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via Orabona, 4 - 70126 Bari - Italy

{aciampi,appice,malerba}@di.uniba.it

Abstract. Many emerging applications are characterized by real-time
stream data acquisition through sensors which have geographical loca-
tions and/or spatial extents. Streaming prevents from storing all data
from the stream and performing multiple scans of the entire data sets
as normally done in traditional applications. The drift of data distribu-
tion poses additional challenges to the spatio-temporal data mining tech-
niques. We address these challenges for a class of spatio-temporal pat-
terns, called trend-clusters, which combine the semantics of both clusters
and trends in spatio-temporal environments. We propose an algorithm to
interleave spatial clustering and trend discovery in order to continuously
cluster geo-referenced data which vary according to a similar trajectory
(trend) in the recent past (window time). An experimental study demon-
strates the effectiveness of our algorithm.

1 Introduction

Spatio-temporal data mining has recently gained considerable attention from
both the research and practitioner communities. The main reason for this interest
is that datasets containing prominent spatial and temporal data elements are
growing rapidly due to the daily collection of geo-referenced data through sensor
networks.

Despite the significant advances made recently in spatio-temporal data min-
ing, many existing spatio-temporal data analysis approaches take only a static
view of the geo-spatial phenomena [7]. These approaches extract a finite set of
data points based on user-provided criteria (e.g., the space and time of interest)
and address data mining tasks for static spatio-temporal data only. However, a
static perspective is inadequate as data often arrive dynamically, continuously
and with a drift of the underlying data distribution. On the other hand, a dy-
namic perspective poses challenges such as avoiding multiple scans of the entire
data sets, optimizing memory usage, and mining only the most recent patterns.

The sliding window model [3] is a natural choice to efficiently mine a stream of
data where the most recent data observations are considered to be more critical
and preferable. This model improves the space/time efficiency of learning by
capitalizing on the fact that multiple scans due to pattern evaluation are limited
to basic slides.



The sliding-window model was originally defined for a single, non-spatially
related data stream source. The main contribution of this work is its extension
to the case of a several spatially distributed data stream sources. This way, the
model can be exploited in a wider range of ubiquitous knowledge applications,
which are characterized by both temporal and spatial locality [16].

The scenario we consider is that of a stream composed by sets of observa-
tions for a numeric attribute (theme) which are transmitted at consecutive time
points by a (variable) number of sources. These stream sources are identified
by a progressive number and geo-referenced. By taking into account both the
spatial arrangement of the transmitting sources and the temporal arrangement
of streamed data, we design a framework to mine a kind of spatio-temporal pat-
terns, called trend clusters. These patterns are spatial clusters of sources which
transmit values whose temporal variation, called trend polyline, is similar over
the recent window time. We introduce an algorithm, named TRUST (TRend
based clUstering algorithm for Spatio-Temporal data stream), for mining these
trend-clusters from spatially distributed data streams. The algorithm makes no
assumption on the number of spatial clusters as well as on their shape.

The paper is organized as follows. The next section formalizes the problem
statement. Section 3 revises related works. Section 4 describes the algorithm and
Section 5 reports an experimental study.

2 Problem Statement

In this work, spatio-temporal data are modeled according to the snapshot data
model [2], where the time domain is linear, absolute and discrete, the spatial do-
main is field-based and the attribute domains are variable. For every time point
of the stream, values collected at this time point form a time-stamped thematic
layer. This way, a layer is a collection of geo-referenced values measured for a the-
matic attribute at the time point. Time-stamped values vary over a continuous
space surface which is modeled in the field-based data model [19] as a function:
f : R2 × T 7→ Attribute domain, where R2 is an Euclidean representation of the
space surface and T is the time line. For the kind of applications considered
in this work, it is reasonable to assume that the locations of the transmitting
sources are fixed. Therefore, field functions are actually defined over only a finite
set of positions, those of active sources. Though finite, field domains can vary
over consecutive layers, since the number of transmitting sources can change in
time (sources may become inactive and transmit no data for some time interval).

In the stream perspective, thematic layers arrive continuously at consecutive
time-points. According to the sliding window schema [9], the stream is broken
down into slides of p layers arriving in series. A sliding window of size w is
composed by w consecutive slides (see Figure 1). Both window and slide sizes
are manually defined. In particular, window size depends on the time horizon we
are interested in processing. Differently, the slide size should be tuned in order
to find the best trade-off between learning time and accuracy. Each time a slide
flows in, patterns are generated locally to the slide. Then these local patterns



Fig. 1. Sliding windows with p = 6 and w = 4.

Fig. 2. Trend clusters: the blue cluster groups circle sources which vary according to the
blue trajectory over t1, t2 and t3. The red (green) cluster groups squared (triangular)
sources which vary according to the red (green) trajectory over t4 and t5. Numbers are
the values transmitted by the sources.

are used to approximate the set of patterns in the recent sliding window. This
way, multiple scans due to pattern evaluation are limited to slides, thus making
the discovery process more efficient both in time and space.

Patterns considered in this work, called trend clusters, are the result of spatial
clustering and trend discovery with the sliding window model. Spatial clusters
are obtained by processing data in a single time-stamped layer, so that sources
in the same cluster model the continuity in space of the measured attribute,
while sources in separate clusters model the variation over space [15]. Spatial
continuity expresses the similarity between observed values over the spatial or-
ganization, which is defined by spatial relations (e.g., distance) between distinct
sources. Sources grouped together in spatial clusters of consecutive layers model
a spatially local trend for the measured attribute. Trend clusters for an attribute
can be represented by colored trajectories over time (see Figure 2).

3 Related Works

In order to clarify the background of this work, related researches on clustering
in data stream mining and spatio-temporal data mining are reported below.



Data Stream Mining. Guha et al. [10] have presented a constant factor of ap-
proximation for the k-Medians algorithm which performs a single pass clustering
in data stream. Babcock et al. [4] have extended this algorithm by framing k-
Medians algorithm in sliding window model. The limitation of both algorithms is
that their results are often spherical clusters. They do not consider that clusters
in data streams could be of arbitrary shape and arbitrary number. Aggarwal et
al. [1] have proposed a two-phases clustering algorithm, called CluStream, which
separates out the clustering process into an online micro-clustering phase and
an offine macro-clustering phase. The problem with CluStream is the predefined
constant number of micro-clusters. Additionally, since a variant of k-means is
adopted to get the final macro-clusters, a “natural” macro-cluster may be split
into two parts. To discover arbitrary clusters in data stream and to handle out-
liers, Cao et al [6] have proposed a density-based clustering algorithm, called
DenStream. Finally, unsupervised naive-Bayesian network algorithms which are
designed to discover clusters in distributed data streams [17, 5] may be relevant
for this work. In fact, a network is here employed to model spatial arrangement
of data. Anyway, the kind of pattern we discover, that is, patterns with a poly-
line trajectory to describe how data vary in time within the cluster, requires a
time series based processing of streamed data which is not performed by these
naive Bayesian network algorithms.

Spatio-temporal Data Mining. Most of research in spatio-temporal data clus-
tering is focused on the discovery of either trajectory clusters or moving clusters.
Trajectory clusters group trajectories of similar shape. Vlachos et al. [20] have
firstly defined a Least Common Subsequence distance which is used as a base to
apply traditional (partitioning and hierarchical) clustering algorithms to object
trajectories. Gaffney and Smyth [8] have proposed a clustering algorithm which
models a trajectory as individual sequence of points generated from a regression
model. Unsupervised learning is carried out using EM algorithm to cope with
the cluster memberships. Nanni and Pedreschi [18] have adapted density-based
algorithm to trajectory data by using a distance measure between trajectories.
Differently, Lee et al. [13] have proposed a partition-and-group framework for
clustering trajectories which partitions a trajectory into a set of segments, and
then, groups similar segments into a cluster. Differently, the moving clusters
group moving objects in clusters whose identity remains unchanged while clus-
ter location and content may change over time. The key difference is that a
trajectory cluster has a constant set of objects throughout its lifetime, while the
content of a moving cluster may change over time (i.e., one or more object may
leave the group or new objects may enter it). A seminal method to discover mov-
ing clusters from an history of recorded trajectories has been proposed in Kalnis
et al. [12]. Spatial clusters are discovered at each snapshot by resorting to a static
density-based clustering algorithm and results are then combined into a set of
moving clusters. Li et al. [14] have proposed to exploit the micro-clustering orig-
inally proposed by Zhang et al. in [21] and extend it to moving micro-clustering.
In this work, a moving micro-cluster denotes a group of objects that are not only
close to each other at current time, but also likely to move together for a while.



Fig. 3. The framework of TRUST.

4 The Algorithm

The framework of TRUST is reported in Figure 3. A buffer continuously con-
sumes thematic layers and pours them slide-by-slide into the TRUST system.
TRUST operations consist in: (1) buffering slide layers in a graph-based synopsis
data structure, (2) discovering trend-clusters over the slide time (slide-level clus-
tering), and then (3) approximating trend clusters by combining the slide-level
trend cluster sets (window-level clustering). After a slide goes through TRUST,
slide layers are discarded, while the set of trend cluster discovered over the slide
is maintained in main memory for the window time. For each slide, the number
of discovered trend clusters ranges between 1 (i.e., sources are all grouped in a
single cluster) and the number of sources (one cluster for each source). Due to the
sliding window model, once the set of trend clusters is locally discovered over the
last income slide, the oldest set is discarded. The number p of layers in a slide,
the number w of the slides composing the sliding window, the value-similarity
threshold δ, the slide-level trend continuity threshold θ and the window-level
trend continuity threshold ε are given before TRUST starts.

4.1 Buffer Synopsis Structure

Since TRUST is in charge of discovering trend clusters over the sliding windows
of a data stream, it needs to maintain on-line a representation of the spatial
organization which arises in the layers of the current sliding window.

As reported in [15], the spatial organization of a layer can be modeled by
means of a graph G(N,E). In this work, N is the set of nodes (sources) which
transmit signals over at least one slide of the sliding window. E is a binary
(spatial) relation between nodes, E ⊆ {〈u, v〉|u, v ∈ N} (e.g., an edge 〈u, v〉 ∈ E
connects the nodes u and v iff the Euclidean distance between the corresponding
sources is less than a threshold). Each node in N is assigned with w binary labels
which describe the active/inactive state of the node at each slide of the sliding
window. A node is active at a slide if it is active in at least one layer in the



slide, inactive otherwise. The nodes of G which are active at the current slide
defines the structure of the data synopsis where the layers are buffered for the
time of the slide-level clustering phase. Similarly, the edges of E which connect
nodes which are active on the slide identify the spatially close sources which
are the only candidates to be grouped in the same cluster during the slide-level
clustering phase. The entire edge set E is used during the window-level clustering
phase to approximate the set of trend clusters for the entire window.

The graph G is constructed from scratch with the first slide which flows in
the stream. After that, the structure of G is updated each time a new slide flows
in the stream. The update operations consist in: (1) adding a new node (and
the edges) to N (and E) in order to map a transmitting source which is firstly
monitored in the sliding window, the state of this node is active over the current
slide, inactive over the past w − 1 slides of the sliding window; (2) updating an
existing node f N by discarding the oldest state label and assigning an active
label if the source transmits signals in the current slide (inactive otherwise); and
(3) removing a node (and the edges) from N (and E) if the node was labeled as
inactive over each slide of the sliding window.

Let us denote: NA as the set of nodes which belong to N and are active in
the current slide, and EA as the set of edges which belong to E and connect
active nodes in the current slide. GA(NA, EA) represents the graph structure of
the synopsis where the lastly income slide layers are temporally stored for the
slide-level clustering phase. For each active node u ∈ NA, a p-sized bucket is
stored in the synopsis data structure. This bucket is denoted as Bu and it stores
the p values streamed by the corresponding source in the slide time (see Figure
4). This way, the slot Bu[l] is the value buffered in u by the lth layer which
arrives in the slide. It is noteworthy that there are two cases in which missing
values may be stored in a bucket. In the former case, a source, which has already
been active in the past, does not transmit the signal for one or more layers in the
current slide (e.g., the sensor is gone down or the transmission is not in time),
the missing value is replaced by the lastly observed value for the source. In the
latter case, a source transmits the first signal at a layer of the current slide,
missing values which precede the first transmission are replaced with this firstly
transmitted value.

4.2 Slide-level trend cluster Discovery

Before presenting how the slide-level trend cluster discovery is performed, we
introduce some preliminary definitions.

Definition 1 (δ-close measure ψδ). Let X be a continuous theme with domain
[α, β] and δ be a real value in [0, 1]. The δ-close measure is a function ψδ : X ×
X 7→ {0, 1} such that ψδ(x1, x2) =

{
1 ‖x1−x2‖1

β−α ≤ δ

0 otherwise
.

Based on Definition 1, we define the Eθ
δ close relation between the edged

nodes of G.



Fig. 4. The graph synopsis data structure (b) where layers (a) are buffered with p = 3.

Definition 2 (Eθ
δ close relation). Let δ be a real value in [0, 1] and θ be a

real value in [0, 1]; Eθ
δ is the binary relation between the edged nodes of GA

(Eθ
δ ⊆ EA) which is defined as Eθ

δ = {〈u, v〉 ∈ E|
p∑

i=1

ψδ(Bu[i], Bv[i]) ≥ θ × p},

where Bu[i] (Bv[i]) is the ith slot value in the bucket Bu (Bv).

We use the Eθ
δ close relation to define the Eθ

δ -connectivity in G.

Definition 3 (Eθ
δ -connected). A node u is Eθ

δ -connected to a node v (u, v ∈
NA), with respect to Eθ

δ , iff: (i) 〈u, v〉 ∈ Eθ
δ , (direct connectivity) (ii) or ∃w ∈

NA such that 〈u,w〉 ∈ Eθ
δ and w is Eθ

δ -connected from v (undirect connectivity).

Finally, we define the function of δ-homogeneity over GA.

Definition 4 (δ-homogeneity). Let δ be a real value in [0, 1]. The function
δ-homogeneity : 2N 7→ {true, false} is defined as:

δ − homogeneity(Ni) =

{
true ∀u, v ∈ Ni,

‖η(Bu)−η(Bv)‖1
β−α ≤ δ

false otherwise
.

In Definition 4, the function η : 2X 7→ X returns the middle point (median)
over a sequence of values in X. The choice of the median is motivated by the
fact that it is robust, while the mean would be influenced by outliers. Finally, a
trend cluster is defined as follows.

Definition 5 (trend cluster). A trend cluster is the pair C ⇔ P such that:

1. C ⊆ N satisfies the following properties: (a) ∀u, v ∈ C : u Eθ
δ -connected to

v, and (b) C is a δ-homogeneous node set , i.e., δ-homogeneity(C)=true;
2. P = 〈η(C|1), η(C|2) . . . , η(C|p)〉 where C|l is the set {Bu[l]|u ∈ C} and η(·)

is the median function.

Note that, in Definition 5, the Eθ
δ -connectivity guarantees the (spatial) con-

tinuity of polylines which are associated to the nodes grouped in a cluster at



Algorithm 1 Slide-level discovery: GA(NA, EA) 7→ Γ

– Main routine

1: Γ = ®
2: for all u ∈ NA do
3: if u is UNCLASSIFIED then
4: C ← {u}
5: C ← expandCluster(C, GA, u)
6: P ← 〈η(C, 1), η(C, 2), . . . , η(C, p)〉
7: Γ ← Γ ∪ {C ⇔ P}
8: end if
9: end for

– expandCluster (C, GA, u)

1: Nδ
θ (u)← Eθ

δ neighborhood(u, GA)
2: if δ-homogeneity(C ∪Nθ

δ (u)) then
3: C ← C ∪Nθ

δ (u)
4: for all n ∈ Nθ

δ (u) do
5: C ← expandCluster(C, GA, n)
6: end for
7: else
8: for all n ∈ Nθ

δ (u) do
9: if δ-homogeneity(C ∪ {n}) then

10: C ← C ∪ {n}
11: C ← expandCluster(C, GA, n)
12: end if
13: end for
14: end if

each layer. The condition on δ−homogeneity is added to guarantee that the
entire cluster evolves with a single close polyline that is reasonably approxi-
mated with P . Closeness depends on δ and θ. Since a cluster is the node set
of a sub-graph extracted from G by satisfying the conditions of Eθ

δ -connectivity
and δ-homogeneity, TRUST resorts to a neighborhood-based graph partitioning
algorithm-like in order to discover the trend clusters over slide.

The top-level description of the algorithm is in Algorithm 1. The key idea is
to exploit the construction of node neighborhood based on the Eθ

δ close relation
(namely Eθ

δ -neighborhood) and to grow clusters by merging partially overlapping
Eθ

δ neighborhoods only if the resulting cluster is a δ-homogeneous node set. The
definition of the Eθ

δ -neighborhood of a node u in G is reported below.

Definition 6 (Eθ
δ -neighborhood). Let u be a node, the neighborhood Nθ

δ (u)
of u is defined as Nθ

δ (u) = {v|〈u, v〉 ∈ Eθ
δ ∧ UNCLASSIFIED(v)}, where

UNCLUSSIFIED(v) means that v is not assigned to any cluster.

In the main routine of Algorithm 1, a novel empty cluster C is created
for a node u ∈ N which is currently UNCLASSIFIED. C is firstly grown
with u, then expandCluster(C, u) grows C by using u as seed. In particular,
expandCluster(C, u) evaluates the property of δ − homogeneity for the node



set C ∪ Nθ
δ (u) (see the call of δ − homogeneity(·) function in Algorithm 1). If

C ∪Nθ
δ (u) is a δ-homogeneous node set, C is grown with Nθ

δ (u). Otherwise, the
addition of each neighbor n ∈ Nθ

δ (u) is evaluated node-by-node. A neighbor is
individually added to C only if the output cluster remains a δ− homogeneous
node set. Each time C changes (by either adding an entire neighborhood or only
few neighbors), expandCluster(·, ·) is recursively called to further grow C by
considering the new clustered nodes as candidate seed of the expansion (see the
recursive call of expandCluster(·, ·) in Algorithm 1).

When a cluster C is completely constructed (no further node can be added
to), the polyline P , which describes how the clustered nodes evolve over the slide
time, is built. P is the sequence of p points, that is defined as P = 〈1, η(C, 1)〉, 〈2,
η(C, 2)〉, . . . , 〈p, η(C, p)〉, where each point 〈l, η(C, l)〉 is the representative of the
behavior of the cluster C over the lth layer in the buffered slide. In Algorithm
1, the function η(C, l) (that is called with argument l = 1, . . . , p) returns the
median of the values stored in the lth slots for the nodes grouped in C.

Finally, each trend cluster C ⇔ P is added to the cluster set Γ . Once all the
nodes have been classified in a cluster, values in the buckets are discarded and
the algorithm stops by returning Γ as output of the slide-level discovery process.
Note that Γ can be intended as a reasonable summarization of the slide layers.

4.3 Window-level trend cluster Discovery

The discovery of trend clusters over a window capitalizes on the trend cluster
sets, denoted as Γ1, . . . , Γw, which have been locally discovered for the slides of
W . Indeed, while past slide layers are discarded, the discovered trend cluster
sets are maintained for the window time. This way, the window-based discovery
analyzes a reduced set of data. The window level clustering bases on the consid-
eration that nodes, which are repeatedly grouped together in a cluster for each
slide of the window, map sources which are close in space and which evolve with
a close polyline over the entire window time. Based upon this consideration, the
window-level component of TRUST determines the trend clusters over the win-
dow by clustering the spatially close sources which are continuously clustered
together over the slides of the window. Clustering is performed based on the
binary cluster relation denoted as EΓ1,...,Γw

ε which is defined below.

Definition 7 (EΓ1,...,Γw
ε window cluster relation). Let ε be a real value in

[0, 1], EΓ1,...,Γw
ε is defined over E as EΓ1,...,Γw

ε = {〈u, v〉 ∈ E|
w∑

i=1

clustered(u, v, Γi) ≥

ε× w} with clustered(u, v, Γi) =

{
1 ∃(C ⇔ P ) ∈ Γi : u, v ∈ C
0 otherwise

.

The binary window cluster relation EΓ1,...,Γw
ε identifies each pair of edged

nodes of G which are clustered together over at least ε× w slides of W . Hence,
clusters over window are obtained by partitioning the graph G(N,E) in com-
pletely connected sub-graphs according to the binary window cluster relation



Algorithm 2 Window-level discovery: Γ1, Γ2, . . . , Γw, G(E,N) 7→ Γ

– Main routine

1: EΓ1,...,Γw
ε ← determineWindowClusterRelation(Γ1, Γ2, . . . , Γw, E)

2: Γ ← ®
3: for all u ∈ N do
4: if u is UNCLASSIFIED then
5: C ← {u}
6: C ← expandCluster(C, EΓ1,...,Γw

ε , u)
7: P ← polyline(C, {Γ1, . . . , Γw})
8: Γ ← Γ ∪ {C ⇔ P}
9: end if

10: end for

– expandCluster(C, EΓ1,...,Γw
ε , u)

1: for all 〈u, v〉 ∈ EΓ1,...,Γw
ε and v is UNCLUSSIFIED do

2: C ← C ∪ {v}
3: C ← expandCluster(C, EΓ1,...,Γw

ε , v)
4: end for

EΓ1,...,Γw
ε (see Algorithm 2). Let C be a cluster over window W , C is assigned

with the trend polyline P and C ⇔ P is output as a trend cluster over W . P
is built by sequencing the points of the polylines which are associated, slide by
slide, to the clusters which include C (see the call of function polyline(·, ·) in
Algorithm 2). Formally, P = P 1, P 2, . . . , Pw where:

P j =

{
P j

i ∃(Cj
i ⇔ P j

i ) ∈ Γj : C ⊆ Cj
i

null otherwise
. (1)

5 Experiments

We evaluate TRUST with a synthetic data stream and two real data streams.
Experiments evaluate accuracy and number of discovered patterns and the effi-
ciency of learning. As a measure of the accuracy of the trend cluster set Γ , we
use the average absolute percentage error (MAPE), a statistics that is widely
used in time series [11]. MAPE computes the absolute error that is performed
when the polylines of Γ are used to fit data windowed in W . Formally,

MAPE(Γ,W ) =
∑

u∈N

mape(Γ, u|W )/|N |,

where N denotes the source set over which the stream is transmitted over the
windowW and u|W denotes the series of p×w values which are streamed from the
source u ∈ N over the window W . mape(Γ, u|W ) is the mean absolute percentage
error which measures how the polyline P of the trend cluster C ⇔ P fits real
values streamed in the u|W (with u ∈ C). It expresses accuracy as a percentage,

and is defined by mape(Γ, u|W ) = 1
p×w

p×w∑

i=1

∥∥∥ (u[i|W ])− P [i]
(u[i|W ])

∥∥∥
1

with (C ⇔ P ) ∈
Γ and u ∈ C.



(a) (b)

Fig. 5. The trend cluster configurations according to the synthetic data are generated.

Synthetic data stream. As a synthetic data stream we have considered the
stream transmitted by 49 sources which are distributed over a squared 7 × 7
grid. A source is close to the neighbor sources which are located in the grid
cells around the source (see Figure 5). Let X be the thematic attribute of the
stream, X ranges in [18, 27]. The stream is obtained by sequencing 54 layers
of measurements of X which are generated according to the trend based cluster
configuration reported in Figure 5.a. and 54 layers which are generated according
to the trend based cluster configuration reported in Figure 5.b. Each source
measures values which evolve according to the polyline representing the trend
of the corresponding cluster. For each layer, for each source the polyline value
is noised with an error generated according to the Normal distribution N(0,1).
Experiments are run with p = 9, w = 6, δ = 10%[27 − 18] = 0.9, θ = 0.8
and ε = 1. θ is set to a value different from 1 in order to take into account
variation in data due to the noise. This way TRUST processes twelve slides
and discovers trend clusters over seven consecutive sliding windows. The cluster
configurations discovered for each sliding window are reported in Figure 6. As
expected, the clustering results show that TRUST is able to exactly detect the
cluster configuration that is defined in (a) over the first window (slides 1-6) and
the cluster configuration that is defined in (b) over the last window (slides 6-
12) of the processed stream. The results of clustering over intermediate sliding
windows correctly reveal the concept drift from the configuration (a) toward
the configuration (b). Indeed, to adapt the discovered cluster configuration to
the effective evolution trend of the windowed data, TRUST moves the sources
5, 6, 7, 14, 21, 29, 36, 43, 44 and 45 in two new spatial clusters. This way,
TRUST still identifies groups of spatially contiguous sources whose trend is
approximately the same over the window under consideration. It is noteworthy
that 5, 6, 7, 14 and 21 are grouped in one spatial cluster, while 29, 36, 43, 44
and 45 are grouped in a separate cluster over the intermediated sliding windows
(slides 2-8, slides 3-9, slides 4-10, slides 5-11) due to the spatial discontinuity of
sources, while the plot of the trend associated to these spatial clusters show two
polylines which are overlapping. In Table 1, the mean absolute percentage error
(MAPE) of trend cluster sets discovered over the sliding windows of data stream
is reported. MAPE provides an estimate of the accuracy of cluster polylines in
fitting windowed data. The observed value of MAPE is always low (it is less
than 0.03 for each window), thus confirming that the trend discovery is accurate.



Fig. 6. The clusters discovered by TRUST over each sliding window of the synthetic
data stream (p = 9, w = 6, δ = 10%(27− 18), θ = 0.8 and ε = 1).

Table 1. MAPE of trend cluster sets over sliding windows of processed data stream.

error Sliding windows

[1-6] [2-7] [3-8] [4-9] [5-10] [6-11] [7-12]

MAPE 0.01885 0.01921 0.01975 0.02083 0.02229 0.02267 0.02290

Intel Berkley Lab data stream. Intel Lab data stream1 contains real infor-
mation collected from 54 sensors deployed in the Intel Berkeley Research lab
between February 28th and April 5th. A sensor is considered to be close to each
other sensor into the six meters range. The sensors which we consider in this ex-
periment have collected timestamped temperature values once every 31 seconds
(epoch). There are several epochs where no temperature value is transmitted by
one or more sensors (missing values). We have processed the entire stream that
is 2.3 about million readings (about 65000 layers) collected from these sensors
in 73541 millisecs by setting p = 20 and w = 5, θ = 1 and ε = 1. Due to the
space limitation, we describe only the trend cluster configurations which have
been discovered by processing a subset of 5000 layers. Experiments are run with
δ = 10%[β − α]. Due to the presence of several outlier values, we use a box
plot to derive a reasonable representation of the data range [α, β]. The groups of
streamed values collected over an initial calibration time are depicted through
their five-number summaries (box plot): the smallest observation (sample mini-
mum), lower quartile (Q1), median (Q2), upper quartile (Q3), and largest obser-
vation (sample maximum). This way we derive α = Q1−1.5∗(Q3−Q1) = 10.405
and β = Q3 + 1.5 ∗ (Q3−Q1) = 37.085. Hence, δ = 2.668. To evaluate the effec-
tiveness of sliding window model in the stream environment, we compare each
trend cluster set obtained with p = 20 and w = 5 with the cluster results ob-
tained by learning the full widowed data at once (p = 100 and w = 1). Elapsed
time of the learning phase with sliding windows is reported in Figure 7.a. The
comparison between p = 20 w = 5 and p = 100 w = 1 is plotted in Figure
7.b. We consider only the windows which cover the same portion of data stream
(e.g., slides 1-5, 6-10, and so on). Since θ = 1 and ε = 1 the same trend clusters
are discovered in both configurations, while the elapsed time is different due to
the use of sliding window model. We can observe that TRUST capitalizes on the
slide-based discovery to analyze a reduced set of data (slide), thus decreasing the
time of learning in the online discovery process without affecting number and
trend of discovered clusters. This is an empirical confirmation of effectiveness

1 http://db.csail.mit.edu/ labdata/labdata.html
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Fig. 7. Elapsed time (ms) with (a) p = 20 w = 5 over the sliding windows, (b) p = 20
w = 5 vs. p = 100 w = 1 over windows which cover same data portion. θ = 1 ε = 1.

(a) (b)

Fig. 8. (a) MAPE and (b) number of clusters with p = 20 and w = 5.

of sliding window model to improve efficiency of mining trend-based patterns in
a stream. Further experiments have been performed to evaluate dependence of
TRUST from θ. The number of clusters as well as the MAPE for consecutive
sliding-windows are plotted in Figure 8.a-b by varying θ between 0.8, 0.9 and 1.
The number of clusters shows that TRUST is able to group sources over windows
thus summarizing windowed data by means of the polylines which are associ-
ated to the clusters (the number of discovered clusters is generally less than 10
with a pick to 32 in the central plotted windows). As expected, we observe that
by relaxing the threshold of the trend continuity over slide (θ), the number of
clusters decreases and, consequently, also the accuracy of fitting decreases. The
fitting capability is always good enough with an error that is at worst 0.1. The
issue is to find the trade-off between summarization degree (number of clusters)
and fitting accuracy (MAPE). In this work, we do not consider ε < 1 since we
intend to detect window-time continuous trend clusters.
South American Climate data stream. South American climate data stream2

contains monthly-mean air temperature values recorded between 1960 and 1990
over a 0.5 degree by 0.5 degree of latitude/longitude grid of South America, where

2 http://climate.geog.udel.edu/∼climate/html pages/archive.html
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Fig. 9. Elapsed time (ms) with (a) p = 12 w = 5 over the sliding windows, (b) p = 12
w = 5 vs. p = 60 w = 1 over windows which cover same data portion. θ = 1 ε = 1.

the grid nodes are centered on 0.25 degree for a total of 6447 node sources. A
source is close to the neighbor sources which are located in the grid cells around
the source. Experiments are run with δ = 10%[β − α]. We use the box plot to
group streamed temperature values and to determine α = 6.925, β = 37.125
and, hence, δ = 3.02.

The elapsed time of the learning process is reported in Figure 9 for two
parameter settings: a) p = 12 (one year) and w = 5; b) p = 60 and w =
1. Windows cover the same portion of data stream. Also in this stream, we
observe that TRUST capitalizes on the slide-level discovery to improve efficiency
of learning. Although the number of sources is significantly high, learning is
efficiently enough to run on-line. Indeed, after the first window, where five slides
have to be processed before being able to output clusters over the window, the
elapsed time to learn each single slide and derive the clusters over the window
is less than 30 secs.

We also evaluate the effectiveness of trend clusters discovered by varying θ
between 0.8, 0.9 and 1. The number of clusters as well as the MAPE values
for consecutive sliding-windows are plotted in Figure 10.a-b. We observe that
the number of clusters is greatly lower than 6447 (at worst 4 clusters over each
window), thus TRUST is effective in summarizing data. Additionally, MAPE
value is low (less than 0.06 independently on θ), this confirms that also in this
stream the summarization by means of the discovered trend clusters is accurate
in fitting the real windowed data. A final consideration concerns θ, by relaxing
which, the number of clusters decreases only over few windows and in these cases
also the accuracy of fitting slightly decreases.

Some conclusions can be drawn from this empirical study. TRUST is effective
in discovering accurate trend-based clusters as we proved with the analysis of
MAPE. TRUST is scalable as we proved with the analysis of data streams gen-
erated by both a low number of sources (synthetic data and Berkley Lab data)
and an high number of sources (South American Climate data). Additionally,
TRUST is able to operate in real world situations and cope with possible vari-
ation in the sources configurations over consecutive layers (Berkley Lab data).



(a) (b)

Fig. 10. (a) MAPE and (b) number of clusters (p = 12 w = 5).

Final considerations concern the utility of patterns that TRUST discovers. Our
basic consideration is that trends provide useful information in spatially dis-
tributed data stream, where knowing how spatially clustered values vary in time
can help drawing useful conclusions. For instance, in weather monitoring, it is es-
sential to know how temperatures evolve (increasing or decreasing) over regions
of the Earth and how the shape of these regions changes in time. Additionally,
trend-based representation of spatially distributed data stream is considered
close to the human intuition. Finally, trend clusters can be used for summariz-
ing spatio-temporal data and subsequent storing in data warehouses.

6 Conclusions

The paper presents TRUST an algorithm to retrieve groups of spatially contin-
uous geo-referenced data which vary according to a similar trend polyline in the
recent window past. As future work we plan to investigate how the algorithm
depends on the order of analyzing the geo-referenced streamed values and we
intend to study criteria to suggest the best order of evaluation.
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