme, G.: Network Properties of Folksonomies. AI Comm. 20(4), 245–262 (2007)
8. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law Distributions in Empirical Data.

SIAM Review 51(4) (2009)
9. Diestel, R.: Graph Theory. Springer, Berlin (2006)

10. Gaertler, M.: Clustering. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. Lecture
Notes in Computer Science, vol. 3418, pp. 178–215. Springer (2004)

11. Karamolegkos, P.N., Patrikakis, C.Z., Doulamis, N.D., Vlacheas, P.T., Nikolakopoulos, I.G.:
An Evaluation Study of Clustering Algorithms in the Scope of User Communities Assess-
ment. Computers & Mathematics with Applications 58(8), 1498–1519 (2009)

12. Krause, B., Jäschke, R., Hotho, A., Stumme, G.: Logsonomy - Social Information Retrieval
with Logdata. In: Proc. 19th Conf. on Hypertext and Hypermedia. pp. 157–166. ACM (2008)

13. Leicht, E.A., Newman, M.E.J.: Community Structure in Directed Networks. Phys. Rev. Lett.
100(11), 118703 (Mar 2008)

14. Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical Comparison of Algorithms for Network
Community Detection (2010), cite arxiv:1004.3539

15. MacQueen, J.B.: Some Methods for Classification and Analysis of MultiVariate Observa-
tions. In: Cam, L.M.L., Neyman, J. (eds.) Proc. 5th Berkeley Symposium on Mathematical
Statistics and Probability. vol. 1, pp. 281–297. University of California Press (1967)

16. Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B.: Measurement and
Analysis of Online Social Networks. In: 7th ACM SIGCOMM. p. 42. ACM (2007)

17. Mitzlaff, F., Benz, D., Stumme, G., Hotho, A.: Visit Me, Click Me, Be My Friend: An Anal-
ysis of Evidence Networks of User Relationships in Bibsonomy. In: Proceedings of the 21st
ACM conference on Hypertext and Hypermedia. Toronto, Canada (2010)

18. Newman, M.E., Girvan, M.: Finding and Evaluating Community Structure in Networks. Phys
Rev E Stat Nonlin Soft Matter Phys 69(2), 026113.1–15 (2004)

19. Newman, M.E.J.: Detecting Community Structure in Networks. Europ Physical J 38 (2004)
20. Newman, M., Park, J.: Why Social Networks are different from Other Types of Networks.

Physical Review E 68(3), 36122 (2003)
21. Schifanella, R., Barrat, A., Cattuto, C., Markines, B., Menczer, F.: Folks in Folksonomies:

Social Link Prediction from Shared Metadata. In: Proc. 3rd ACM Int’l Conf. on Web search
and data mining. pp. 271–280. ACM, New York, NY, USA (2010)

22. Siersdorfer, S., Sizov, S.: Social Recommender Systems for Web 2.0 Folksonomies. In: Proc.
20th ACM Conf. on Hypertext and Hypermedia. pp. 261–270. ACM, NY, NY, USA (2009)

23. Szomszor, M., Cattuto, C., Van den Broeck, W., Barrat, A., Alani, H.: Semantics, Sensors and
the Social Web: The Live Social Semantics Experiments. Proc. ESWC 2010. pp. 196–210

70

Exploring country level gender differences in the
context of online dating using classification trees

Slava Kisilevich and Mark Last

Department of Computer and Information Science
Konstanz University

slaks@dbvis.inf.uni-konstanz.de? ? ?

Department of Information System Engineering
Ben-Gurion University of the Negev

mlast@bgu.ac.il†

Abstract. The key component of Social Networking Sites (SNS), gain-
ing increasing popularity among Internet users, is the user profile, which
plays a role of a self-advertisement in the aggregated form. While com-
puter scientists investigate privacy implications of information disclosure,
social scientists test or generate social or behavioral hypotheses based on
the information provided by users in their profiles. Statistical analysis of
the SNS phenomenon often is performed using only a very small sample
of information extracted from a particular SNS or by interviewing stu-
dents from a particular university. In this paper, we apply classification
algorithm to a large-scale SNS dataset obtained from more than 10 mil-
lion public profiles with 50 different attributes extracted from one of the
largest dating sites in the Russian segment of the Internet. In particular,
we build gender classification models for the residents of the most ac-
tive countries, and investigate the particular differences between genders
in one country and the differences between the same-genders in differ-
ent countries. The preliminary results are reported in this paper. To the
best of our knowledge, this is the first attempt to conduct a large-scale
analysis of SNS profiles and compare gender differences on a country
level.

Key words: Social Networking Sites, Self-disclosure, Gender differences, Clas-
sification trees

1 Introduction

Rapid technological development of the Internet in recent years and its world-
wide availability has changed the way people communicate with each other.
Social Networking Sites such as Facebook or MySpace gained huge popular-
ity worldwide, having hundreds of millions of registered users. A major reason

? ? ? http://www.informatik.uni-konstanz.de/arbeitsgruppen/infovis/

mitglieder/slava-kisilevich/
† http://www.bgu.ac.il/~mlast/

71

2

for the increased popularity is based on social interaction, e.g. networking with
friends, establishing new friendships, creation of virtual communities of mutual
interests, sharing ideas, open discussions, collaboration with others on different
topics or even playing games. The key component of SNS is the user profile,
in which the person cannot only post personal data, e.g. name, gender, age,
address, but also has the opportunity to display other aspects of life, such as
personal interests, (hobbies, music, movies, books), political views, and intimate
information. Photos and videos are equally important for a self-description. All
SNS allow the user to upload at least one photo. Most mainstream SNS also
feature video uploading.

Various research communities have realized the potential of analysis of the
SNS phenomenon and its implication on society from different perspectives
such as law [1], privacy [2–4], social interaction and theories [5–9]. Many hy-
potheses and social theories (gender and age differences, self-disclosure and self-
presentation) have been raised and tested by social scientists using the context
of Social Networks. Statistical analysis is the widely used instrument for analysis
among social scientists and rely on the sampling rather than on data collected
from an entire population segment. The common approach to perform Social
Network analysis is to analyze a sample of user profiles or to conduct a survey
among students (usually less than 100) of a particular university by present-
ing descriptive statistics of the sample data and performing significance tests
between dependent variables [2, 10, 3, 8]. The major drawback of such approach
with respect to Social Networks is that in light of the large population of SNSs,
which can vary from tens to hundreds million users, the results of the statistical
analysis cannot be generalized for the whole population and theories can hardly
be validated using only small samples. Moreover, Social Networks are heteroge-
neous systems, with people living in different parts of the world. To the best of
our knowledge, the state of the art Social Science research of Social Networks
does not take into account the spatial characteristics of the population. For ex-
ample, due to cultural differences, the theory of self-disclosure tested on students
from American universities may be not valid if applied on information obtained
from students of Chinese universities, even if both groups use the same Social
Network. Although, the problem and the importance of space and place in the
Social Sciences was already highlighted a decade ago [11], this knowledge gap
was not closed until do date. Therefore, in order to improve our understanding
of social behavior, to analyze, to find hidden behavioral patterns not visible at
smaller scales, and to build new theories of large heterogeneous social systems
like Social Networks, other approaches and computational techniques should be
applied [12].

In this paper, we answer the following hypothetical question: “Can we find
some hidden behavioral patterns from user profiles in the large-scale SNS data
beyond mere descriptive statistics.”

We answer this question by applying a classification algorithm to the data
obtained from more than 10 million profiles having more than 50 different at-
tributes extracted from one of the largest dating site in the Russian segment

72

3

of the Internet. Specifically, we build gender classification models for most ac-
tive countries and investigate what are particular differences between genders
in one country and what are the differences between same-genders in different
countries. Dating sites can be considered as a special type of social networks
where members are engaged in development of romantic relationship. Informa-
tion revealed in the users’ profiles is an important aspect for the assessment of
potential communication, for maximizing the chances for online dating for the
owner of the profile, and the minimizing of risks of online dating for the viewer
of the profile. For this reason, in the broad context, assuming that the goal of the
member of the dating site is to find a romantic partner, we investigate patterns
of self-presentation that can vary from country to country and differ for both
genders.

The preliminary results suggest that the classification model can successfully
be used for analysis of gender differences between users of SNS using information
extracted from user profiles that usually contain tens of different categorical and
numerical attributes.

Comparing gender differences on a country level as well as using data mining
approaches in the Social Science context, is to the best of our knowledge, the
first attempt to conduct a large-scale analysis of SNS profiles.

2 Related Work

Gender differences have been studied long before the Internet became widely
available. However, with the technological development of the Internet and pro-
liferation of Social Networks, the research has focused on the analysis of online
communities and differences between their members. Many studies were per-
formed in the context of Internet use [13, 14], online relationships [5], ethnic
identity [8], blogging [10], self-disclosure and privacy [2–4]. Since we could not
find any related work on large-scale analysis of gender differences in social net-
works, we are going to review some of the recent studies and findings about
gender differences in general.

Information revelation, privacy issues and demographic differences between
users of Facebook SNS were examined in [2] and [3]. [2] interviewed 294 students
and obtained their profiles from Facebook. The goal of the survey was to assess
the privacy attitudes, awareness of the members of the SNS to privacy issues,
and the amount and type of information the users reveal in their profiles. It was
found that there is no difference between males and females with respect to their
privacy attitudes and the likelihood of providing certain information. Likewise,
there is no difference between genders in information revelation. If some infor-
mation is provided, it is likely to be complete and accurate. However, female
students are less likely to provide their sexual orientation, personal address and
cell phone number. [3] interviewed 77 students to investigate different behavioral
aspects like information revelation, frequency of Facebook use, personal network
size, privacy concerns and privacy protection strategies. Again, there were al-
most no difference between female and male respondents in the amount and

73

4

type of the information revealed in their profiles. [4] analyzed about 30 million
profiles from five social networks of Runet and conducted a survey among Rus-
sian speaking population to cross-check the finding extracted from the profiles
and assess privacy concerns of members of Russian social networks. It was shown
that there are differences between type of revealed information between females
and males and these differences conditioned on the reported country of residence
(20 most populous countries were presented). Particularly, males disclose more
intimate information regardless of their country of origin. However, the country
with the highest difference in the amount of disclosed intimate information was
Russia (20.67%) and the lowest was Spain (5.59%). In addition, females from
17 countries revealed more information about having or not having children,
economic and marital status, and religion. The only exceptions were females in
Russia, Israel and England.

Social capital divide between teenagers and old people, and similarities in
the use of the SNS were studied in [7] using profiles from MySpace social net-
work. The results of the analysis indicate, among other criteria, that female
teenagers are more involved in the online social interaction than male teenagers.
Likewise, statistical tests showed that older women receive more comments than
older men. Additionally, linguistic analysis of user messages showed that females
include more self-descriptive words in their profiles than males. Friendship con-
nections, age and gender were analyzed in [6] using 15, 043 MySpace profiles.
The results showed that female members have more friends and are more likely
interested in friendship than males, but males are more likely to be interested in
dating and serious relationships. In the study that analyzed emotions expressed
in comments [9], it was found that females send and receive more emotional
messages than males. However, no difference between genders was found with
respect to negative emotions contained in messages.

Online dating communities are typically treated differently because goals of
the dating sites are much more limited in terms of connection development and
often bear intimate context, which for the most part shifts to the offline con-
text. Issues such as honesty, deception, misrepresentation, credibility assessment,
and credibility demonstration, are more important in the dating context than
in the context of general purpose social networks. Researchers are particularly
interested in the analysis of self-presentation and self-disclosure strategies of the
members of dating sites for achieving their goal to successfully find a roman-
tic partner. [5] interviewed 349 members of a large dating site to investigate
their goals on the site, how they construct their profiles, what type of infor-
mation they disclose, how they assess credibility of others and how they form
new relationships. The study found that cues presented in the users’ profiles
are very important for establishing connections. These cues include very well-
written profiles, lack of spelling errors and uploaded photos. The last time the
user was online considered to be one of the factors of reliability. Most of the
respondents reported that they provide accurate information about themselves
in the profiles.

74

5

3 Data

The data used in this paper was collected from one of the biggest dating sites
in Runet: Mamba1. According to the site’s own statistics (June 3, 2010), there
are 13, 198, 277 million registered users and searchable 8, 078, 130 profiles. The
main features of the service is the user profile and search option that allows
searching for people by country, gender, age and other relevant attributes. The
friend list is discrete, so other registered users cannot know with whom a user is
chatting. The friend list is implicitly created when the user receives a message
from another user. There are no means to block unwanted users before they
send a message. However, users with the specially paid for VIP-status may get
messages only from other VIP users. The user may exclude his/her profile to be
searchable, but most of the profiles are searchable and accessible to unregistered
users.

The user profile consists of seven sections also called blocks, where every
block can be activated or deactivated by the user. Table 1 shows the names of
sections and attribute parameters available in every section. We excluded the
About me section, in which the user can describe himself in an open form, some
intimate attributes of the Sexual preference section and the option to add mul-
timedia (photos or videos) The attributes are divided into two categories. In
the first category, only one value can be selected for the attribute (denoted as
“no” in the Single selection column), other attributes contain multiple selections
(denotes as “yes” in the Single selection column). Most of the attributes also
contain an additional open field that allows the user to provide his/her own an-
swer. The user can extend his/her main profile by filling two surveys. The one
survey is provided by MonAmour site2, owned by Mamba and contains about
100 different questions that estimate the psychological type of the respondent
according to four components scaled from 0 to 100: Spontaneity, Flexibility, So-
ciability, Emotions. Another survey is internal and contains 40 open questions
like Education, Favorite Musician, etc. In addition, the user can provide addi-
tional information about himself/herself to assure that he/she is a real person.
For this, he/she should send a free SMS to the company and confirm his/her
mobile number.

In order to collect the data, we developed a two-pass crawler written in C#.
In the first pass the crawler repeatedly scans all searchable users which results in
a collection of a basic information about the user such as user id, profile URL,
number of photos in the profile, and country and city of residence. In the second
pass, the crawler downloads the user’s profile, checks if it is not blocked by the
service provider and extracts all the relevant information, which is described in
Table 1 including fields of the internal survey.

In a two month period, between March and June 2010, we extracted in-
formation from 13,187,295 millions users, where 1,948,656 million profiles were
blocked, leaving us with 11,238,639 million valid profiles.

1 http://www.mamba.ru/
2 http://www.monamour.ru/

75

6

Table 1. Profile sections and attributes

Section Attributes # of Single Example
options selection

Personal Age - yes 20
Gender 2 yes Male
Zodiac 12 yes Capricorn

Acquaintances Seek for 5 no Seek for a man of age 16-20
Aim 13 no Friendship and chatting

Marriage 5 yes Married and live together
Material support 4 yes I am ready to become a sponsor

Kids 5 yes I have kids, we live together

Type Weight 1 yes 70 kg.
Height 1 yes 180 cm.
Figure 8 yes Skinny

Body has 2 no Tattoo, Piercing
Hair on the head 8 yes Light colored

Hair on the 8 no Chest, Hands
face or body
Profession - - Open field

Day regimen 3 yes I get up early
Languages 87 no English, German
Economic 5 yes Wealthy
conditions
Dwelling 7 yes I live with my parents

Life 8 no Carrier, Wealth, Family
priorities

Interests Leisure 14 no Reading, Sport, Party
Interests 19 no Science, Cars, Business
Sports 12 no Fitness, Diving
Music 11 no Rock, Rap

Religion 7 no Christianity, Atheism
Smoking 5 no I rarely smoke
Alcohol 4 no I like to drink
Drugs 9 no I never tried

Car Car 76 yes Nissan

Mobile Mobile 50 yes Ericsson

Sexual Orientation 4 yes Hetero, Bi
preferences Heterosexual 6 yes Yes, we lived together

experience
Frequency 7 yes At least once a day
Excitement 14 no Smells, latex, tattoos

4 Methodology

In this section we describe the data mining process that includes data selection,
data transformation and model construction.

76

7

4.1 Data selection

The data preparation and selection is very crucial for the data mining process. If
sampled data is not a good representation of the whole dataset, the data mining
process will fail to discover the real patterns. Another aspect of data preparation
is related to user profiles. As was already discussed in Sections 1 and 2, the
ultimate goal of members of the dating site is to find a romantic partner. Since
this kind of activity may involve elements of intimacy, persons employ different
strategies to balance the desire to reveal information about themselves and stay
anonymous (for example, the profile without a photo). Moreover, many people
may run several user profiles for different purposes.

In order to minimize the impact of fake profiles on the pattern mining, we
employed a four level filtering process. First, the profiles of persons who filled the
external survey on the MonAmour site (described in Section 3) were retrieved.
Since the respondent should answer about 100 questions, it is unlikely that the
person has non-serious intentions on the dating site. Second, we retrieved profiles
who filled additional external survey that includes about 40 questions. Next, the
users with the status “real” were retrieved and finally, the users who uploaded
at least one photo and no more than one hundred photos were extracted. Table 2
shows the demographic statistics by country and gender. It also shows how many
profiles were selected for mining and the resulted percentage of females and males
in the selected instances. The selected age range was 16 to 50. Due to the large
number of profiles in Russia, we extracted no more than 20, 000 profiles for every
age value and gender on every filtering step.

4.2 Data transformation

Almost all the attributes described in Table 1 were selected for inclusion into the
model (except for Weight and Height). Numerical attributes include age, num-
ber of photos and number of words, whose length is more than two, used in the
“About me” section. Attributes such as Figure, Music, Car or Body has whose
values are not important for classification but only the fact of their presence or
absence, were encoded as binary attributes: if the person provided information
about his figure, it was coded as binary True, otherwise it was treated as False.
On the other hand, attributes, whose values are relevant for classification were
encoded as multi-valued categorical attributes. For example, the Marriage at-
tribute has four explicit options (I am married, we live together; I am married,
we do not live together; I have a fictional marriage; No, I am not married) and
one implicit no answer. In this case the four options were coded like 1,2,3,4,
while in the case of implicit answer it was treated as a missing value. Another
group of attributes that may take more than one value (when the user chooses
more than one answer) was decomposed into separate binary attributes repre-
senting distinct answer categories. For example, the user can provide 13 different
answers related to his aim on the site (Aim attribute). These 13 answers are cat-
egorized into six categories: Friendship, Love, Sex, Sex for Money, Marriage and
Other. In this case, if the person provided his answer on the question from the

77

8

Table 2. Demographic statistics of the 20 most active countries and statistics related
to the sampled data

Country Total Males % Females % # instances Sampled Sampled
Males % Females %

Russia 7,999,976 35 65 1,332,563 40 60

Ukraine 1,294,260 48 52 813,322 17 83

Kazakhstan 473,561 43 57 222,579 18 82

Belarus 328,029 55 45 264,131 20 80

Germany 129,732 57 43 71,586 16 84

Azerbaijan 107,125 81 19 20,183 35 65

Uzbekistan 89,709 78 22 26,788 27 73

Moldova 84,306 59 41 54,561 15 85

Armenia 70,362 58 42 12,308 41 59

Georgia 69,805 80 20 18,163 26 74

Latvia 54,521 41 59 33,310 14 86

Estonia 49,030 48 52 27,991 16 84

USA 47,741 60 40 25,702 15 85

Israel 43,001 63 37 23,481 26 74

England 36,261 39 61 12,525 20 80

Lithuania 35,270 41 59 17,243 14 86

Turkey 35,230 84 16 9,003 26 74

Kyrgyzstan 35,107 64 36 16,263 21 79

Italy 18,681 58 42 12,495 10 90

Spain 18,619 61 39 9,919 12 88

Friendship category, a binary True is assigned to that attribute, otherwise False
is assigned. Two binary attributes that were composed from the Seek for, namely
Seek for a man and Seek for a woman were removed since they are found in the
majority of profiles, highly correlated with the opposite gender and trivial in
terms of gender classification.

4.3 Model construction

Our hypothesis is that specific gender differences exist on the country level as well
as there are differences between the same-genders in different countries. The dif-
ferences should be expressed in specificity of attributes and values that describe
the gender. In other words, we hypothesize that profiles of females and males liv-
ing in the same country have unique characteristics, which determine the gender
of the owner of the profile. In addition, we hypothesize that, although the main
characteristic of the users of the featured dating site is Russian language, cultural
differences impact the characteristics of user profiles even for people of the same
gender. The data mining process that can capture unique characteristics of the
genders is a decision tree learning, which is based on model construction using
input variables and prediction of the target class value (gender in our case).

We applied C4.5, a popular decision tree induction algorithm on the sampled
data for every country with the gender as a binary class attribute, using Weka

78

9

data mining package [15]. We set the minimum number of instances per leaf
to 10 and left all other options in their default state (pruned decision tree, 0.25
pruning confidence factor). Table 3 shows, for every country, the total number of
rules generated by the algorithm, the number of rules per gender, the number of
frequent rules (the rules that classify more than 100 instances) and the number
of rules that cover more than 90% of the sampled data.

Table 3. The total number of rules generated by country, gender, the number of rules
that classify more than 100 individuals (Frequent Rules), the number of rules that
cover 90% of the instances in the sampled dataset

Country Rules Male Female Frequent Frequent 90% Rule 90% Rule
Rules Rules Coverage Coverage
Male Female Male Female

Russia 7,462 3,747 3,715 619 688 1135 732

Ukraine 2,957 1,458 1,499 151 313 666 116

Kazakhstan 1,075 513 562 47 113 251 68

Belarus 1,372 654 718 64 143 340 92

Germany 429 200 229 14 49 128 39

Azerbaijan 221 101 120 14 14 50 38

Uzbekistan 191 96 95 15 20 47 19

Moldova 250 119 131 12 25 68 15

Armenia 147 75 72 6 8 39 25

Georgia 151 74 77 9 11 42 13

Latvia 177 79 98 4 23 55 17

Estonia 205 48 91 3 28 62 26

USA 175 77 98 5 23 52 20

Israel 242 114 128 11 23 64 34

England 95 39 56 4 15 27 16

Lithuania 106 47 59 2 12 34 11

Turkey 91 46 45 3 5 30 11

Kyrgyzstan 104 51 53 8 11 29 10

Italy 70 41 29 1 11 20 8

Spain 67 27 40 0 8 20 5

5 Analysis

The purpose of this section is to analyze the data and the model described
in Section 4. We apply a number of analytical steps to test our hypothesis that
there are differences between genders and that these differences are also country-
dependent.
The analytical steps are:
(1) Observation of the sampled data
(2) Observation of the quantity of rules that classify females and males

79

10

(3) Gender comparison
(4) Classification rules matching
(5) Gender characterization

5.1 Data observation

As was mentioned in Section 2, we applied four filtering steps to minimize the
effect of false profiles. By inspecting the resulting number of females and males
(Table 2), we can see the genders differences with respect to the profile creation.
Many more females than males use different means of describing themselves
through additional surveys, and many more females than males upload their
photos. The largest difference between females and males can be observed in such
countries as Italy (80%), Spain (76%), Latvia and Lithuania (72%), Moldova and
USA (70%), while the smallest difference is in Armenia (18%), Russia (20%) and
Azerbaijan (30%).

5.2 Model observation

The inspection of the quantity of generated rules that classify females and males
(Table 3), shows that rules that classify females outnumber rules that classify
males in 15 cases (countries), with the largest difference in Belarus. This finding
may suggest that female users are more creative in profile construction and pro-
vide more heterogeneous information about themselves, while males use more
homogeneous information to describe themselves. Moreover, the number of fre-
quent rules is higher for females (19 cases) with the largest difference in Ukraine.
This may also suggest the female users in different countries have more homoge-
neous behavior than men since they can be classified by relatively large amount
of frequent rules. On the other hand, male users are heterogeneous with respect
to the information they provide in their profiles, since most of them are classified
by infrequent rules. This hypothesis is supported by inspecting how many rules
cover the majority of the population. In all the cases, the number of rules that
cover 90% of the population is larger for males with the greatest difference in
Ukraine.

Any decision tree construction algorithm builds rules by determining the best
attributes that build up the tree. The attribute at the root of the tree is the first
attribute selected and, thus, is the best in the classification model. Inspection of
the root attributes of the models reveals four groups of countries:
(1) Russia, Italy and Israel are characterized by the attribute AimSex (the aim
on the site is to find a partner for having sex).
(2) Personality test (MonAmour test with more than 100 questions) is impor-
tant for people from Azerbaijan and USA. This may suggest that people from
Azerbaijan and USA consider the online dating as a very serious opportunity to
find a romantic partner.
(3) Turkey is the only country where the classification tree is splitted according
to the Car attribute. This may be explained by two reasons: (1) the number of

80

11

males is very high compared to the number of women and (2) most of the men
like to “show off” by specifying what type of car they have.
(4) All other countries are characterized by the photo attribute that specifies
how many photos were uploaded by a person.

5.3 Gender comparison

In Section 4.3 we applied a decision tree construction process to the user profiles
from every country, and generated models that contain a number of rules that
discriminate between females and males in a specific country. As mentioned
already, classification trees are used for predicting the target class value. Usually,
in order to estimate classifier’s predictive performance, the model is evaluated
on a separate test set. In the context of our analysis, we have evaluated the
applicability of classification rules generated for each country to the data of other
19 countries. The high classification rate in this case should suggest that there is
a high similarity between user profiles (and consequently between genders) across
countries. We used 10-fold cross validation to estimate the testing accuracy of
each country model on the data from the same country and used this result
to report classification accuracy of the country’s model. We selected 10% of
profiles from the dataset of Russia and Ukraine using StratifiedRemoveFolds
filter because Weka failed to run 10-fold cross validation on the entire dataset.
Table 4 shows the classification accuracy for every model arranged in rows.
The numbers on the diagonal represent the testing accuracy of each country
model. The numbers arranged in columns represent classification accuracy of
each of the country models on a test set of a given country. For simplicity of
inspection, cells that have classification accuracy higher than 90% are colored
in dark yellow, while cells that have classification accuracy less than 80% are
colored in pink. It should be noted that the results are not symmetric. For
example the classification accuracy of the Russian model on Moldova profiles is
79.93%, while it is 75.55% when Russian profiles are tested on the the Moldovan
model. From the Table 4 we can see that the performance of most of the classifiers
is around 80% to 90%. Classification accuracy of the Russian model on all other
countries is below the average. Most classification models perform similar or even
better on profiles from other countries than on profiles of their own countries,
except for Azerbaijan and Armenia profiles, which have a lower performance
with models of many other countries. Most accuracy differences in Table 4 were
found statistically significant at the 99.9% confidence level.

The classification accuracy allows us to reason about cross-country prediction
performance of each model, but it is not sufficient for comparing the countries
behavioral patterns due to the non-symmetrical matrix (Table 4). The answer
to the question “which countries are similar” is obtained by using the weighted
Kappa statistic3 [16–18], which is a measure of agreement between any two
classifiers and defined as

3 We calculated Kappa statistic using MedCalc statistical package http://www.

medcalc.be/

81

12

K =
P (A)− P (E)

1− P (E)
(1)

where P(A) is the proportion of times that the classifiers agree and P(E) is
the proportional agreement expected by chance.

Table 5 shows the Kappa values between countries. The interpretation of
Kappa values was adopted from [19]. Cells that denote a very good agreement
(0.801-1.0) are colored in light red, good agreement (0.601-0.8) are colored in
blue, moderate agreement (0.401-0.6) are colored in green and cells that repre-
sent fair agreement are colored in yellow. According to [19] values below 0.20
represent poor agreements. Accordingly, we assume that there is no agreement
between classifiers when Kappa values are below 0.20.

We can see that Belarus and Ukraine are the only countries with a very good
agreement (0.826), which indicates that behavioral patterns are very similar in
these countries. Germany has the largest number of good agreements (four in
total). Armenia and Lithuania are the countries that have the largest number
of moderate agreements (six in total). Kazakhstan and Italy are the countries
that have the largest number of fair agreements (seven in total). Kazakhstan,
Belarus, Germany, Armenia, Latvia and Lithuania are the country with the most
number of agreements (eleven in total). Russia, on the other hand, is the only
country, which does not have any similarities to other 19 countries.

5.4 Rule matching

The gender classification rules that were generated for every model (Table 3)
consist of the most important attributes and values that characterize females
and males in a specific country. If we expect to have a similarity between same
genders in different countries, then there should be a high number of similar
rules found in the models. We performed the comparison of classification rules
(rule matching) by taking every rule in a model, and searching for rules that
have the same attributes and values in the precedent of the rule in any order
in other models. For example the following two rules A=x AND B=y → c and
B=y AND A=x → b match because they have common attributes (A and B) in
the precedent and those attributes take the same values.

Due to the space limitation we cannot provide the complete results of the
comparison. However, it should be noted that the number of matching rules is
very low. For example, the highest number of matching rules was observed be-
tween Latvia and England, and Germany and Israel (4 rules).
Latvia-England:
(1) If there are no photos AND aim is sex → males
and 3 rules that classify females:
(2) If there is at least 1 photo AND aim is not sex AND have a car AND seek
for a person older than 21 AND no kids AND no information about the body →
females

82

13

(3) If there is at least 1 photo AND aim is not sex AND have a car AND seek
for a person older than 21 AND have kids living together → females
(4) If there is at least 1 photo AND aim is not sex AND have a car AND seek
for a person older than 36 AND have kids but live separately → females

We can clearly see the differences between females and males on the example
of the rules presented above. While males are characterized by intimate intention
(to have sex) and lack of photos, females are characterized by availability of at
least one photo in their profiles and the information regarding the desired age
of the partner. It is possible that young female users who do not have children
or those who have children search for a person older than 21, while older female
users who have children not living in the same household, would like to meet a
person older than 36.

Israel and Germany are another two countries that have four common rules.
One of the precedents of the rule is the following:
If there is at least 1 photo AND aim is sex AND personality test is filled AND
sexual orientation is Bisexual AND no kids
The German model classifies this rule as females, but the Israeli rule classifies this
rule as males. It should be noted that except for this ambiguous classification due
to specificity of sexual orientation, all other common rules are not ambiguous.
This is a good indication that there is a consistency in common rules among the
same genders across different countries.

5.5 Gender characterization

Since the space limitation does not allow us to present the whole list of rules
generated for every gender and country, we provide a number of rule examples
picked from the set of most frequent rules.
Azerbaijan: If personality test is filled AND aim is sex → males
Azerbaijan: If personality test is not filled AND there is at least 1 photo AND
have a car AND younger than 25 AND seek for a person older than 18 AND the
body is slim → females
Belarus: If no photos AND aim is sex AND seek for a person younger than 22
→ males
Belarus: If there is at least 1 photo AND aim is not sex AND no car AND
personality test is not filled AND preferences in sex are provided AND seek for
a person older than 21 AND have kids living together → females
Russia: If aim is sex AND seek for a person younger than 22 AND sexual
orientation is Heterosexual AND older than 18 AND younger than 42 AND
personality test is filled → males
Russia: If aim is not sex AND there is at least 1 photo AND seek for a person
older than 25 AND older than 29 AND do not smoke AND have kids living
together → females

From these examples we can see that the sex component is present in the
male rules (Azerbaijan, Belarus, Russia), photos are uploaded more by females
(Belarus, Russia). In addition, the difference in age of the female and the person

83

14

she seeks for is not significant (Azerbaijan, Russia), while males specify young
females as their desired romantic partners (Belarus, Russia)

6 Conclusions

In this paper we investigated gender differences between countries in the context
of dating sites using approaches from the field of Data Mining. We applied deci-
sion tree construction algorithm to the user profiles from 20 most active countries
using more than 10 million profiles from one of the biggest dating sites in the
Russian segment of the Internet. We analyzed the generated models and found
countries where users behave similarly in terms of profile creation. However, the
majority of countries are different from each other, which suggests that cultural
aspects influences the way people behave in social networking sites. We also ana-
lyzed the induced classification rules and found almost no similarity between the
same genders from different countries. This fact reinforces our hypothesis that
cultural aspects influences behavior not only of different genders across countries
but also of people of the same gender. We showed that social phenomena can be
investigated using data mining methods if large quantities of data are available,
and when statistical analysis alone is not enough for finding interesting patterns.

Our research overcomes the limitations of most previous studies, where the
analysis was performed on small, non-representative and non-generalizable sam-
ples of the user population. However, some uncertainty is associated with the
large-scale analysis of real profiles mined from a social networking site, since the
analyst cannot verify the real purpose of profile creation (whether it has a serious
intention or was created for fun). At this point, we assume that the majority of
SNS users have real profiles that reflect their real self. Automated cleaning of
profile data may be a subject of future research.

The preliminary results provided in the paper are encouraging. In our future
work, we will apply more analytical methods to conduct all-embracing gender
difference analysis and work closely with social scientists to test hypotheses that
so far have been verified on very limited amounts of sampled data.

Acknowledgements

This work was partially funded by the German Research Society (DFG) under
grant GK-1042 (Research Training Group “Explorative Analysis and Visualiza-
tion of Large Information Spaces”)

References

1. Nelson, S., Simek, J., Foltin, J.: The Legal Implications of Social Networking.
Regent University Law Review 22(1) (2009) 2

2. Acquisti, A., Gross, R.: Imagined communities: Awareness, information sharing,
and privacy on the Facebook. In: Privacy Enhancing Technologies, Springer (2006)
36–58

84

15

3. Young, A., Quan-Haase, A.: Information revelation and internet privacy concerns
on social network sites: a case study of facebook. In: Proceedings of the fourth
international conference on Communities and technologies, ACM (2009) 265–274

4. Kisilevich, S., Mansmann, F.: Analysis of privacy in online social networks of
Runet. In: Proceedings of the 3rd International Conference on Security of Infor-
mation and Networks, ACM (2010)

5. Ellison, N., Heino, R., Gibbs, J.: Managing impressions online: Self-presentation
processes in the online dating environment. Journal of Computer-Mediated Com-
munication 11(2) (2006) 415

6. Thelwall, M.: Social networks, gender, and friending: An analysis of MySpace
member profiles. Journal of the American Society for Information Science and
Technology 59(8) (2008) 1321–1330

7. Pfeil, U., Arjan, R., Zaphiris, P.: Age differences in online social networking-A
study of user profiles and the social capital divide among teenagers and older users
in MySpace. Computers in Human Behavior 25(3) (2009) 643–654

8. Grasmuck, S., Martin, J., Zhao, S.: Ethno-Racial Identity Displays on Facebook.
Journal of Computer-Mediated Communication 15(1) (2009) 158–188

9. Thelwall, M., Wilkinson, D., Uppal, S.: Data mining emotion in social network
communication: Gender differences in MySpace. Journal of the American Society
for Information Science and Technology (2009)

10. Pedersen, S., Macafee, C.: Gender differences in British blogging. Journal of
Computer-Mediated Communication 12(4) (2007) 1472

11. Goodchild, M., Anselin, L., Appelbaum, R., Harthorn, B.: Toward spatially inte-
grated social science. International Regional Science Review 23(2) (2000) 139

12. Kleinberg, J.: The convergence of social and technological networks. Commun.
ACM 51(11) (2008) 66–72

13. Golub, Y., Baillie, M., Brown, M.: Gender Differences in Internt Use and Online
Relationships. American Journal of Psychological Research 3(1) (2007)

14. Jones, S., Johnson-Yale, C., Millermaier, S., Pérez, F.: US College Students’ In-
ternet Use: Race, Gender and Digital Divides. Journal of Computer-Mediated
Communication 14(2) (2009) 244–264

15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter
11(1) (2009) 10–18

16. Cohen, J.: A coefficient of agreement for nominal scales. Educational and psycho-
logical measurement 20(1) (1960) 37

17. Cohen, J.: Weighed kappa: Nominal scale agreement with provision for scaled
disagreement or partial credit. Psychological Bulletin 70 (1968) 213–220

18. Fleiss, J., Levin, B., Paik, M.: Statistical methods for rates and proportions. NY
John Wiley & Sons (2003)

19. Altman, D.: Practical statistics for medical research. Chapman & Hall/CRC (1991)

85

16

Table 4. Classification accuracy of 20 most active countries.

86

17

Table 5. Agreements between classifiers using Kappa statistics. Light red: very good
agreement (0.801 to 1.0), Blue: good agreement (0.601 to 0.8), Green: moderate agree-
ment (0.401 to 0.6), Yellow: fair agreement (0.201-0.40)

87

Mining Social Context with Wearable Sensors

Ciro Cattuto

Complex Networks Lagrange Laboratory,
Institute for Scientific Interchange (ISI) Foundation,

10133 Torino, Italy
ciro.cattuto@isi.it

Abstract. The availability of networked wearable devices is providing new ways
to expose the mobility and interaction patterns of individuals. We describe a scal-
able RFID-based platform that was designed to sense the proximity relations of
individuals, providing a real-time representation of their social context. We re-
port on the experience of deploying this platform at conferences, museums, hos-
pitals and company offices, and show how proximity information can be used for
a variety of applications. In particular, we describe an application that supports
and augments social interactions at conference gatherings by mining and linking
real-world physical proximity with information from online social networking
systems.

89

PREDICTABILITY OF MOBILE PHONE

ASSOCIATIONS

Bjørn Sand Jensen, Jan Larsen, Kristian Jensen,
Jakob Eg Larsen, and Lars Kai Hansen

Technical University of Denmark
{bjje,jl,krije,jel,lkh}@imm.dtu.dk

Abstract. Prediction and understanding of human behavior is of high
importance in many modern applications and research areas ranging from
context-aware services, wireless resource allocation to social sciences. In
this study we collect a novel dataset using standard mobile phones and
analyze how the predictability of mobile sensors, acting as proxies for hu-
mans, change with time scale and sensor type such as GSM and WLAN.
Applying recent information theoretic methods, it is demonstrated that
an upper bound on predictability is relatively high for all sensors given
the complete history (typically above 90%). The relation between time
scale and the predictability bound is examined for GSM and WLAN
sensors, and both are found to have predictable and non-trivial behavior
even on quite short time scales. The analysis provides valuable insight
into aspects such as time scale and spatial quantization, state representa-
tion, and general behavior. This is of vital interest in the development of
context-aware services which rely on forecasting based on mobile phone
sensors.

1 Introduction

The wide acceptance of sensor rich mobile phones and related applications en-
ables deep studies of human behavior. According to a recent study by Song et
al. [11, 12] based on mobile phone location trajectories, individual human mo-
bility patterns are highly predictable. When including the complete history of
the participants they derived an upper bound on prediction of the next location
of 93% in a large cohort of 45,000 users. The upper bound is based on informa-
tion theory. Using Fanos inequality it was shown in [12] that the entropy rate
transforms into an upper bound of the predictability.

Interest in understanding human behavior using mobile technology is increas-
ing, see e.g., the recent review by Kwok [9]. The work of Eagle et al. [4] on the
Reality Mining dataset, marks an early and important contribution. Using a
Hidden Markov model and the time of day, they demonstrate explicit prediction
accuracies (home, work, elsewhere) in the order of 95%. Furthermore, they use
principle component analysis (PCA) to visualize temporal patterns in daily life.
The stability of these temporal patterns was confirmed by Farrahi et al. [5] in
the same dataset using unsupervised topic models.

91

While Eagle et al. focus on finding statistical regularities in behaviors at the
group level using parametric models Song et al. [11] are interested in individual
predictability using non-parametric methods and argue that inter-participant
variability is significant and in fact power-law distributed. For a further discus-
sion on parametric and non-parametric models, and the relation to information
theory, we refer to Bialek et al. [3].

We follow the implicit modeling approach by Song et al., i.e., using bounds
rather than explicit predictors to discuss human behavior in a novel mobile
phone data set that complements the analysis of Song et al. Our data set has
significantly higher temporal resolution and involves more sensors, however, in
a much smaller cohort (N = 14).

The opportunity to analyze multiple sensors is quite unique and produces new
insight both on the predictability of each sensor and on sensor dependencies. We
show that all the location and proximity based sensors have a relatively high
predictability bounds for the entire population. Whereas Song et al. [11] provide
important results on location prediction, the multiple sensors applied in our
study can potentially provide a richer description of context beyond location.
And as the extended set of sensors enjoys similar high predictability rates, it
may contribute additional useful information on human behavior and support
more general context dependent services.

Furthermore, we are interested in the predictability on different time scales,
and to probe whether it is possible to predict non-trivial behaviors on smaller
scales than the one hour time scale considered in [11]. Finally, we suggest apply-
ing mutual information - or prediction information [3] - as a method to easily
estimate an optimal time scale in a non-parametric fashion. The information
theoretic approach is based on upper and lower bounds on predictability. In this
paper we use the upper bound proposed by Song et al., and derive and analyze
a tighter lower bound based on a first Markov model [7], rather than the zero
order model of [12].

An early version of this work was presented to the machine learning commu-
nity in [7]. The present paper extends this work with; 1) an extended description
of the experimental setup; 2) comparison between WLAN and GSM, in particu-
lar in relation to optimal time scale; 3) extended discussion and interpretation.

The paper first gives a presentation of the experimental setup and the ac-
quired mobile phone dataset. In Section 3 we present the information theoretic
tools necessary to follow the analysis of the dataset. The result of the study is
presented and discussed in Section 4, followed by the conclusion in Section 5.

2 Experimental Setup

Within the last decade there has been a number of studies of real-world dataset or
lifelogs reflecting human life [1, 2]. In this section we present a software platform
for obtaining such lifelogs using standard off-the-shelf mobile phones functioning
as individual wearable sensor platforms.

92

Fig. 1. Mobile Context Toolbox architecture [10]. The bottom two layers provide low-
level access to the embedded sensors, whereas the adapters and context widget layers
provide high-level Python interfaces to sensors and inferred information for applica-
tions.

2.1 Mobile Context Toolbox

Since utilizing multiple sensor inputs on mobile devices can be a complex task we
have used our Mobile Context Toolbox [10], which provides an open extensible
framework for the Nokia S60 platform running the Symbian mobile Operating
System present in mobiles phones such as Nokia N95. The framework provides
access to multiple embedded mobile phone sensors, including accelerometer, mi-
crophone, camera, etc., as well as networking components such as phone appli-
cation data (calendar, address book, phone log, etc.), and phone state (profile,
charge level, etc.).

In principle, mobile devices can acquire information from the surrounding
environment as well as from online sources, but in the present study we focus on
information that can be acquired through the large variety of sensors embedded
in the device. The framework has multiple layers (as depicted in Fig. 1) on top of
the Nokia S60 platform. The framework uses Python for S60 (PyS60) with a set
of extensions for accessing low-level sensors and application data. The adapters
layer provides interfaces for the low-level sensors, whereas the context widgets
uses one or more adapters to infer higher-level contextual information. Finally,

93

the application layer utilize contextual information inferred from context widgets
and/or directly from context adapters. Further details and explanation of the
Mobile Context Toolbox is provided in [10].

2.2 Logging Data From Embedded Sensors

For the purpose of using mobile phones as an instrument for gathering lifelog
information we have built a Context Logger application, which subscribes to all
sensors through the relevant system components and then continuously records
all events received from the multiple adapters and widgets. In effect all accessible
sensor data is recorded, as shown in Table 1.

All sensor recordings are time stamped using the embedded mobile phone
timer. The accelerometer was sampled every 2 seconds. Samples are read-out
every 30s, in batches of 15 samples. The purpose of reading in bursts is to en-
able reading short bursts with higher sampling rate. GSM cellular information
acquired included the Cell ID with country code, operator code, and location
area code. In the present system the phone software API only allow reading the
CellID of the GSM base transceiver station to which the phone is currently con-
nected (not the ones visible). Since the GPS sensor is the most energy expensive
sensor, it was only sampled 2–3 times an hour to reduce the energy consump-
tion. Bluetooth scans was performed approximately every 1.5-3 minutes. The
sampling rate varies as the Bluetooth discovery time increases with the number
of Bluetooth devices available within discovery range. A discovery of a Bluetooth
device will always produce the unique MAC address of the device, however, the
lookup of the Bluetooth ”friendly name” and device type might fail as more time
is required to obtain this information. WLAN scanning is performed approxi-
mately once a minute, recording MAC address, SSID, and RX level (power ratio
in decibels – a measurement of the link quality) of discovered Access Points. Fi-
nally, phone activity (SMS, MMS, and calls) were recorded whenever it occurred
(phone number and direction).

In addition to the above mentioned sensor data, the Context Logger applica-
tion allows a user to manually label his/her present location and activity. The
label is a text string which can be entered by the user on the mobile phone,
such as, home, running, and having dinner. Entered labels will be stored and
subsequently shown on a list to pick from in order to avoid re-typing location
and activity labels. Users can manually choose to label location and activity by

Sensor Sampling Data

Accelerometer 30/minute 3D Accelerometer values
GSM 1/minute CellID of GSM base transceiver station
GPS 2–3/hour Longitude, Latitude, and Altitude
Bluetooth 20–40/hour Bluetooth MAC, friendly name, and device type
WLAN 1/minute Access Point MAC address, SSID, and RX level
Phone activity Event Phone number and direction of call or message
Table 1. List of embedded mobile phone sensors used for collecting data

94

selecting a menu item in the Context Logger application, however, this mech-
anism is further enhanced with the ability to automatically prompt for labels.
Thus, a user can choose to enter a label at any point in time, but the application
will also prompt the user to label a location and activity 2–3 times a day in order
to receive feedback. The data location and activity data recorded on the mobile
phone is a key-value pair along with the time stamp. There are no pre-defined
location and activity labels defined in the application and the labeling is com-
pletely free form with the users determining, how they want to write their text
labels.

Situations with missing data may occur due to the phone running out of
battery, being switched off, or simply not able to acquire data through one or
more sensors (for instance no GSM reception).

2.3 Data Collection

An initial deployment of the system included continuous use by 14 participants,
each equipped with a standard mobile phone (Nokia N95) which had the Mobile
Context Toolbox pre-installed along with the Context Logger application that
would continuously record the data acquired from all sensors currently supported
by our framework. The participants were using the mobile phone as their regular
mobile phone for a period of five weeks or more, as they were given instructions
to insert their own simcard into the phone. Furthermore, they were instructed
to make and receive calls, send messages, etc., as they would usually do, and
generally use the phone as they would use their own phone. Therefore, no par-
ticular instructions were given, since we wanted to establish data from regular
usage of the mobile phone, and thereby acquire real-life data. This means that
the participants would not necessarily carry the phone on the body all the time
such as carrying the mobile phone in a pocket.

As the survey is completely dependent on the cooperation of the participants
and due to increased use of sensors, the lack of battery time was considered a
risk in terms of participants leaving the survey. Thus, the sensor configuration
of sampling on the phone was based on optimizing the resource consumption,
so that the participants should only need to recharge the phone once a day
(typically during the night).

The experiment started on October 28, 2008 and ended January 7, 2009 and
the participants were students and staff members from The Technical University
of Denmark volunteering to be part of the experiment. Thus, the participants
were mainly situated in the greater Copenhagen area, Denmark. The 14 partic-
ipants took part in the experiment between 31 to 71 days, resulting in approxi-
mately 472 days of data covering data collection periods totalling 676 days. The
average duration was 48.2 days. An overview of the collected data is provided in
Table 2.

During the experiment a total of approximately 20 million data points were
collected with the accelerometer contributing the most with 14.5 million data
points. A summary of recordings from Bluetooth scans, WLAN scans, GPS
readings, and GSM readings can be seen in Table 2. It is worth noticing the

95

Part. Accel BT. BT.* GPS GSM GSM* Ann. PA. WLAN WLAN* Days

1 1474480 54349 2846 516 69458 529 533 544 224101 6387 71

2 2045773 38028 2478 1514 75669 603 596 1062 364272 6040 66

3 318597 27329 790 12 37217 98 222 21 125600 630 31

4 875287 7880 743 2 17750 228 134 620 186421 2394 52

5 1117147 13575 2373 4058 56206 227 386 277 251016 2347 48

6 711490 23702 1141 95 51702 235 82 839 92396 2119 50

7 1184457 13327 1765 3 45826 955 272 581 139466 4017 46

8 700258 42346 2080 614 74250 172 212 74 154108 3359 41

9 1101926 42346 1050 119 37393 100 104 497 104576 1804 38

10 1103086 21676 2104 419 63937 419 414 116 192338 2650 48

11 1122315 12492 655 929 46158 929 163 121 295716 2286 47

12 796452 30610 2317 40 51548 40 143 151 97769 2403 50

13 1024276 27550 1741 1114 49349 1114 137 949 171951 5463 51

14 971558 21502 1303 44 40017 44 149 686 118687 1263 36

Total 14547102 350879 20408 9479 716480 2837 3547 6538 2518417 28110 48.2

Table 2. Overview of collected data for each participant in the experiment: Participant,
Accelerometer, Bluetooth, Unique Bluetooth devices, GPS, GSM, Unique GSM cells,
Annotations, Phone Activity, WLAN Access Points, Unique WLAN Access Points,
Duration in days.

number of unique Bluetooth devices, unique GSM cells, and unique WLAN ac-
cess points discovered accumulatively during the experiment by all participants:
20408, 2837, and 28110, respectively. In total 9479 readings of GPS position
were recorded, but the recordings varies a lot among the participants due to the
nature of the GPS technology. As a GPS position typically can not be obtained
indoor only a subset of users have sufficient recordings of GPS position. For
instance, if they typically place the mobile phone near a window when indoor
where a GPS position can be obtained. A total of 6538 calls and messages took
place during the experiment.

The participants provided 3547 annotations of locations and activities in
total. On average the participants provided 253 annotations during their par-
ticipation, with an overall average of 5.3 labels provided per user per day. The
most active participants provided 8-9 labels per day on average, whereas the
least active participants provided 2 labels per day on average.

3 Methods

In this study we will apply an information theoretic approach in the analysis
of the dataset obtained and described in Section 2. Although before describing
the details involved in this, we consider the preprocessing required for the final
analysis.

A general issue in obtaining discrete times series is the number of quantization
levels and sample rate of the true process [3]. The scan cycles used to obtain the

96

present dataset are non-uniformly sampled and the scan cycles are of different
length for each sensor. We therefore construct a commonly aligned time series for
each sensor by creating non-overlapping frames of a given window length. The
original samples falling within the frame is then assigned to it. If multiple samples
falls within a frame they are merged, which is reasonable for the indicator type
of sensors (WLAN, GSM, BT). This is similar to combining states in a Markov
model effectively altering the state transitions. In case of the acceleration sensor,
the feature is calculated as the average power within a window represented as
a discrete levels1, i.e., XACC ∈ {off, 1, 2, 3}. Considering the WLAN sensor
and integrating all the networks seen into a state effectively means that the
predictive variable becomes the WLAN state and not the location as such. If a
specific location is needed a lookup to a database could return the position of the
WLAN access point and generate a location variable from that. An alternative
would be to directly work on a location variable generated from the WLAN
access point, but this is not considered here.

The proposed representation constitutes a very detailed description of the
participant state. An alternative suggested in [11, 12], represents the state as the
most visited GSM cell location within a time window. Both approaches involve a
relatively complex temporal quantization and resampling of the original data. To
evaluate the consequence temporal scale, we consider the change in predictability
bounds as the window length is decreased from one hour to one minute.

3.1 Information Theoretic Measures

We consider the problem of quantifying the predictability obtainable in a dis-
crete process, X = (X1, X2, .., Xi), where i is the time index and X is the state
variable. This is to a large degree motivated by previous work on predictabil-
ity, complexity and learning (see e.g. [3]), and recent development on a similar
dataset [11]. Here predictability is defined as the probability of an arbitrary al-
gorithm correctly predicting the next state. Hence, given the history the basic
distribution of interest is P (Xi+1|X1, X2, .., Xi). In the case where we have no
information regarding the history, the distribution naturally reduces to P (X).
When P (X) is uniform, i.e., each of M states have the same probability of
occurring, the Shannon entropy (in bits) is defined as Hrand (X) = log2 M .

In the case where the distribution of X is non-uniform, the entropy is given
as

Hunc (X) = −
∑

i∈I
p (xi) log (p (xi)) (1)

with p (x) = P (X = x). This in turn represents the information when no history
is available, hence, the acronym unc (uncorrelated).

The entropy rate of the participants trajectory, or the average number of
bits needed to encode the states in the sequence, can be estimated taking into

1 An equiprobable quantization is used, i.e., each level has the same frequency of
occurrence within the entire dataset.

97

Fig. 2. Participant 2. Time series for WLAN (top 100) and GSM data (top 30). The
time series are considered in a vector space representation, hence, each column is a
state vector.

account the complete history. This is done by defining the stationary stochastic
process X = {Xi} which have the entropy rate defined as

H (X) = lim
n→∞

1

n

∑n

i=1
H

(
Xi|hi−1

)
, (2)

where the history hi at time step i is hi = {X1, X2, ..., Xi−1}. It is noted that
0 ≤ H ≤ Hunc ≤ Hrand < ∞.

A challenge in using these information measures based on real and unknown
processes is the estimation of the entropy rate. A number of ideas have emerged
based on compression techniques such as Lempel-Ziv (LZ) (including string
matching methods) and Context Weighted Trees for binary processes. For a
general overview, we refer to [6]. An appealing aspect of these non-parametric
methods is that we avoid directly limiting model complexity as would be nec-
essary if we applied parametric or semi-parametric models. In this study we
estimate the entropy rate using a LZ based estimator as described in [8, 6] and
also applied in [12]. The entropy rate estimate for a time series of length n is
given by

Hest =

[
1

n

∑n

i=1

Li

log2n

]−1

(3)

where Li is the shortest substring starting at time step i, which has not been
seen in the past. The consistency under stationary assumptions is proved in [8]
where the method is applied to the analysis of English text.

98

Given estimates of the entropy and the entropy rate we consider a related
quantity, namely mutual information - or predictive information [3]. This mea-
sure is already available given the information measures above as

Ipred = lim
n→∞

1

n

n∑

i=1

H (Xi) − H
(
Xi|hi−1

)
(4)

= Hunc (X) − Hest (X) (5)

In effect Ipred represents the mutual information between the distributions cor-
responding to knowing and not knowing the past history. Hence, it quantifies the
fundamental information gain in knowing the (complete) past when prediction
the future, and we propose it as a easy way to evaluate quantization and time
scale effects. We illustrate the behavior of the measure on a time scale selection
problem in Section 4.

3.2 Predictability

In order to construct bounds on the predictability we consider the probability,
Π , that an arbitrary algorithm is able to predict the next state correctly.

Based on the entropy rate and Fano’s inequality Song et al. derives a bound
so Π ≤ Πmax (H (X) , M) with Πmax given by the relation [12]

H (X) = H (Πmax) + (1 − Πmax) log2 (M − 1) (6)

with the function, H (Πmax), given by

H (Πmax) = −Πmaxlog2 (Πmax) − (1 − Πmax) log2 (1 − Πmax) (7)

This non-linear relation between Πmax and the estimate of H(X) is easily solved
using standard methods (for a full derivation see [12]).

Adopting this approach we obtain three upper bounds based on the entropy
estimates previously mentioned. The first, Πrand, provides an upper bound on
a random predictor. The second upper bound is Πunc which bounds the per-
formance obtainable with a predictor utilizing the observed state distribution.
Finally, the most interesting bound, Πmax, provides a upper limit for the per-
formance of any algorithm utilizing the complete past.

The upper bound is of course interesting in understanding the potential pre-
dictability, although we find a lower bound equally important in the analysis.
Song et. al. [11] show how a simple lower bound can be constructed based on
the so-called regularity. The regularity is in essence a zero order Markov model
based on the most likely state at any given time of the day, i.e., using only the
time of occurrence and no sequence information. This is an intuitive measure for
some time periods such as daily patterns, e.g., utilizing where a person is most
likely to be each morning at 7.00. However, if the time scale is in the minute
range it does not necessarily make sense to consider the regularity.

Instead we propose to use a predictor using the immediate past as the repre-
sentative of the lower predictability bound. For this purpose we use a first order

99

Markov model with the transition probabilities estimated from the finite process.
Thus, the next state prediction is based on the distribution P (Xi+1|X1, X1, ..., Xi) =
P (Xi+1|Xi).

To avoid overfitting which tends to render the bounds overly optimistic, we
use a resampling scheme in which the entropy and the next state distribution
is estimated based on 2/3 of the data and tested on the remaining 1/3. This
is performed for nine distinct subsections in a compromise between accuracy of
the estimate and the needed samples for the entropy estimator to converge. The
resampling further allows us to verify that the LZ entropy estimate converges to
reasonable similar values for separate temporal sections of the participants life.
Any variation across subsections will result in a greater variance of the estimated
bound.

4 Results

In order to provide insight into the predictability of mobile phones sensors and
thereby indirectly insight into human behavior, we apply the information theo-
retic methods described in Section 2. The density estimates of the bounds are
all made using a standard kernel based density estimator (the bandwidth is
hand-tuned for visualization).

4.1 Individual Sensors

One of the goals in this study is to analyse the potential predictability of dif-
ferent sensors and to that end we provide the predictability bounds for the four
prominent sensors in the dataset, specifically GSM, WLAN, Bluetooth and ac-
celeration at 15 min. window length. Fig. 3 shows the predictability bounds for
the GSM, WLAN, Bluetooth and acceleration/activity sensors. By examining
the difference between Πmax and Πunc we find that there is considerable gain in
knowing the past. From the difference between the Markov model ΠMarkov and
the upper bound, ΠMax, we see that knowing more than just the previous state
seems to provide considerable benefit.

In the uncorrelated case, Hunc, participants show considerable differences in
the entropy for all sensors as typically expected in a real population. However,
conditioned on the past, the variability is typically lower (except for WLAN)
indicating that participants with high entropy have a relative predictable tra-
jectory. This corresponds well with the results observed in [11] for GSM based
localization. The Bluetooth data does, as mentioned, contain a considerable frac-
tion of unknown states (not off-states), which will tend to underestimate the true
entropy. This means that the bounds are most likely overestimated for Bluetooth.

The GSM, WLAN and Bluetooth sensors are inherently location or proximity
oriented sensors, and the estimated distributions all have modes in the high range
above 80%, but with noticeable difference in variability. Whereas GSM provides
small variability among participants, WLAN seems to provide a much larger
difference among participants. This is not surprising since WLAN is considerably

100

more noisy than GSM and captures a more local and detailed state than GSM.
Thus, some participants tend to have a relatively low predictability while others
are just as predictable as using GSM. The GSM complexity is on the other hand
more similar between mobile phone users. In effect WLAN is most likely the
more interesting sensor, but harder to predict, at least using the very detailed
representation.

Fig. 3. Detailed representation: Predictability of GSM, WLAN, Bluetooth and Accel-
eration sensors. Crosses indicate individual participant estimates. The mode at 0.99
and 0.98 in the GSM and WLAN densities are due to participant 3 which is left out in
the further analysis for clarity.

101

4.2 Time Scale

A primary goal in this study is the analysis of the time scales involved in the
prediction of location based sensors with the aim to provide support for context-
based services and general understanding of human mobility. The focus in this
part is thus focused on the GMS and WLAN sensors and the predictability
on a wide range of window lengths - and the examination of the optimal scale
suggested by the predictive information.

Figure 4 shows how the predictability bounds changes with the window
length. Noticeable are the GSM results in Figure 4(a) which are directly com-
parable with the original results in [11]. The bounding box indicates that the
predictability is in the same range, although smaller in our case, possibly due
to the more detailed representation utilized here. However, we obtain a similar
upper bound at approximately 10 min. scale. This trend towards a high upper
bound continues as the scale progresses downwards to 60 seconds.

In general there are various fundamental ways why this might happen. First
of all, we may simply oversample a constant process leaving the resulting times
series highly trivial to predict. The second reason is that the fundamental de-
pendencies are removed when aggregating the cell at long scales and the shorter
time scale provides the best representation. A simple way to examine the first
options is to look at the predictability suggested by the first order Markov model
and determine how far it is from reaching the upper bound. We notice that the
despite ΠMarkov approaching ΠMax, there seems to be some non-trivial behav-
ior which is not predicted by the first order model. Not surprisingly this indicates
that the first order Markov model is too simple. However, the bound provides a
very convenient indication of what a more complex model is able to obtain.

Whereas GSM provides a rather rough indication of mobility and specific
location, WLAN cells have quite high location resolution. Examining the time
scale for WLAN reveals that the complexity of the problem is very high com-
pared to the GMS case as seen on the pure results obtained by the Markov
model. Despite this, we notice that the upper bound is still quite high. This
suggests that there is an large unexploited potential in applying a more complex
model than for example a first order Markov model. As with the GSM sensor we
find that the shorter time scales provides a higher upper bound, and noticeably
that the variability among the participants are lower, in effect offering better
generalization of the predictability across multiple users.

As we have hinted, the optimal scale time scale for predictability for both
GSM and WLAN at small time scales, and to examine the precise scale at which
the past offers the most information in predicting the future we consider the
predictive information. This is depicted in Figure 5 showing how the predictive
information depends on the time scale. We find that the optimal scale is in the 3-
4 minute range for both types of sensors. This is our main result and supplements
the results in Song et al. [11] who focused on longer time scales (60 minutes).
The high predictability at short time scales is of great interest for applications
and is ”good news” for pro-active services based on predicting human needs
and behavior. Furthermore, the fact that the two distinct sensors operating on

102

(a) GSM

(b) WLAN

Fig. 4. Predictability vs. window length in sec. (log scale). Notice that participant 3
has been removed from the density estimate due to his/her outlier nature as noticed
in Figure 3

different spatial resolution yet still suggest the same optimal temporal scale,
indicates that there exists fundamental information at this scale where both the
upper bound on GSM and WLAN predictability are quite high. Yet, the exact
information available at this scale and implications of this is to be examined in

103

60 120 300 600 900 1800 27003600
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Window (sec)

Ipr
ed

 −
 G

S
M

Average Ipred

Individual Ipred

(a) GSM

60 120 300 600 900 1800 27003600
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Window (sec)

Ipr
ed

 −
 W

LA
N

Average Ipred

Individual Ipred

(b) WLAN

Fig. 5. Predictive Information (normalized) vs. window length (log scale). Participant
3 is left out.

a future analysis, for example using explicit modeling paradigms such as (multi-
way) factor analysis and advanced dynamical models.

5 Conclusion

In this paper we described an experimental setup for obtaining so-called lifelog
data using embedded mobile phones. The resulting dataset offers many possibil-
ities for investigating interesting elements of human behavior.

In the analysis we adopted an implicit modeling approach based on recent in-
formation theoretic methods to provide bounds for the prediction one could hope
to obtain using explicit modeling. We presented results on the predictability of
multiple mobile phone sensors showing that the basic findings in [11] general-
izes to more location and proximity based sensors. Specifically, that the gain in
knowing the past is significant, which indicates interesting potential for context-
aware mobile applications relying on forecasting for example GSM and WLAN
associations.

Finally, we showed that the prediction of human mobility generalizes to
shorter time scales than the one hour time scale previously studied in [11]. In
particular, we showed that the collected GSM and WLAN have the same optimal
time scales for prediction, specifically 3-4 minute range. Despite this encouraging
result, the exact interpretation and relevance of the patterns at the suggested
scale needs further investigation and analysis, for example using explicit model-
ing.

References

1. MyLifeBits (accessed May 1st 2010). http://research.microsoft.com/en-us/

projects/mylifebits/default.aspx

104

2. Bell, G., Gemmell, J.: A digital life. Scientific American 296(3), 5865 (March 2007)
3. Bialek, W., Nemenman, I., Tishby, N.: Predictability, complexity, and learning.

Neural Comput. 13(11), 2409–2463 (2001)
4. Eagle, N., (Sandy) Pentland, A.: Reality mining: sensing complex social systems.

Personal and Ubiquitous Computing 10(4), 255–268 (2006)
5. Farrahi, K., Gatica-Perez, D.: Discovering human routines from cell phone data

with topic models. 2008 12th IEEE International Symposium on Wearable Com-
puters pp. 29–32 (2008)

6. Gao, Y., Kontoyiannis, I., Bienenstock, E.: Estimating the entropy of binary time
series: Methodology, some theory and a simulation study. Entropy 10(2), 71–99
(2008)

7. Jensen, B.S., Larsen, J.E., Jensen, K., Larsen, J., Hansen, L.K.: Estimating hu-
man predictability from mobile sensor data. In: IEEE International Workshop on
Machine Learning for Signal Processing (MLSP 2010) (2010)

8. Kontoyiannis, I., Algoet, P., Suhov, Y.M., Wyner, A.: Nonparametric entropy esti-
mation for stationary process and random fields, with applications to english text.
IEEE Transactions on Information Theory 44(3), 1319–1327 (1998)

9. Kwok, R.: Personal technology: Phoning in data. Nature 458(7241), 959–961 (2009)
10. Larsen, J.E., Jensen, K.: Mobile context toolbox - an extensible context framework

for s60 mobile phones. In: Proceedings of the 4th European Conference on Smart
Sensing and Context (EuroSSC) (2009)

11. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human
mobility. Science 327(5968), 1018–1021 (2010)

12. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human
mobility - supplementary material (2010)

105

Discovering Trend-Based Clusters in Spatially
Distributed Data Streams

Anna Ciampi, Annalisa Appice, and Donato Malerba

Dipartimento di Informatica, Università degli Studi di Bari
via Orabona, 4 - 70126 Bari - Italy

{aciampi,appice,malerba}@di.uniba.it

Abstract. Many emerging applications are characterized by real-time
stream data acquisition through sensors which have geographical loca-
tions and/or spatial extents. Streaming prevents from storing all data
from the stream and performing multiple scans of the entire data sets
as normally done in traditional applications. The drift of data distribu-
tion poses additional challenges to the spatio-temporal data mining tech-
niques. We address these challenges for a class of spatio-temporal pat-
terns, called trend-clusters, which combine the semantics of both clusters
and trends in spatio-temporal environments. We propose an algorithm to
interleave spatial clustering and trend discovery in order to continuously
cluster geo-referenced data which vary according to a similar trajectory
(trend) in the recent past (window time). An experimental study demon-
strates the effectiveness of our algorithm.

1 Introduction

Spatio-temporal data mining has recently gained considerable attention from
both the research and practitioner communities. The main reason for this interest
is that datasets containing prominent spatial and temporal data elements are
growing rapidly due to the daily collection of geo-referenced data through sensor
networks.

Despite the significant advances made recently in spatio-temporal data min-
ing, many existing spatio-temporal data analysis approaches take only a static
view of the geo-spatial phenomena [7]. These approaches extract a finite set of
data points based on user-provided criteria (e.g., the space and time of interest)
and address data mining tasks for static spatio-temporal data only. However, a
static perspective is inadequate as data often arrive dynamically, continuously
and with a drift of the underlying data distribution. On the other hand, a dy-
namic perspective poses challenges such as avoiding multiple scans of the entire
data sets, optimizing memory usage, and mining only the most recent patterns.

The sliding window model [3] is a natural choice to efficiently mine a stream of
data where the most recent data observations are considered to be more critical
and preferable. This model improves the space/time efficiency of learning by
capitalizing on the fact that multiple scans due to pattern evaluation are limited
to basic slides.

107

The sliding-window model was originally defined for a single, non-spatially
related data stream source. The main contribution of this work is its extension
to the case of a several spatially distributed data stream sources. This way, the
model can be exploited in a wider range of ubiquitous knowledge applications,
which are characterized by both temporal and spatial locality [16].

The scenario we consider is that of a stream composed by sets of observa-
tions for a numeric attribute (theme) which are transmitted at consecutive time
points by a (variable) number of sources. These stream sources are identified
by a progressive number and geo-referenced. By taking into account both the
spatial arrangement of the transmitting sources and the temporal arrangement
of streamed data, we design a framework to mine a kind of spatio-temporal pat-
terns, called trend clusters. These patterns are spatial clusters of sources which
transmit values whose temporal variation, called trend polyline, is similar over
the recent window time. We introduce an algorithm, named TRUST (TRend
based clUstering algorithm for Spatio-Temporal data stream), for mining these
trend-clusters from spatially distributed data streams. The algorithm makes no
assumption on the number of spatial clusters as well as on their shape.

The paper is organized as follows. The next section formalizes the problem
statement. Section 3 revises related works. Section 4 describes the algorithm and
Section 5 reports an experimental study.

2 Problem Statement

In this work, spatio-temporal data are modeled according to the snapshot data
model [2], where the time domain is linear, absolute and discrete, the spatial do-
main is field-based and the attribute domains are variable. For every time point
of the stream, values collected at this time point form a time-stamped thematic
layer. This way, a layer is a collection of geo-referenced values measured for a the-
matic attribute at the time point. Time-stamped values vary over a continuous
space surface which is modeled in the field-based data model [19] as a function:
f : R2 × T 7→ Attribute domain, where R2 is an Euclidean representation of the
space surface and T is the time line. For the kind of applications considered
in this work, it is reasonable to assume that the locations of the transmitting
sources are fixed. Therefore, field functions are actually defined over only a finite
set of positions, those of active sources. Though finite, field domains can vary
over consecutive layers, since the number of transmitting sources can change in
time (sources may become inactive and transmit no data for some time interval).

In the stream perspective, thematic layers arrive continuously at consecutive
time-points. According to the sliding window schema [9], the stream is broken
down into slides of p layers arriving in series. A sliding window of size w is
composed by w consecutive slides (see Figure 1). Both window and slide sizes
are manually defined. In particular, window size depends on the time horizon we
are interested in processing. Differently, the slide size should be tuned in order
to find the best trade-off between learning time and accuracy. Each time a slide
flows in, patterns are generated locally to the slide. Then these local patterns

108

Fig. 1. Sliding windows with p = 6 and w = 4.

Fig. 2. Trend clusters: the blue cluster groups circle sources which vary according to the
blue trajectory over t1, t2 and t3. The red (green) cluster groups squared (triangular)
sources which vary according to the red (green) trajectory over t4 and t5. Numbers are
the values transmitted by the sources.

are used to approximate the set of patterns in the recent sliding window. This
way, multiple scans due to pattern evaluation are limited to slides, thus making
the discovery process more efficient both in time and space.

Patterns considered in this work, called trend clusters, are the result of spatial
clustering and trend discovery with the sliding window model. Spatial clusters
are obtained by processing data in a single time-stamped layer, so that sources
in the same cluster model the continuity in space of the measured attribute,
while sources in separate clusters model the variation over space [15]. Spatial
continuity expresses the similarity between observed values over the spatial or-
ganization, which is defined by spatial relations (e.g., distance) between distinct
sources. Sources grouped together in spatial clusters of consecutive layers model
a spatially local trend for the measured attribute. Trend clusters for an attribute
can be represented by colored trajectories over time (see Figure 2).

3 Related Works

In order to clarify the background of this work, related researches on clustering
in data stream mining and spatio-temporal data mining are reported below.

109

Data Stream Mining. Guha et al. [10] have presented a constant factor of ap-
proximation for the k-Medians algorithm which performs a single pass clustering
in data stream. Babcock et al. [4] have extended this algorithm by framing k-
Medians algorithm in sliding window model. The limitation of both algorithms is
that their results are often spherical clusters. They do not consider that clusters
in data streams could be of arbitrary shape and arbitrary number. Aggarwal et
al. [1] have proposed a two-phases clustering algorithm, called CluStream, which
separates out the clustering process into an online micro-clustering phase and
an offine macro-clustering phase. The problem with CluStream is the predefined
constant number of micro-clusters. Additionally, since a variant of k-means is
adopted to get the final macro-clusters, a “natural” macro-cluster may be split
into two parts. To discover arbitrary clusters in data stream and to handle out-
liers, Cao et al [6] have proposed a density-based clustering algorithm, called
DenStream. Finally, unsupervised naive-Bayesian network algorithms which are
designed to discover clusters in distributed data streams [17, 5] may be relevant
for this work. In fact, a network is here employed to model spatial arrangement
of data. Anyway, the kind of pattern we discover, that is, patterns with a poly-
line trajectory to describe how data vary in time within the cluster, requires a
time series based processing of streamed data which is not performed by these
naive Bayesian network algorithms.

Spatio-temporal Data Mining. Most of research in spatio-temporal data clus-
tering is focused on the discovery of either trajectory clusters or moving clusters.
Trajectory clusters group trajectories of similar shape. Vlachos et al. [20] have
firstly defined a Least Common Subsequence distance which is used as a base to
apply traditional (partitioning and hierarchical) clustering algorithms to object
trajectories. Gaffney and Smyth [8] have proposed a clustering algorithm which
models a trajectory as individual sequence of points generated from a regression
model. Unsupervised learning is carried out using EM algorithm to cope with
the cluster memberships. Nanni and Pedreschi [18] have adapted density-based
algorithm to trajectory data by using a distance measure between trajectories.
Differently, Lee et al. [13] have proposed a partition-and-group framework for
clustering trajectories which partitions a trajectory into a set of segments, and
then, groups similar segments into a cluster. Differently, the moving clusters
group moving objects in clusters whose identity remains unchanged while clus-
ter location and content may change over time. The key difference is that a
trajectory cluster has a constant set of objects throughout its lifetime, while the
content of a moving cluster may change over time (i.e., one or more object may
leave the group or new objects may enter it). A seminal method to discover mov-
ing clusters from an history of recorded trajectories has been proposed in Kalnis
et al. [12]. Spatial clusters are discovered at each snapshot by resorting to a static
density-based clustering algorithm and results are then combined into a set of
moving clusters. Li et al. [14] have proposed to exploit the micro-clustering orig-
inally proposed by Zhang et al. in [21] and extend it to moving micro-clustering.
In this work, a moving micro-cluster denotes a group of objects that are not only
close to each other at current time, but also likely to move together for a while.

110

Fig. 3. The framework of TRUST.

4 The Algorithm

The framework of TRUST is reported in Figure 3. A buffer continuously con-
sumes thematic layers and pours them slide-by-slide into the TRUST system.
TRUST operations consist in: (1) buffering slide layers in a graph-based synopsis
data structure, (2) discovering trend-clusters over the slide time (slide-level clus-
tering), and then (3) approximating trend clusters by combining the slide-level
trend cluster sets (window-level clustering). After a slide goes through TRUST,
slide layers are discarded, while the set of trend cluster discovered over the slide
is maintained in main memory for the window time. For each slide, the number
of discovered trend clusters ranges between 1 (i.e., sources are all grouped in a
single cluster) and the number of sources (one cluster for each source). Due to the
sliding window model, once the set of trend clusters is locally discovered over the
last income slide, the oldest set is discarded. The number p of layers in a slide,
the number w of the slides composing the sliding window, the value-similarity
threshold δ, the slide-level trend continuity threshold θ and the window-level
trend continuity threshold ε are given before TRUST starts.

4.1 Buffer Synopsis Structure

Since TRUST is in charge of discovering trend clusters over the sliding windows
of a data stream, it needs to maintain on-line a representation of the spatial
organization which arises in the layers of the current sliding window.

As reported in [15], the spatial organization of a layer can be modeled by
means of a graph G(N,E). In this work, N is the set of nodes (sources) which
transmit signals over at least one slide of the sliding window. E is a binary
(spatial) relation between nodes, E ⊆ {〈u, v〉|u, v ∈ N} (e.g., an edge 〈u, v〉 ∈ E
connects the nodes u and v iff the Euclidean distance between the corresponding
sources is less than a threshold). Each node in N is assigned with w binary labels
which describe the active/inactive state of the node at each slide of the sliding
window. A node is active at a slide if it is active in at least one layer in the

111

slide, inactive otherwise. The nodes of G which are active at the current slide
defines the structure of the data synopsis where the layers are buffered for the
time of the slide-level clustering phase. Similarly, the edges of E which connect
nodes which are active on the slide identify the spatially close sources which
are the only candidates to be grouped in the same cluster during the slide-level
clustering phase. The entire edge set E is used during the window-level clustering
phase to approximate the set of trend clusters for the entire window.

The graph G is constructed from scratch with the first slide which flows in
the stream. After that, the structure of G is updated each time a new slide flows
in the stream. The update operations consist in: (1) adding a new node (and
the edges) to N (and E) in order to map a transmitting source which is firstly
monitored in the sliding window, the state of this node is active over the current
slide, inactive over the past w − 1 slides of the sliding window; (2) updating an
existing node f N by discarding the oldest state label and assigning an active
label if the source transmits signals in the current slide (inactive otherwise); and
(3) removing a node (and the edges) from N (and E) if the node was labeled as
inactive over each slide of the sliding window.

Let us denote: NA as the set of nodes which belong to N and are active in
the current slide, and EA as the set of edges which belong to E and connect
active nodes in the current slide. GA(NA, EA) represents the graph structure of
the synopsis where the lastly income slide layers are temporally stored for the
slide-level clustering phase. For each active node u ∈ NA, a p-sized bucket is
stored in the synopsis data structure. This bucket is denoted as Bu and it stores
the p values streamed by the corresponding source in the slide time (see Figure
4). This way, the slot Bu[l] is the value buffered in u by the lth layer which
arrives in the slide. It is noteworthy that there are two cases in which missing
values may be stored in a bucket. In the former case, a source, which has already
been active in the past, does not transmit the signal for one or more layers in the
current slide (e.g., the sensor is gone down or the transmission is not in time),
the missing value is replaced by the lastly observed value for the source. In the
latter case, a source transmits the first signal at a layer of the current slide,
missing values which precede the first transmission are replaced with this firstly
transmitted value.

4.2 Slide-level trend cluster Discovery

Before presenting how the slide-level trend cluster discovery is performed, we
introduce some preliminary definitions.

Definition 1 (δ-close measure ψδ). Let X be a continuous theme with domain
[α, β] and δ be a real value in [0, 1]. The δ-close measure is a function ψδ : X ×

X 7→ {0, 1} such that ψδ(x1, x2) =

{
1 ‖x1−x2‖1

β−α ≤ δ
0 otherwise

.

Based on Definition 1, we define the Eθδ close relation between the edged
nodes of G.

112

Fig. 4. The graph synopsis data structure (b) where layers (a) are buffered with p = 3.

Definition 2 (Eθδ close relation). Let δ be a real value in [0, 1] and θ be a
real value in [0, 1]; Eθδ is the binary relation between the edged nodes of GA

(Eθδ ⊆ EA) which is defined as Eθδ = {〈u, v〉 ∈ E|
p∑

i=1

ψδ(Bu[i], Bv[i]) ≥ θ × p},

where Bu[i] (Bv[i]) is the ith slot value in the bucket Bu (Bv).

We use the Eθδ close relation to define the Eθδ -connectivity in G.

Definition 3 (Eθδ -connected). A node u is Eθδ -connected to a node v (u, v ∈
NA), with respect to Eθδ , iff: (i) 〈u, v〉 ∈ Eθδ , (direct connectivity) (ii) or ∃w ∈
NA such that 〈u,w〉 ∈ Eθδ and w is Eθδ -connected from v (undirect connectivity).

Finally, we define the function of δ-homogeneity over GA.

Definition 4 (δ-homogeneity). Let δ be a real value in [0, 1]. The function
δ-homogeneity : 2N 7→ {true, false} is defined as:

δ − homogeneity(Ni) =

{
true ∀u, v ∈ Ni, ‖η(Bu)−η(Bv)‖1

β−α ≤ δ
false otherwise

.

In Definition 4, the function η : 2X 7→ X returns the middle point (median)
over a sequence of values in X. The choice of the median is motivated by the
fact that it is robust, while the mean would be influenced by outliers. Finally, a
trend cluster is defined as follows.

Definition 5 (trend cluster). A trend cluster is the pair C ⇔ P such that:

1. C ⊆ N satisfies the following properties: (a) ∀u, v ∈ C : u Eθδ -connected to
v, and (b) C is a δ-homogeneous node set , i.e., δ-homogeneity(C)=true;

2. P = 〈η(C|1), η(C|2) . . . , η(C|p)〉 where C|l is the set {Bu[l]|u ∈ C} and η(·)
is the median function.

Note that, in Definition 5, the Eθδ -connectivity guarantees the (spatial) con-
tinuity of polylines which are associated to the nodes grouped in a cluster at

113

Algorithm 1 Slide-level discovery: GA(NA, EA) 7→ Γ

– Main routine

1: Γ = ®
2: for all u ∈ NA do
3: if u is UNCLASSIFIED then
4: C ← {u}
5: C ← expandCluster(C,GA, u)
6: P ← 〈η(C, 1), η(C, 2), . . . , η(C, p)〉
7: Γ ← Γ ∪ {C ⇔ P}
8: end if
9: end for

– expandCluster (C,GA, u)

1: Nδ
θ (u)← Eθδneighborhood(u,GA)

2: if δ-homogeneity(C ∪Nθ
δ (u)) then

3: C ← C ∪Nθ
δ (u)

4: for all n ∈ Nθ
δ (u) do

5: C ← expandCluster(C,GA, n)
6: end for
7: else
8: for all n ∈ Nθ

δ (u) do
9: if δ-homogeneity(C ∪ {n}) then

10: C ← C ∪ {n}
11: C ← expandCluster(C,GA, n)
12: end if
13: end for
14: end if

each layer. The condition on δ−homogeneity is added to guarantee that the
entire cluster evolves with a single close polyline that is reasonably approxi-
mated with P . Closeness depends on δ and θ. Since a cluster is the node set
of a sub-graph extracted from G by satisfying the conditions of Eθδ -connectivity
and δ-homogeneity, TRUST resorts to a neighborhood-based graph partitioning
algorithm-like in order to discover the trend clusters over slide.

The top-level description of the algorithm is in Algorithm 1. The key idea is
to exploit the construction of node neighborhood based on the Eθδ close relation
(namely Eθδ -neighborhood) and to grow clusters by merging partially overlapping
Eθδ neighborhoods only if the resulting cluster is a δ-homogeneous node set. The
definition of the Eθδ -neighborhood of a node u in G is reported below.

Definition 6 (Eθδ -neighborhood). Let u be a node, the neighborhood Nθ
δ (u)

of u is defined as Nθ
δ (u) = {v|〈u, v〉 ∈ Eθδ ∧ UNCLASSIFIED(v)}, where

UNCLUSSIFIED(v) means that v is not assigned to any cluster.

In the main routine of Algorithm 1, a novel empty cluster C is created
for a node u ∈ N which is currently UNCLASSIFIED. C is firstly grown
with u, then expandCluster(C, u) grows C by using u as seed. In particular,
expandCluster(C, u) evaluates the property of δ − homogeneity for the node

114

set C ∪ Nθ
δ (u) (see the call of δ − homogeneity(·) function in Algorithm 1). If

C ∪Nθ
δ (u) is a δ-homogeneous node set, C is grown with Nθ

δ (u). Otherwise, the
addition of each neighbor n ∈ Nθ

δ (u) is evaluated node-by-node. A neighbor is
individually added to C only if the output cluster remains a δ− homogeneous
node set. Each time C changes (by either adding an entire neighborhood or only
few neighbors), expandCluster(·, ·) is recursively called to further grow C by
considering the new clustered nodes as candidate seed of the expansion (see the
recursive call of expandCluster(·, ·) in Algorithm 1).

When a cluster C is completely constructed (no further node can be added
to), the polyline P , which describes how the clustered nodes evolve over the slide
time, is built. P is the sequence of p points, that is defined as P = 〈1, η(C, 1)〉, 〈2,
η(C, 2)〉, . . . , 〈p, η(C, p)〉, where each point 〈l, η(C, l)〉 is the representative of the
behavior of the cluster C over the lth layer in the buffered slide. In Algorithm
1, the function η(C, l) (that is called with argument l = 1, . . . , p) returns the
median of the values stored in the lth slots for the nodes grouped in C.

Finally, each trend cluster C ⇔ P is added to the cluster set Γ . Once all the
nodes have been classified in a cluster, values in the buckets are discarded and
the algorithm stops by returning Γ as output of the slide-level discovery process.
Note that Γ can be intended as a reasonable summarization of the slide layers.

4.3 Window-level trend cluster Discovery

The discovery of trend clusters over a window capitalizes on the trend cluster
sets, denoted as Γ1, . . . , Γw, which have been locally discovered for the slides of
W . Indeed, while past slide layers are discarded, the discovered trend cluster
sets are maintained for the window time. This way, the window-based discovery
analyzes a reduced set of data. The window level clustering bases on the consid-
eration that nodes, which are repeatedly grouped together in a cluster for each
slide of the window, map sources which are close in space and which evolve with
a close polyline over the entire window time. Based upon this consideration, the
window-level component of TRUST determines the trend clusters over the win-
dow by clustering the spatially close sources which are continuously clustered
together over the slides of the window. Clustering is performed based on the
binary cluster relation denoted as EΓ1,...,Γw

ε which is defined below.

Definition 7 (EΓ1,...,Γw
ε window cluster relation). Let ε be a real value in

[0, 1], EΓ1,...,Γw
ε is defined over E as EΓ1,...,Γw

ε = {〈u, v〉 ∈ E|
w∑

i=1

clustered(u, v, Γi) ≥

ε× w} with clustered(u, v, Γi) =

{
1 ∃(C ⇔ P) ∈ Γi : u, v ∈ C
0 otherwise

.

The binary window cluster relation EΓ1,...,Γw
ε identifies each pair of edged

nodes of G which are clustered together over at least ε× w slides of W . Hence,
clusters over window are obtained by partitioning the graph G(N,E) in com-
pletely connected sub-graphs according to the binary window cluster relation

115

Algorithm 2 Window-level discovery: Γ1, Γ2, . . . , Γw, G(E,N) 7→ Γ

– Main routine

1: EΓ1,...,Γw
ε ← determineWindowClusterRelation(Γ1, Γ2, . . . , Γw, E)

2: Γ ← ®
3: for all u ∈ N do
4: if u is UNCLASSIFIED then
5: C ← {u}
6: C ← expandCluster(C,EΓ1,...,Γw

ε , u)
7: P ← polyline(C, {Γ1, . . . , Γw})
8: Γ ← Γ ∪ {C ⇔ P}
9: end if

10: end for

– expandCluster(C,EΓ1,...,Γw
ε , u)

1: for all 〈u, v〉 ∈ EΓ1,...,Γw
ε and v is UNCLUSSIFIED do

2: C ← C ∪ {v}
3: C ← expandCluster(C,EΓ1,...,Γw

ε , v)
4: end for

EΓ1,...,Γw
ε (see Algorithm 2). Let C be a cluster over window W , C is assigned

with the trend polyline P and C ⇔ P is output as a trend cluster over W . P
is built by sequencing the points of the polylines which are associated, slide by
slide, to the clusters which include C (see the call of function polyline(·, ·) in
Algorithm 2). Formally, P = P 1, P 2, . . . , Pw where:

P j =

{
P ji ∃(Cji ⇔ P ji) ∈ Γj : C ⊆ Cji
null otherwise

. (1)

5 Experiments

We evaluate TRUST with a synthetic data stream and two real data streams.
Experiments evaluate accuracy and number of discovered patterns and the effi-
ciency of learning. As a measure of the accuracy of the trend cluster set Γ , we
use the average absolute percentage error (MAPE), a statistics that is widely
used in time series [11]. MAPE computes the absolute error that is performed
when the polylines of Γ are used to fit data windowed in W . Formally,

MAPE(Γ,W) =
∑

u∈N
mape(Γ, u|W)/|N |,

where N denotes the source set over which the stream is transmitted over the
windowW and u|W denotes the series of p×w values which are streamed from the
source u ∈ N over the window W . mape(Γ, u|W) is the mean absolute percentage
error which measures how the polyline P of the trend cluster C ⇔ P fits real
values streamed in the u|W (with u ∈ C). It expresses accuracy as a percentage,

and is defined by mape(Γ, u|W) = 1
p×w

p×w∑

i=1

∥∥∥ (u[i|W])− P [i]

(u[i|W])

∥∥∥
1

with (C ⇔ P) ∈

Γ and u ∈ C.

116

(a) (b)

Fig. 5. The trend cluster configurations according to the synthetic data are generated.

Synthetic data stream. As a synthetic data stream we have considered the
stream transmitted by 49 sources which are distributed over a squared 7 × 7
grid. A source is close to the neighbor sources which are located in the grid
cells around the source (see Figure 5). Let X be the thematic attribute of the
stream, X ranges in [18, 27]. The stream is obtained by sequencing 54 layers
of measurements of X which are generated according to the trend based cluster
configuration reported in Figure 5.a. and 54 layers which are generated according
to the trend based cluster configuration reported in Figure 5.b. Each source
measures values which evolve according to the polyline representing the trend
of the corresponding cluster. For each layer, for each source the polyline value
is noised with an error generated according to the Normal distribution N(0,1).
Experiments are run with p = 9, w = 6, δ = 10%[27 − 18] = 0.9, θ = 0.8
and ε = 1. θ is set to a value different from 1 in order to take into account
variation in data due to the noise. This way TRUST processes twelve slides
and discovers trend clusters over seven consecutive sliding windows. The cluster
configurations discovered for each sliding window are reported in Figure 6. As
expected, the clustering results show that TRUST is able to exactly detect the
cluster configuration that is defined in (a) over the first window (slides 1-6) and
the cluster configuration that is defined in (b) over the last window (slides 6-
12) of the processed stream. The results of clustering over intermediate sliding
windows correctly reveal the concept drift from the configuration (a) toward
the configuration (b). Indeed, to adapt the discovered cluster configuration to
the effective evolution trend of the windowed data, TRUST moves the sources
5, 6, 7, 14, 21, 29, 36, 43, 44 and 45 in two new spatial clusters. This way,
TRUST still identifies groups of spatially contiguous sources whose trend is
approximately the same over the window under consideration. It is noteworthy
that 5, 6, 7, 14 and 21 are grouped in one spatial cluster, while 29, 36, 43, 44
and 45 are grouped in a separate cluster over the intermediated sliding windows
(slides 2-8, slides 3-9, slides 4-10, slides 5-11) due to the spatial discontinuity of
sources, while the plot of the trend associated to these spatial clusters show two
polylines which are overlapping. In Table 1, the mean absolute percentage error
(MAPE) of trend cluster sets discovered over the sliding windows of data stream
is reported. MAPE provides an estimate of the accuracy of cluster polylines in
fitting windowed data. The observed value of MAPE is always low (it is less
than 0.03 for each window), thus confirming that the trend discovery is accurate.

117

Fig. 6. The clusters discovered by TRUST over each sliding window of the synthetic
data stream (p = 9, w = 6, δ = 10%(27− 18), θ = 0.8 and ε = 1).

Table 1. MAPE of trend cluster sets over sliding windows of processed data stream.

error Sliding windows

[1-6] [2-7] [3-8] [4-9] [5-10] [6-11] [7-12]

MAPE 0.01885 0.01921 0.01975 0.02083 0.02229 0.02267 0.02290

Intel Berkley Lab data stream. Intel Lab data stream1 contains real infor-
mation collected from 54 sensors deployed in the Intel Berkeley Research lab
between February 28th and April 5th. A sensor is considered to be close to each
other sensor into the six meters range. The sensors which we consider in this ex-
periment have collected timestamped temperature values once every 31 seconds
(epoch). There are several epochs where no temperature value is transmitted by
one or more sensors (missing values). We have processed the entire stream that
is 2.3 about million readings (about 65000 layers) collected from these sensors
in 73541 millisecs by setting p = 20 and w = 5, θ = 1 and ε = 1. Due to the
space limitation, we describe only the trend cluster configurations which have
been discovered by processing a subset of 5000 layers. Experiments are run with
δ = 10%[β − α]. Due to the presence of several outlier values, we use a box
plot to derive a reasonable representation of the data range [α, β]. The groups of
streamed values collected over an initial calibration time are depicted through
their five-number summaries (box plot): the smallest observation (sample mini-
mum), lower quartile (Q1), median (Q2), upper quartile (Q3), and largest obser-
vation (sample maximum). This way we derive α = Q1−1.5∗(Q3−Q1) = 10.405
and β = Q3 + 1.5 ∗ (Q3−Q1) = 37.085. Hence, δ = 2.668. To evaluate the effec-
tiveness of sliding window model in the stream environment, we compare each
trend cluster set obtained with p = 20 and w = 5 with the cluster results ob-
tained by learning the full widowed data at once (p = 100 and w = 1). Elapsed
time of the learning phase with sliding windows is reported in Figure 7.a. The
comparison between p = 20 w = 5 and p = 100 w = 1 is plotted in Figure
7.b. We consider only the windows which cover the same portion of data stream
(e.g., slides 1-5, 6-10, and so on). Since θ = 1 and ε = 1 the same trend clusters
are discovered in both configurations, while the elapsed time is different due to
the use of sliding window model. We can observe that TRUST capitalizes on the
slide-based discovery to analyze a reduced set of data (slide), thus decreasing the
time of learning in the online discovery process without affecting number and
trend of discovered clusters. This is an empirical confirmation of effectiveness

1 http://db.csail.mit.edu/ labdata/labdata.html

118

(a) (b)

Fig. 7. Elapsed time (ms) with (a) p = 20 w = 5 over the sliding windows, (b) p = 20
w = 5 vs. p = 100 w = 1 over windows which cover same data portion. θ = 1 ε = 1.

(a) (b)

Fig. 8. (a) MAPE and (b) number of clusters with p = 20 and w = 5.

of sliding window model to improve efficiency of mining trend-based patterns in
a stream. Further experiments have been performed to evaluate dependence of
TRUST from θ. The number of clusters as well as the MAPE for consecutive
sliding-windows are plotted in Figure 8.a-b by varying θ between 0.8, 0.9 and 1.
The number of clusters shows that TRUST is able to group sources over windows
thus summarizing windowed data by means of the polylines which are associ-
ated to the clusters (the number of discovered clusters is generally less than 10
with a pick to 32 in the central plotted windows). As expected, we observe that
by relaxing the threshold of the trend continuity over slide (θ), the number of
clusters decreases and, consequently, also the accuracy of fitting decreases. The
fitting capability is always good enough with an error that is at worst 0.1. The
issue is to find the trade-off between summarization degree (number of clusters)
and fitting accuracy (MAPE). In this work, we do not consider ε < 1 since we
intend to detect window-time continuous trend clusters.

South American Climate data stream. South American climate data stream2

contains monthly-mean air temperature values recorded between 1960 and 1990
over a 0.5 degree by 0.5 degree of latitude/longitude grid of South America, where

2 http://climate.geog.udel.edu/∼climate/html pages/archive.html

119

(a) (b)

Fig. 9. Elapsed time (ms) with (a) p = 12 w = 5 over the sliding windows, (b) p = 12
w = 5 vs. p = 60 w = 1 over windows which cover same data portion. θ = 1 ε = 1.

the grid nodes are centered on 0.25 degree for a total of 6447 node sources. A
source is close to the neighbor sources which are located in the grid cells around
the source. Experiments are run with δ = 10%[β − α]. We use the box plot to
group streamed temperature values and to determine α = 6.925, β = 37.125
and, hence, δ = 3.02.

The elapsed time of the learning process is reported in Figure 9 for two
parameter settings: a) p = 12 (one year) and w = 5; b) p = 60 and w =
1. Windows cover the same portion of data stream. Also in this stream, we
observe that TRUST capitalizes on the slide-level discovery to improve efficiency
of learning. Although the number of sources is significantly high, learning is
efficiently enough to run on-line. Indeed, after the first window, where five slides
have to be processed before being able to output clusters over the window, the
elapsed time to learn each single slide and derive the clusters over the window
is less than 30 secs.

We also evaluate the effectiveness of trend clusters discovered by varying θ
between 0.8, 0.9 and 1. The number of clusters as well as the MAPE values
for consecutive sliding-windows are plotted in Figure 10.a-b. We observe that
the number of clusters is greatly lower than 6447 (at worst 4 clusters over each
window), thus TRUST is effective in summarizing data. Additionally, MAPE
value is low (less than 0.06 independently on θ), this confirms that also in this
stream the summarization by means of the discovered trend clusters is accurate
in fitting the real windowed data. A final consideration concerns θ, by relaxing
which, the number of clusters decreases only over few windows and in these cases
also the accuracy of fitting slightly decreases.

Some conclusions can be drawn from this empirical study. TRUST is effective
in discovering accurate trend-based clusters as we proved with the analysis of
MAPE. TRUST is scalable as we proved with the analysis of data streams gen-
erated by both a low number of sources (synthetic data and Berkley Lab data)
and an high number of sources (South American Climate data). Additionally,
TRUST is able to operate in real world situations and cope with possible vari-
ation in the sources configurations over consecutive layers (Berkley Lab data).

120

(a) (b)

Fig. 10. (a) MAPE and (b) number of clusters (p = 12 w = 5).

Final considerations concern the utility of patterns that TRUST discovers. Our
basic consideration is that trends provide useful information in spatially dis-
tributed data stream, where knowing how spatially clustered values vary in time
can help drawing useful conclusions. For instance, in weather monitoring, it is es-
sential to know how temperatures evolve (increasing or decreasing) over regions
of the Earth and how the shape of these regions changes in time. Additionally,
trend-based representation of spatially distributed data stream is considered
close to the human intuition. Finally, trend clusters can be used for summariz-
ing spatio-temporal data and subsequent storing in data warehouses.

6 Conclusions

The paper presents TRUST an algorithm to retrieve groups of spatially contin-
uous geo-referenced data which vary according to a similar trend polyline in the
recent window past. As future work we plan to investigate how the algorithm
depends on the order of analyzing the geo-referenced streamed values and we
intend to study criteria to suggest the best order of evaluation.

Acknowledgments

This work is supported by the Strategic Project PS121: “Telecommunication
Facilities and Wireless Sensor Networks in Emergency Management”.

References

1. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving
data streams. In VLDB 2003, pages 81–92, 2003.

2. C. Armenakis. Estimation and organization of spatio-temporal data. In GIS, 1992.
3. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues

in data stream systems. In PODS 2002, pages 1–16. ACM, 2002.

121

4. B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining variance
and k-medians over data stream windows. In PODS 2003, pages 234–243. ACM,
2003.

5. K. Bhaduri, K. D. K. Sivakumar, H. Kargupta, R. Wolff, and R. Chen. Algo-
rithms for distributed data mining. In Data Streams: Models and Algorithms (book
chapter), volume 31, pages 309–334. Springer-Verlag, 2007.

6. F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving
data stream with noise. In J. Ghosh, D. Lambert, D. B. Skillicorn, and J. Srivas-
tava, editors, SIAM SDM 2006, 2006.

7. W. Chang, D. Zeng, and H. Chen. A stack-based prospective spatio-temporal data
analysis approach. Decis. Support Syst., 45(4):697–713, 2008.

8. S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression models.
In KDD 1999, pages 63–72. ACM, 1999.

9. V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining data streams under block
evolution. SIGKDD Explorations, 3(2):1–10, 2002.

10. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In FOCS, pages 359–366, 2000.

11. R. Hyndman and A. B. Koehler. Another look at measures of forecast accuracy.
International Journal of Forecasting, 22(4):679–688, 2006.

12. P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-
temporal data. In C. Bauzer Medeiros et al., editor, SSTD 2005, volume 3633 of
Lecture Notes in Computer Science, pages 364–381. Springer-Verlag, 2005.

13. J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group
framework. In SIGMOD 2007, pages 593–604. ACM, 2007.

14. Y. Li, J. Han, and J. Yang. Clustering moving objects. In KDD 2004, pages
617–622, New York, NY, USA, 2004. ACM.

15. D. Malerba, A. Appice, A. Varlaro, and A. Lanza. Spatial clustering of structured
objects. In S. Kramer and B. Pfahringer, editors, ILP 2005, volume 3625 of Lecture
Notes in Computer Science, pages 227–245. Springer-Verlag, 2005.

16. M. May, B. Berendt, A. Cornujols, J. Gama, F. Giannotti, A. Hotho, D. Malerba,
E. Menesalvas, K. Morik, R. Pedersen, L. Saitta, Y. Saygin, A. Schuster, and
K. Vanhoof. Research challenges in ubiquitous knowledge discovery. In Next Gen-
eration of Data Mining. Chapman and Hall/CRC, 1 edition, 2008.

17. R. Munro and S. Chawla. An integrated approach to mining data streams. In
Technical Report, University of Sydney. School of Information Technologies, 2004.

18. M. Nanni and D. Pedreschi. Time-focused clustering of trajectories of moving
objects. J. Intell. Inf. Syst., 27(3):267–289, 2006.

19. S. Shekhar and S. Chawla. Spatial databases: A tour. Prentice Hall, 2003.
20. M. Vlachos, D. Gunopoulos, and G. Kollios. Discovering similar multidimensional

trajectories. In ICDE 2002, page 673. IEEE Computer Society, 2002.
21. T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering

method for very large databases. SIGMOD Rec., 25(2):103–114, 1996.

122

	Table of Contents
	Preface
	Towards Adjusting Mobile Devices to User's Behaviour
	Felix Jungermann, Katharina Morik, Nico Piatkowski, Olaf Spinczyk, Marco Stolpe, and Peter Fricke
	Bayesian Networks to Predict Data Mining Algorithm Behavior in Ubiquitous Environments
	Aysegul Cayci, Santiago Eibe, Ernestina Menasalvas, and Yucel Saygin
	A Framework for Mobile User Activity Logging
	Wolfgang Woerndl, Alexander Manhardt, and Vivian Prinz
	Community Assessment using Evidence Networks
	Folke Mitzlaff and Martin Atzmueller and Dominik Benz and Andreas Hotho and Gerd Stumme
	Exploring country level gender differences in the context of online dating using classification trees
	Slava Kisilevich and Mark Last
	Mining Social Context with Wearable Sensors
	Ciro Cattuto
	Predictability of Mobile Phone Associations
	Bjørn Sand Jensen, Lars Kai Hansen, Jan Larsen, Jakob Eg Larsen and Kristian Jensen
	Discovering Trend-Based Clusters in Spatially Distributed Data Streams
	Anna Ciampi, Annalisa Appice, and Donato Malerba

