
Mining Web sites using wrapper induction, named
entities and post-processing

Georgios Sigletos1,2, Georgios Paliouras1,
Constantine D. Spyropoulos1, Michalis Hatzopoulos2

1 Institute of Informatics and Telecommunications, NCSR “Demokritos”,
P.O. BOX 60228, Aghia Paraskeyh, GR-153 10, Athens, Greece

{sigletos, paliourg, costass}@iit.demokritos.gr
2 Department of Informatics and Telecommunications, University of Athens,

TYPA Buildings, Panepistimiopolis, Athens, Greece
{sigletos, mike}@di.uoa.gr

Abstract. This paper presents a novel method for extracting information from
collections of Web pages across different sites. Our method uses a standard
wrapper induction algorithm and exploits named entity information. We
introduce the idea of post-processing the extraction results for resolving
ambiguous facts and improve the overall extraction performance. Post-
processing involves the exploitation of two additional sources of information:
fact transition probabilities, based on a trained bigram model, and confidence
probabilities, estimated for each fact by the wrapper induction system. A
multiplicative model that is based on the product of those two probabilities is
also considered for post-processing. Experiments were conducted on pages
describing laptop products, collected from many different sites and in four
different languages. The results highlight the effectiveness of our approach.

1 Introduction

Wrapper induction (WI) [7] aims to generate extraction rules, called wrappers, by
mining highly structured collections of Web pages that are labeled with domain-
specific information. At run-time, wrappers extract information from unseen
collections and fill the slots of a predefined template. These collections are typically
built by querying an appropriate search form in a Web site and collecting the response
pages, which commonly share the same content format.

A central challenge to the WI community is Information Extraction (IE) from
pages across multiple sites, including unseen sites, by a single trained system. Pages
collected from different sites usually exhibit multiple hypertext markup structures,
including tables, nested tables, lists, etc. Current WI research relies on learning
separate wrappers for different structures. Training an effective site-independent IE
system is an attractive solution in terms of scalability, since any domain-specific page
could be processed, without relying heavily on the hypertext structure.

In this paper we present a novel approach to IE from Web pages across different
sites. The proposed method relies on domain specific named entities, identified within

Web pages. Those entities are embedded within the Web pages as XML tags and can
serve as a page-independent common markup structure among pages from different
sites. A standard WI system can be applied and exploit the additional textual
information. Thus, the new system relies more on page-independent named-entity
markup tags for inducing delimiter-based rules for IE and less on the hypertext
markup tags, which vary among pages from multiple sites.

We experimented with STALKER [10], which performs extraction from a wide
range of Web pages, by employing a special formalism that allows the specification
of the output multi-place schema for the extraction task. However, information
extraction from pages across different sites is a very hard problem, due to the multiple
markup structures that cannot be described by a single formalism. In this paper we
suggest the use of STALKER for single-slot extraction, i.e. extraction of isolated facts
(i.e. extraction fields), from pages across different sites.

A further contribution of this paper is a method for post-processing the system’s
extraction results in order to disambiguate facts. When applying a set of single-slot
extraction rules to a Web page, one cannot exclude the possibility of identical or
overlapping textual matches within the page, among different rules. For instance,
rules for extracting instances of the facts cd-rom and dvd-rom in pages describing
laptop products may overlap or exactly match in certain text fragments, resulting in
ambiguous facts. Among these facts, the correct choice must be made.

To deal with the issue of ambiguous facts, two sources of information are explored:
transitions between facts, incorporated in a bigram model, and prediction confidence
values, generated by the WI system. Deciding upon the correct fact can be based on
information from either the trained bigram model and/or the confidence assigned to
each predicted fact. A multiplicative model that combines these two sources of
information is also presented and compared to each of the two components.

The rest of this paper is structured as follows: In Section 2 we outline the
architecture of our approach. Section 2.1 briefly describes the named entity
recognition task. Section 2.2 reviews STALKER and in Section 2.3 we discuss how
STALKER can be used under the proposed approach to perform IE from pages across
different sites. In Section 3 we discuss the issue of post-processing the output of the
STALKER system in order to resolve ambiguous facts. Section 4 presents
experimental results on datasets that will soon be publicly released. Related work is
presented in Section 5. Finally we conclude in Section 6, discussing potential
improvements of our approach.

2 Information Extraction from multiple Web sites

Our methodology for IE from multiple Web sites is graphically depicted in Figure 1.
Three component modules process each Web page. First, a named-entity recognizer
(NER) that identifies domain-specific named entities across pages from multiple sites.
A trained WI system is then applied to perform extraction. Finally, the extraction
results are post-processed to improve the extraction performance.

Fig. 1. Generic architecture for information extraction from multiple Web sites

2.1 Named entity recognition

Named entity recognition (NER) is an important subtask in most language
engineering applications and has been included as such in all MUC competitions, e.g.
[8]. NER is best known as the first step in the IE task, and involves the identification
of a set of basic entity names, numerical expressions, temporal expressions, etc. The
overall IE task aims to extract facts in the form of multi-place relations and NER
provides the entities that fill the argument slots. NER has not received much attention
in Web IE tasks.

We use NER in order to identify basic named entities relevant to our task and thus
reduce the complexity of fact extraction. The identified entities are identified within
Web pages as XML tags and serve as a valuable source of information for the WI
system that follows and extracts the facts. Some of the entity names (ne), numerical
(numex) and temporal (timex) expressions, used in the laptop domain are shown in
Table 1, along with the corresponding examples of XML tags.

Table 1. Subset of named entities for the laptop domain

Entity Entity Type Examples of XML tags
Ne Model, Processor <ne type=Model>Presario</ne>

<ne type=Processor>Intel Pentium </ne>
Numex Capacity, Speed <numex type=Speed>300 MHz </numex>

<numex type=Capacity>20 GB </numex>
Timex Duration <timex type=Duration>1 year </timex>

2.2 The STALKER wrapper induction system

STALKER [10] is a sequential covering rule learning system that performs single-slot
extraction from highly-structured Web pages. Multi-slot extraction –i.e. linking of the

isolated facts- is feasible through an Embedded-Catalog (EC) Tree formalism, which
may describe the common structure of a range of Web pages. The EC tree is
constructed manually, usually for each site, and its leaves represent the individual
facts. STALKER is capable of extracting information from pages with tabular
organization of their content, as well as pages with hierarchically organized content.

Each extraction rule in STALKER consists of two ordered lists of linear landmark
automata (LA’s), which are a subclass of nondeterministic finite state automata. The
first list constitutes the start rule, while the second list constitutes the end rule. Using
the EC tree as a guide, the extraction in a given page is performed by applying –for
each fact- the LA’s that constitute the start rule in the order in which they appear in
the list. As soon as a LA is found that matches within the page, the matching process
terminates. The process is symmetric for the end rule. More details on the algorithm
can be found in [10].

2.3 Adapting STALKER to multi-site information extraction

The EC tree formalism used in STALKER is generally not applicable for
describing pages with variable markup structure. Different EC trees need to be
manually built for different markup structures and thus different extraction rules to be
induced. In this paper, we are seeking for a single domain-specific trainable system,
without having to deal with each page structure separately. The paper focuses on the
widely-used approach of single-slot extraction. Our motivation is that if isolated facts
could be accurately identified, then it is possible to link those facts separately on a
second step. We therefore specify our task as follows:

For each fact, try to induce a list iteration rule as depicted in Figure 2.

Fig. 2. Simplification of the EC tree. A list iteration rule is learned for each fact and applies to
the whole content of a page, at run-time

The EC tree depicted in Figure 2 has the following interpretation: a Web page that
describes laptop products consists of a list of instances of the fact Manufacturer (e.g.
“Compaq”), a list of instances of the fact ModelName (e.g. “Presario”), a list of Ram
instances (e.g. “256MB”), etc. The system, during runtime, exhaustively applies each
rule to the content of the whole page. This simplified EC tree is independent of any
particular page structure. The proposed approach relies on the page-independent
named entities to lead to efficient extraction rules.

Since each extraction rule applies exhaustively within the complete Web page,
rather than being constrained by the EC tree, we expect an extraction bias towards
recall, i.e., overgeneration of extracts for each fact. The penalty is a potential loss in
precision, since each rule applies to text regions that do not contain relevant

information and may return erroneous instances. Therefore we seek a post-processing
mechanism capable of discarding the erroneous instances and thus improving the
overall precision.

3 Post-processing the extraction results

In single-slot IE systems, each rule is applied independently of the others. This may
naturally cause identical or overlapping matches among different rules resulting in
multiple ambiguous facts for those matches. We would like to resolve such
ambiguities and choose the correct fact. Choosing the correct fact and removing all
the others shall improve the extraction precision.

3.1 Problem specification

In this paper we adopt a post-processing approach in order to resolve ambiguities
in the extraction results of the IE system. More formally, the task can be
described as follows:

1. Let D be the sequence of a document’s tokens and Tj (sj, ej) a fragment of that
sequence, where sj and ej are the start and end token bounds respectively.

2. Let I = {ij | ij: Tj → factj} be the set of instances extracted by all the rules, where
factj is the predicted fact associated with instance Tj.

3. Let DT be the list of all distinct text fragments Tj, appearing in the extracted
instances in I. Note that T1(s1, e1) and T2(s2, e2) are different, if either s1 ≠ s2 or e1 ≠
e2. The elements of DT are sorted in ascending order of sj.

4. If for a distinct fragment Ti in DT, there exist at least two instances ik and il so that
ik: Ti→ factk and il : Ti → factl, k ≠ l, then factk and factl are ambiguous facts for Ti.

5. The goal is to associate a single fact to each element of the list DT.

To illustrate the problem, if for the fragment Tj(24, 25)=“16 x” in a page
describing laptops, there are two extracted instances ik and il, where factk =
dvdSpeed and factl = cdromSpeed, then there are two ambiguous facts for Ti. One
of them must be chosen and associated with Tj.

3.2 Formulate the task as a hill-climbing search

Resolving ambiguous facts can be viewed as a hill-climbing search in the space of all
possible sequences of facts that can be associated with the sequence DT of distinct
text fragments.

This hill-climbing search can be formulated as follows:
1. Start from a hypothetical empty node, and transition at each step j to the next

distinct text fragment Tj of the sorted sequence DT.

2. At each step apply a set of operations Choose (factk). Each operation associates Tj
with the factk predicted by an instance ik = {Tj → factk}. A weight is assigned to
each operation, based on some predefined metric. The operation with the highest
weight is selected at each step.

3. The goal of the search is to associate a single fact to the last distinct fragment of
the sorted list DT, and thus return the final unambiguous sequence of facts for DT.

To illustrate the procedure, consider the fictitious token table in Table 2(a), which is
part of a page describing laptop products.

Table 2. (a) Part of a token table of a page dscribing laptops. (b) Instances extracted by
STALKER. (c) The tree of all possible fact paths (d) The extracted instances after the
disambiguation process

Tj (sj, ej) factk
T1 (33, 34) Processor

Speed
T2 (36, 37) Ram
T2 (36, 37) Hard Disk

capacity
T3 (39, 40) Hard Disk

Capacity

(b)

… 33 34 35 36 37 38 39 40 …
… 1,6 GHz / 1 GB / 80 GB …

(a)

T1

T2T2

T3 T3

Processor Speed

Ram
Hard Disk
Capacity

Hard Disk
Capacity

Hard Disk
Capacity

Start Node

(c)

Tj (sj, ej) factk

T1 (33, 34) Processor
Speed

T2 (36, 37) Ram
T3 (39, 40) Hard Disk

Capacity

(d)

Table 2(b) lists the instances extracted by STALKER for the token table part of Table
2(a). The DT list consists of the three distinct fragments T1, T2, T3. Table 2(c) shows
the two possible fact sequences that can be associated with DT. After the processor
speed fact prediction for T1, two operations apply for predicting a fact for T2: The
choose (Ram) and choose (hard disk capacity) operations, each associated with a
weight, according to a predefined metric. We assume that the former operation returns
a higher weight value and therefore Ram is the chosen fact for T2. The bold circles in
the tree show the chosen sequence of facts {Processor speed, Ram, Hard disk
capacity} that is attached to the sequence T1 T2 T3. Table 2(d) illustrates the final
extracted instances, after the disambiguation process.

In this paper we explore three metrics for assigning weights to the choice
operations:

1. Confidence values, estimated for each fact by the WI algorithm.

2. Fact-transition probabilities, learned by a bigram model.
3. The product of the above probabilities, based on a simple multiplicative model.

Selecting the correct instance, and thus the correct fact, at each step and discarding
the others, results in improving the overall precision. However, an incorrect choice
harms both the recall and the precision of a certain fact. The overall goal of the
disambiguation process is to improve the overall precision while keeping recall
unaffected.

3.3 Estimating fact confidence

The original STALKER algorithm does not assign confidence values to the extracted
instances. In this paper we estimate confidence values by calculating a value for each
extraction rule, i.e. for each fact. That value is calculated as the average precision
obtained by a three-fold cross-validation methodology on the training set. According
to this methodology, the training data is split into three equally-sized subsets and the
learning algorithm is run three times. Each time two of the three pieces are used for
training and the third is kept as unseen data for the evaluation of the induced
extraction rules. Each of the three pieces acts as the evaluation set in one of the three
runs and the final result is the average over the three runs.

At runtime, each instance extracted by a single-slot rule will be assigned the
precision value of that rule. For example, if the text fragment “300 Mhz” was
matched by the processor speed rule, then this fragment will be assigned the
confidence associated with processor speed. The key insight into using confidence
values is that among ambiguous facts, we can choose the one with the highest
estimated confidence.

3.4 Learning fact transition probabilities

In many extraction domains, some facts appear in an almost fixed order within each
page. For instance, a page describing laptop products may contain instances of the
processor speed fact, appearing almost immediately after instances of the processor
name fact. Training a simple bigram model is a natural way of modeling such
dependencies and can be easily implemented by calculating ratios of counts
(maximum likelihood estimation) in the labeled data as follows:

∑
∈

→

→
=→

Kj
jic

jicjiP
)(

)()(,
(1)

where the nominator counts the transitions from fact i to fact j, according to the
labeled training instances. The denominator counts the total number of transitions
from fact i to all facts (including self-transitions). We also calculate a starting

probability for each fact, i.e. the probability that an instance of a particular fact is
the first one appearing in the labeled training pages.

The motivation for using fact transitions is that between ambiguous facts we could
choose the one with the highest transition probability given the preceding fact
prediction. To illustrate that, consider that the text fragment “16 x” has been identified
as both cdromSpeed and dvdSpeed within a page describing laptops. Assume also that
the preceding fact prediction of the system is ram. If the transition from ram to
dvdSpeed has a higher probability, according to the learned bigram, than from ram to
cdromSpeed, then we can choose the dvdSpeed fact. If ambiguity occurs at the first
extracted instance, where there is no preceding fact prediction available, then we can
choose the fact with the highest starting probability.

3.5 Employing a multiplicative model

A simple way to combine the two sources of information described above is through a
multiplicative model, assigning a confidence value to each extracted instance ik : Ti →
factk, based on the product of the confidence value estimated for factk and the
transition probability from the preceding instance to factk. Using the example of Table
2 with the two ambiguous facts ram and hard disk capacity for the text fragment T2,
Table 4 depicts the probabilities assigned to each fact by the two methods described
in sections 3.3 and 3.4 and the multiplicative model.

Table 3. Probabilities assigned to each of the two ambiguous facts of the text fragment T2 of
Table 2

T2 (36, 37) = “1 GB” WI-Confidence Bigram Multiplicative
Ram 0,7 0,3 0,21
Hard disk capacity 0,4 0,5 0,20

Using the WI confidence values, the ram is selected. However, using bigram
probabilities, the hard disk capacity is selected. We also experimented with a model
that averages the two probabilities, rather than multiplying them. However the
experiments led to worse results.

4 Experiments

4.1 Dataset description

Experiments were conducted on four language corpora (Greek, French, English,
Italian) describing laptop products. The corpora were collected in the context of
CROSSMARC1.

Approximately 100 pages from each language were hand-tagged using a Web
page annotation tool [14]. The corpus for each language was divided into two
equally sized data sets for training and testing. Part of the test corpus was
collected from sites not appearing in the training data. The named entities were
embedded as XML tags within the pages of the training and test data, as
illustrated in Table 1. A separate NER module was developed for each of the four
languages of the project.

A total of 19 facts were hand-tagged for the laptop product domain. The pages
were collected from multiple vendor sites and demonstrate a rich variety of structure,
including tables, lists etc. Examples of facts are the name of the manufacturer, the
name of the model, the name of the processor, the speed of the processor, the ram, etc.

4.2 Results

Our goal was to evaluate the effect of named entity information to the extraction
performance of STALKER and compare the three different methods for resolving
ambiguous facts.

We, therefore, conducted two groups of experiments. In the first group we
evaluated STALKER on the testing datasets for each language, with the named
entities embedded as XML tags within the pages. Table 4 presents the results. The
evaluation metrics are micro-average recall and micro-average precision [12] over all
19 facts. The last row of Table 4 averages the results over all languages.

Table 4. Evaluation results for STALKER in four languages

Language Micro Precision (%) Micro Recall (%)
Greek 60,5 86,8
French 64,1 93,7
English 52,2 85,1
Italian 72,8 91,9
Average 62,4 89,4

The exhaustive application of each extraction rule to the whole content of a page
resulted, as expected, in a high recall, accompanied by a lower precision. However,
named-entity information led a pure WI system like STALKER to achieve a bareable

1 http://www.iit.demokritos.gr/skel/crossmarc. Datasets will soon be available on this site.

level of extraction performance across pages with variable structure. We also trained
STALKER on the same data without embedding named entities within the pages. The
result was an unacceptably high training time, accompanied by rules with many
disjuncts that mostly overfit the training data. Evaluation results on the testing corpora
provided recall and precision figures below 30%.

In the second group of experiments, we evaluated the post-processing methodology
for resolving ambiguous facts that was described in Section 3. Results are illustrated
in Table 5.

Table 5. Evaluation results after resolving ambiguities

Language Micro Precision (%) Micro Recall (%)
 WI-Conf. Bigram Mult. WI-Conf. Bigram Mult.
Greek 69,3 73,5 73,8 76,9 81,6 81,9
French 77,0 78,9 79,4 82,1 84,1 84,6
English 65,9 67,5 68,9 74,4 76,2 77,5
Italian 84,4 83,8 84,4 87,6 87,0 87,6
Average 74,2 75,9 76,6 80,3 82,2 82,9

Comparing the results of Table 4 to the results of Table 5, we conclude the
following:

1. Choosing among ambiguous facts, using any of the three methods, achieves an
overall increase in precision, accompanied by a lower decrease in recall. Results
are very encouraging, given the difficulty of the task.

2. Using bigram fact transitions for choosing among ambiguous facts achieves better
results that using confidence values. However, the simple multiplicative model
outperforms slightly the two single methods.

To corroborate the effectiveness of the multiplicative model, we counted the number
of correct choices made by the three post-processing methods at each step of the hill-
climbing process, as described in section 3.2. Results are illustrated in Table 6.

Table 6. Counting the ambiguous predictions and the correct choices

Language Distinct
Ti

Ambiguous
Ti

Corrected
(WI-Conf.)

Corrected
(Bigram)

Corrected
(Mult.)

Greek 549 490 251 331 336
French 720 574 321 364 374
English 2203 1806 915 996 1062
Italian 727 670 538 458 483
Average 1050 885 506 537 563

The first column of Table 6 is the number of distinct text fragments Ti, as defined in
section 3.1, for all pages in the testing corpus. The second column counts the Ti with
more than one –ambiguous- facts (e.g. the T2 in Table 2). The last three columns
count the correct choices made by each of the three methods.

We conclude that by using a simple multiplicative model, based on the product of
bigram probabilities and STALKER-assigned confidence probabilities we make more
correct choices than by using either of the two methods individually.

5 Related Work

Extracting information from multiple Web sites is a challenging issue for the WI
community. Cohen and Fun [3] present a method for learning page-independent
heuristics for IE from Web pages. However they require as input a set of existing
wrappers along with the pages they correctly wrap. Cohen et al. [4], also present one
component of a larger system that extracts information from multiple sites. A
common characteristic of both the aforementioned approaches is that they need to
encounter separately each different markup structure during training. In contrast to
this approach, we examine the viability of trainable systems that can generalize over
unseen sites, without encountering each page’s specific structure.

An IE system that exploits shallow linguistic pre-processing information is
presented in [2]. However, they generalize extraction rules relying on lexical units
(tokens), each one associated with shallow linguistic information, e.g., lemma, part-
of-speech tag, etc. We generalize rules relying on named entities, which involve
contiguous lexical units, and thus providing higher flexibility to the WI algorithm.

An ontology-driven IE system from pages across different sites is presented in [5].
However, they rely on hand-crafted (provided by an ontology) regular expressions,
along with a set of heuristics, in order to identify single-slot facts within a document.
On the other hand, we try to induce such expressions using wrapper induction.

All systems mentioned in this section experiment with different corpora, and thus
cannot easily be comparatively evaluated.

6 Conclusions and Future Work

This paper presented a methodology for extracting information from Web pages
across different sites, which is based on using a pipeline of three component modules:
a named-entity recognizer, a standard wrapper induction system, and a post-
processing module for disambiguating extracted facts. Experimental results showed
the viability of our approach.

The issue of disambiguating facts is important for single-slot IE systems used on
the Web. For instance, Hidden Markov Models (HMMs) [11] are a well-known
learning method for performing single-slot extraction [6], [13]. According to this
approach, a single HMM is trained for each fact. At run-time, each HMM is applied
to a page, using the Viterbi procedure, to identify relevant matches. Identified matches
across different HMMs may be identical or overlapping resulting in ambiguous facts.
Our post-processing methodology can thus be particularly useful to HMM extraction
tasks.

Bigram modeling is a simplistic approach to the exploitation of dependencies
among facts. We plan to explore higher-level interdependencies among facts, using
higher order n-gram models, or probabilistic FSA, e.g. as learned by the Alergia
algorithm [1]. Our aim is to further increase the number of correct choices made for
ambiguous facts, thus further improving both recall and precision. Dependencies
among facts shall be also investigated in the context of multi-slot extraction.

A bottleneck in existing approaches for IE is the labeling process. Despite the
use of a user-friendly annotation tool [14], the labeling process is a tedious, time-
consuming and error-prone task, especially when moving to a new domain. We
plan to investigate active learning techniques [9] for reducing the amount of
labeled data required. On the other hand, we anticipate that our labeled datasets
will be of use as benchmarks for the comparative evaluation of other current
and/or future IE systems.

References

1. Carrasco, R., Oncina, J., Learning stochastic regular grammars by means of a state-merging
method. Grammatical Inference and Applications, ICGI’94, p. 139-150, Spain (1994).

2. Ciravegna, F., Adaptive Information Extraction from Text by Rule Induction and
Generalization. In Proceedings of the 17th IJCAI Conference. Seattle (2001).

3. Cohen, W., Fan, W., Learning page-independent heuristics for extracting data from Web
pages. In the Proceedings of the 8th international WWW conference (WWW-99). Toronto,
Canada (1999).

4. Cohen, W., Hurst, M., Jensen, L., A Flexible Learning System for Wrapping Tables and
Lists in HTML Documents. Proceedings of the 11th International WWW Conference.
Hawaii, USA (2002).

5. Davulcu, H., Mukherjee, S., Ramakrishman, I.V., Extraction Techniques for Mining Services
from Web Sources, IEEE International Conference on Data Mining, Maebashi City, Japan
(2002).

6. Freitag, D., McCallum, A.K., Information Extraction using HMMs and Shrinkage. AAAI-99
Workshop on Machine Learning for Information Extraction, p.31-36 (1999).

7. Kushmerick N., Wrapper induction for Information Extraction, PhD Thesis, Department Of
computer Scienc, Univ. Of Washington (1997).

8. MUC-7, http://www.itl.nist.gov/iaui/894.02/related_pr ojects/muc.
9. Muslea, I., Active Learning with multiple views. PhD Thesis, University of Southern

California (2002).
10. Muslea, I., Minton, S., Knoblock, C., Hierarchical Wrapper Induction for Semistructured

Information Sources. Journal Of Autonomous Agents and Multi-Agent Systems, 4:93-114
(2001).

11. Rabiner, L., A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77-2 (1989).

12. Sebastiani F., Machine Learning in Automated Text Categorization, ACM Computing
Surveys, 34(1):1-47 (2002).

13. Seymore, K., McCallum, A.K., Rosenfeld, R., Learning hidden Markov model structure for
information extraction. AAAI Workshop on Machine Learning for Information Extraction, p.
37-42 (1999).

14. Sigletos, G., Farmakiotou, D., Stamatakis, K., Paliouras, G., Karkaletsis V., Annotating
Web pages for the needs of Web Information Extraction Applications. Poster at WWW
2003, Budapest Hungary, May 20-24 (2003).

	3.1 Problem specification
	3.2 Formulate the task as a hill-climbing search
	3.3 Estimating fact confidence
	3.4 Learning fact transition probabilities
	3.5 Employing a multiplicative model
	4.1 Dataset description
	4.2 Results
	References

