
Evaluation and Validation
of Two Approaches to User Profiling

F. Esposito, G. Semeraro, S. Ferilli, M. Degemmis,
N. Di Mauro, T.M.A. Basile, and P. Lops

Dipartimento di Informatica
Università di Bari

via E. Orabona, 4 - 70125 Bari - Italia
{esposito,semeraro,ferilli,degemmis,nicodimauro,basile,lops}@di.uniba.it

Abstract. In the Internet era, huge amounts of data are available to
everybody, in every place and at any moment. Searching for relevant
information can be overwhelming, thus contributing to the user’s sense
of information overload. Building systems for assisting users in this task
is often complicated by the difficulty in articulating user interests in a
structured form - a profile - to be used for searching. Machine learning
methods offer a promising approach to solve this problem. Our research
focuses on supervised methods for learning user profiles which are pre-
dictively accurate and comprehensible.
The main goal of this paper is the comparison of two different approaches
for inducing user profiles, respectively based on Inductive Logic Program-
ming (ILP) and probabilistic methods. An experimental session has been
carried out to compare the effectiveness of these methods in terms of clas-
sification accuracy, learning and classification time, when coping with the
task of learning profiles from textual book descriptions rated by real users
according to their tastes.

1 Introduction

The ever increasing popularity of the Internet has led to a huge increase in
the number of Web sites and in the volume of available on-line data. Users
are swamped with information and have difficulty in separating relevant from
irrelevant information. This leads to a clear demand for automated methods able
to support users in searching the extremely large Web repositories in order to
retrieve relevant information with respect to users’ individual preferences. The
problem complexity could be lowered by the automatic construction of machine
processable profiles that can be exploited to deliver personalized content to the
user, fitting his or her personal interests.

Personalization has become a critical aspect in many popular domains such
as e-commerce, where a user explicitly wants the site to store information such
as preferences about himself or herself and to use this information to make
recommendations. Exploiting the underlying one-to-one marketing paradigm is
essential to be successful in the increasingly competitive Internet marketplace.

Recent research on intelligent information access and recommender systems
has focused on the content-based information recommendation paradigm: it re-
quires textual descriptions of the items to be recommended [3].

In general, a content-based system analyzes a set of documents rated by an
individual user and exploits the content of these documents to infer a model or
profile that can be used to recommend additional items of interest.

In this paper we present a comparison between two different learning strate-
gies to infer models of users’ interests from text: an ILP approach and a näıve
bayes method. Motivation behind our research is the realization that user profil-
ing and machine learning techniques can be used to tackle the relevant informa-
tion problem already described. Our experiments evaluated the effects of the two
above mentioned methods in learning intelligible profiles of users’ interests. The
experiments were conducted in the context of a content-based profiling system
for virtual bookshop on the World Wide Web. In this scenario, a client side util-
ity has been developed in order to download documents (book descriptions) for
a user from the Web and to capture users feedback regarding his liking/disliking
on the downloaded documents. Then this knowledge can be exploited by the two
different machine learning techniques so that when a trained system encounters
a new document it can intelligently infer whether this new document will be
liked by the user or not. This strategy can be used to make recommendations to
the user about new books. The experiments reported here investigate also the
effect of using different representations of the profiles.

The structure of the remainder of the paper is as follows: Section 2 describes
the ILP system INTHELEX and its main features, while the next section in-
troduces Item Recommender, the system that implements a statistical learning
process to induce profiles from text. Then a detailed description of the experi-
ments is given in Section 4, along with an analysis of the experimental results
by means of a statistical test. Finally, Section 5 draws some general conclusions.

2 INTHELEX

INTHELEX (INcremental THEory Learner from EXamples) [2] is a learning
system for the induction of hierarchical theories from positive and negative exam-
ples which focuses the search for refinements by exploiting the Object Identity [8]
bias on the generalization model (according to which terms denoted by different
names must be distinct). It is fully and inherently incremental: this means that,
in addition to the possibility of taking as input a previously generated version of
the theory, learning can also start from an empty theory and from the first avail-
able example; moreover, at any moment the theory is guaranteed to be correct
with respect to all of the examples encountered thus far. This is a fundamental
issue, since in many cases deep knowledge about the world is not available. In-
cremental learning is necessary when either incomplete information is available
at the time of initial theory generation, or the nature of the concepts evolves
dynamically, which are unnegligible issues for learning user profiles. INTHELEX
can learn simultaneously various concepts, possibly related to each other, and

is based on a closed loop architecture — i.e. the learned theory correctness is
checked on any new example and, in case of failure, a revision process is activated
on it, in order to restore completeness and consistency.

INTHELEX learns theories expressed as sets of DatalogOI clauses (function
free clauses to be interpreted according to the Object Identity assumption). It
adopts a full memory storage strategy — i.e., it retains all the available examples,
thus the learned theories are guaranteed to be valid on the whole set of known
examples — and it incorporates two inductive operators, one for generalizing
definitions that reject positive examples, and the other for specializing definitions
that explain negative examples. Both these operators, when applied, change the
set of examples the theory accounts for.

A set of examples of the concepts to be learned is provided by an Expert, pos-
sibly selected from the Environment. Examples are definite ground Horn clauses,
whose body describes the observation by means of only basic non-negated predi-
cates of the representation language adopted for the problem at hand, and whose
head lists all the classes for which the observed object is a positive example and
all those for which it is a negative one (in this case the class is negated). Single
classifications are processed separately, in the order they appear in the list, so
that the teacher can still decide which concepts should be taken into account
first and which should be taken into account later. It is important to note that
a positive example for a concept is not considered as a negative example for all
the other concepts (unless it is explicitly stated).

The whole set of examples can be subdivided into tuning and test exam-
ples, according to the way in which examples are exploited during the learning
process. Specifically, tuning examples, previously classified by the Expert, are
exploited to build/refine a theory that is able to explain them. An initial the-
ory can also be provided by the Expert. Subsequently, such a theory, plus the
Background Knowledge (if any), is checked against test examples and, in case
of incorrectness, the cause of the wrong decision can be located. Test examples
are exploited only to check the predictive capabilities of the theory on new ob-
servations. Conversely, tuning examples are exploited incrementally to modify
incorrect hypotheses according to a data-driven strategy. In particular, when
a positive example is not covered, a revised theory is obtained in one of the
following ways (listed by decreasing priority) such that completeness is restored:

– replacing a clause in the theory with one of its generalizations against the
problematic example;

– adding a new clause to the theory, obtained by properly turning constants
into variables in the problematic example;

– adding the problematic example as a positive exception.

When, on the other hand, a negative example is covered, the system outputs
a revised theory that restores consistency by performing one of the following
actions (by decreasing priority):

– adding positive literals that are able to characterize all the past positive
examples of the concept (and exclude the problematic one) to one of the
clauses that concur to the example coverage;

– adding a negative literal that is able to discriminate the problematic example
from all the past positive ones to the clause in the theory by which the
problematic example is covered;

– adding the problematic example as a negative exception.

An exception contains a specific reference to the observation it represents, as
it occurs in the tuning set; new incoming observations are always checked with
respect to the exceptions before the rules of the related concept. This does not
lead to rules which do not cover any example, since exceptions refer to specific
objects, while rules contain variables, so they are still applicable to other objects
than those in the exceptions.

It is worth noting that INTHELEX never rejects examples, but always refines
the theory. Moreover, it does not need to know a priori what is the whole set of
concepts to be learned, but it learns a new concept as soon as examples about
it are available.

We were led by a twofold motivation to exploit INTHELEX on the problem
of learning user profiles. First, its representation language (First-Order Logic)
is more suitable than numeric/probabilistic approaches to obtain intuitive and
human readable rules, which are a highly desiberable feature in order to under-
stand the user preferences. Second, incrementality is an unnegligible requirement
in the given task, since new information on a user is available each time he issues
a query, and it would be desirable to be able to refine the previously generated
profile instead of completely rejecting it and learning a new one from scratch.
Moreover, a user’s interests and preferences might change in time, a problem
that only incremental systems are able to tackle.

Since INTHELEX is not currently able to handle numeric values, it was not
possible to learn preference rates in the continuous interval [0, 1] like in the
probabilistic approach. Thus, a discretization was needed. Instead of learning a
definition for each of the 10 possible votes, we decided to learn just two possible
classes of interest: “likes”, describing that the user likes a book, and its opposite
“not(likes)”. Specifically, the former (positive examples) encompasses all rates
ranging from 6 to 10, while the latter (negative examples) included all the oth-
ers (from 1 to 5). It is worth noting that such a discretization step is not in
charge of the human supervisor, since a proper abstraction operator embedded
in INTHELEX can be exploited for carrying out this task. Moreover, it has a
negligible computational cost, since each numeric value is immediately mapped
onto the corresponding discretized symbolic value.

Each book description is represented in terms of three components by using
predicates slot title(b,t), slot author(b,au), and slot annotation(b,an),
indicating that the objects t, au and an are, respectively, the title, author and
annotation of the book b. Any word in the book description is represented by
a predicate corresponding to its stem, and linked to both the book itself and
the single slots in which it appears. For instance, predicate prolog(slott,
slottitleprolog) indicates that the object slottitleprolog has stem “pro-
log” and is contained in slot slott; in such a case, also a literal prolog(book)
is present to say that stem “prolog” is present in the book description.

Also the number of occurrences of each word in each slot was represented
by means of the following predicates: occ 1, occ 2, occ m, occ 12, occ 2m. A
predicate occ X(Y) indicates that term Y occurs X times, while a predicate
occ XY(Z) indicate that the term Z occurs from X to Y times. Again, such
a ‘discretization’ was needed because numeric values cannot be dealt with in
INTHELEX. Note that all the predicates representing intervals to which the
value to be represented belongs must be used to represent it; thus, many such
predicates can be needed to represent the occurrences of a term. For instance, if a
term occurs once, then it occurs also from 1 to 2 (occ 12) times and from 1 to m
(occ 1m) times. Figure 1 shows an example for the class likes. Given the specific
value in the example, all the intervals to which it belongs are automatically
added by the system by putting this information in the background knowledge
and exploting its saturation operator.

likes(501477998) :-

slot_title(501477998, slott),

practic(slott, slottitlepractic),

occ_1(slottitlepractic),

occ_12(slottitlepractic),

prolog(slott, slottitleprolog),

occ_1(slottitleprolog),

occ_12(slottitleprolog),

slot_authors(501477998, slotau),

l_sterling(slotau, slotauthorsl_sterling),

occ_1(slotauthorsl_sterling),

occ_12(slotauthorsl_sterling),

slot_annotation(501477998, slotan),

l_sterling(501477998),

practic(501477998),

prolog(501477998).

Fig. 1. First-Order Representation of a Book

3 Item Recommender

ITR (ITem Recommender) [1] is a system able to recommend items based on
their textual descriptions. It implements a probabilistic learning algorithm to
classify texts, the näıve Bayes classifier. Näıve Bayes has been shown to perform
competitively with more complex algorithms and has become an increasingly
popular algorithm in text classification applications [6, 4].

The prototype is able to classify text belonging to a specific category as
interesting or uninteresting for a particular user. For example, the system could
learn the target concept ”textual descriptions the user finds interesting in the
category Computer and Internet”.

Bayesian reasoning provides a probabilistic approach to inference. It is based
on the assumption that the quantities of interest are governed by probabilistic
distributions and that optimal decision can be made by reasoning about these
probabilities together with observed data.

In the learning problem, each instance (item) is represented by a set of slots.
Each slot is a textual field corresponding to a specific feature of an item.

The text in each slot is a collection of words (a bag of word, BOW) processed
taking into account their occurrences in the original text. Thus, each instance is
represented as a vector of BOWs, one for each slot.

Moreover, each instance is labelled with a discrete rating (from 1 to 10)
provided by a user, according to his or her degree of interest in the item.

According to the Bayesian approach to classify natural language text docu-
ments, given a set of classes C= {c1, c2, . . . , c|C|}, the conditional probability
of a class cj given a document d is calculated as follows:

P (cj |d) =
P (cj)
P (d)

P (d|cj)

In our problem, we have only 2 classes: c+ represents the positive class (user-
likes, corresponding to ratings from 6 to 10), and c− the negative one (user-
dislikes, ratings from 1 to 5). Since instances are represented as a vector of
documents, (one for each BOW), and assumed that the probability of each word
is independent of the word’s context and position, the conditional probability of
a category cj given an instance di is computed using the formula:

P (cj |di) =
P (cj)
P (di)

|S|∏
m=1

|bim|∏

k=1

P (tk|cj , sm)nkim (1)

where S= {s1, s2, . . . , s|S|} is the set of slots, bim is the BOW in the slot sm of
the instance di, nkim is the number of occurrences of the token tk in bim.

In (1), since for any given document, the prior P (di) is a constant, this factor
can be ignored if the only interest concerns a ranking rather than a probability
estimate. To calculate (1), we only need to estimate the probability terms P (cj)
and P (tk|cj , sm), from the training set, where each instance is weighted according
to the user rating r :

wi
+ =

r − 1
9

; wi
− = 1− wi

+ (2)

The weights in (2) are used for weighting the occurrence of a word in a document.
For example, if a word appears n times in a document di, it is counted as
occurring n·wi

+ in a positive example and n·wi
− in a negative example. Weights

are used for estimating the two probability terms according to the following
equations:

P̂ (cj) =

|TR|∑
i=1

wi
j

|TR| (3)

P̂ (tk|cj , sm) =

|TR|∑
i=1

wi
jnkim

|TR|∑
i=1

wi
j |bim|

(4)

In (4), nkim is the number of occurrences of the term tk in the slot sm of the
ith instance, and the denominator denotes the total weighted length of the slot
sm in the class cj . Therefore, P̂ (tk|cj , sm) is calculated as a ratio between the
weighted occurrences of the term tk in slot sm of class cj and the total weighted
length of the slot.

The final outcome of the learning process is a probabilistic model used to
classify a new instance in the class c+ or c−. The model can be used to build a
personal profile including those words that turn out to be most indicative of the
user’s preferences, according to the value of the conditional probabilities in (4).

In the specific context of book recommendations, instances in the learning
process are the book descriptions. ITR represents each instance as a vector of
three BOWs, one BOW for each slot. The slots used are: title, authors and tex-
tual annotation. Each book description is analyzed by a simple pattern-matcher
that extracts the words, the tokens to fill each slot. Tokens are obtained by
eliminating stopwords and applying stemming. Instances are used to train the
system: cccurrences of terms are used to estimates probabilities as described in
Equations (3) and (4). An example ITR profile is given in figure 2.

4 Experimental Sessions

In this section we describe results from experiments using a collection of textual
book descriptions rated by real users according to their tastes. The goal of the ex-
periment has been the comparison of the methods implemented by INTHELEX
and ITR in terms of classification accuracy, learning and classification time,
when coping with the task of learning user profiles.

4.1 Design of the experiments

Eight book categories were selected at the Web site of a virtual bookshop. For
each book category, a set of book descriptions was obtained by analyzing Web
pages using an automated extractor and stored in a local database. Table 1
describes the extracted information. For each category we considered:

– Book descriptions - number of books extracted from the Web site belonging
to the specific category;

Fig. 2. An example of ITR user profile

– Books with annotation - number of books with a textual annotation (slot
annotation not empty);

– Avg. annotation length - average length (in words) of the annotations;

Several users have been involved in the experiments: each user were requested
to choose one or more categories of interest and to rate 40 or 80 books (in the
database) in each selected category, providing 1-10 discrete ratings. In this way,
for each user a dataset of 40 or 80 rated books was obtained (see Table 2).

On each dataset a 10-fold cross-validation was run and several metrics were
used in the testing phase. In the evaluation phase, the concept of relevant book is
central. A book in a specific category is considered as relevant by a user if his or
her rating is greater than 5. This corresponds in ITR to having P (c+|di) ≥ 0.5,
calculated as in equation (1), where di is a book in a specific category. Simmet-
rically, INTHELEX considers as relevant books covered by the inferred theory.
Classification effectiveness is measured in terms of the classical Information Re-
trieval (IR) notions of precision (Pr), recall (Re) and accuracy (Acc), adapted
to the case of text categorization [7]. Precision is the proportion of items classi-
fied as relevant that are really relevant, and recall is the proportion of relevant
items that are classified as relevant; accuracy is the proportion of items that are
correctly classified as relevant or not.

Table 1. Database information

Category Book Books with Avg.
descr. annotation annotation

length

Computing & Int. 5378 4178 (77%) 42.35
Fiction & lit. 5857 3347 (57%) 35.71
Travel 3109 1522 (48%) 28.51
Business 5144 3631 (70%) 41.77
SF, horror & fan. 556 433 (77%) 22.49
Art & entert. 1658 1072 (64%) 47.17
Sport & leisure 895 166 (18%) 29.46
History 140 82 (58%) 45.47

Total 22785 14466

Table 2. Number of books rated by each user in a given category

UserID Category Rated books

37 SF, Horror & Fantasy 40
26 SF, Horror & Fantasy 80
30 Computer & Internet 80
35 Business 80
24c Computer & Internet 80
36 Fiction & literature 40
24f Fiction & literature 40
33 Sport & leisure 80
34 Fiction & literature 80
23 Fiction & literature 40

Table 3. Performance for ITR and INTHELEX on 10 different users

Precision Recall Accuracy
UID ITR INTHELEX ITR INTHELEX ITR INTHELEX

37 0,767 0,967 0,883 0,5 0,731 0,695
26 0,818 0,955 0,735 0,645 0,737 0,768
30 0,608 0,583 0,600 0,125 0,587 0,488
35 0,651 0,767 0,800 0,234 0,725 0,662
24c 0,586 0,597 0,867 0,383 0,699 0,599
36 0,783 0,9 0,783 0,3 0,700 0,513
24f 0,785 0,9 0,650 0,35 0,651 0,535
33 0,683 0,75 0,808 0,308 0,730 0,659
34 0,608 0,883 0,490 0,255 0,559 0,564
23 0,500 0,975 0,130 0,9 0,153 0,875

Mean 0,679 0,828 0,675 0,4 0,627 0,636
(0,699) (0,811) (0,735) (0,344) (0,68) (0,609)

Table 4. Learning and Classification times (msec) for ITR and INTHELEX on 10
different users

Learning Time Classification Time
UID ITR INTHELEX ITR INTHELEX

37 3,738 3931,0 0,851 15,0
26 5,378 8839,0 0,969 20,0
30 8,561 51557,0 1,328 53,0
35 9,289 30338,0 1,423 55,0
24c 7,502 29780,0 1,208 44,0
36 5,051 12317,0 0,894 19,0
24f 4,532 18448,0 0,848 19,0
33 5,820 14482,0 0,961 25,0
34 7,592 73708,0 1,209 42,0
23 4,951 1859,0 0,845 20,0

Mean 6,2414 24525,9 1,0536 31,2

As regards training and classification times, we tested the algorithms on a
2.4 GHz Pentium IV running Windows 2000.

4.2 Discussion

Table 3 shows the average precision, recall and accuracy of the models learned
in the 10 folds for each user. The last row reports the mean values, averaged
on all users. Since the average performance for ITR is very low for user 23, we
decided to have a deeper insight into the corresponding training file, and noted
that all examples were positive, thus indicating possible noise in the data. This
led us to recompute the metrics neglecting this user, thus obtaining the results
reported in parentheses.

In general, INTHELEX provides some performance improvement over ITR.
In particular, it can be noticed that INTHELEX produces very high precision

even on the category “SF, horror & fantasy”, taking into account the shortness
of the annotations provided for books belonging to this category. This result is
obtained both for user 26, who rated 80 books, and for user 37, who rated only
40 books. Moreover, classification accuracy obtained by INTHELEX is slightly
better than the one reached by ITR. On the other hand, ITR yields a better
recall than INTHELEX for all users except one (user 23).

For pairwise comparison of the two methods, the nonparametric Wilcoxon
signed rank test was used [5], since the number of independent trials (i.e., users)
is relatively low and does not justify the application of a parametric test, such
as the t-test. In this experiment, the test was adopted in order to evaluate the
difference in effectiveness of the profiles induced by the two systems according
to the metrics pointed out in Table 3. Requiring a significance level p < 0.05,
the test revealed that there is a statistically significant difference in performance
both for Precision (in favor of INTHELEX) and for Recall (in favor of ITR), but
not as regards Accuracy.

Going into more detail, as already stated, ITR performed very poorly only
on user 23, whose interests turned out to be very complex to be captured by
the probabilistic approach. Actually, all but one rates given by such a user were
positive (ranging between 6 and 8), that could be the reason for such a behaviour.
With respect to the complete dataset of all users, the accuracy calculated on the
subset of all users except user 23 becomes statistically significant in favor of ITR.

likes(A) :-

learn(A),

mach(A),

intellig(A),

slot_title(A, F),

slot_authors(A, G),

slot_annotation(A, B),

intellig(B, C),

learn(B, D),

occ_12(D),

mach(B, E),

OCC_12(E).

Fig. 3. Rule learned by INTHELEX

Table 4 reports the results about training and classification time of both
systems. Training times vary substantially across the two methods. ITR takes
an average of 6,2414 msec to train a classifier for a user when averaged over all
10 users. Training INTHELEX takes more time than ITR, but this is not a real
problem because profiles can be learnt by batch processes without noise for users.
In user profiling application, it is important to quickly classify new instances,
for example to provide users with on-line recommendations. Both methods are
very fast in this regard.

In summary, the probabilistic approach seems to have better recall, thus
showing a trend to classify unseen instances as positive; on the contrary, the
first-order approach tends to adopt a more cautious behavior, and classify new
instances as negative. Such a difference is probably due to the approach adopted:
learning in INTHELEX is data-driven, thus it works bottom-up and keeps in the
induced definitions as much information as possible from the examples. This way,
requirements for new observations in order to be classified as positive are more
demanding, and few of them pass; on the other hand, this ensures that those
that fulfill the condition are actually positive instances.

Another remark worth noting is that theories learned by the symbolic system
are very interesting from a human understandability viewpoint, in order to be
able to explain and justify the recommendations provided by the system. Figure
3 shows one such rule, to be interpreted as “the user likes a book if its annotation
contains stems intellig, learn (1 or 2 times) and mach (1 or 2 times)”. Anybody
can easily understand that this user is interested in books concerning artificial
intelligence and, specifically, machine learning.

In a commercial Web site perspective, the probabilistic behavior should be
preferable. It could be used in developing recommender systems exploiting the
ranked list approach for presenting items to the users. In this scheme, users spec-
ifies their needs in a form and the system presents a usually long list of results,
ordered by their predicted relevance. On the other hand, the ILP approach could
be adopted in situations when the system transparency is a critical factor and
it is important to provide an explanation of why a recommendation was made.

From what said above, it seems that the two approaches compared in this
paper have complementary pros and cons, not only as regards the representation
language, but also as concerns the predictive performances. This naturally leads
to think that some cooperation could take place between the two in order to reach
higher effectiveness of the recommendations. For instance, since the probabilistic
theories have a better recall, they could be used for selecting which items are to
be presented to the user. Then, some kind of filtering could be applied on them,
in order to present to the user first those items that are considered positive by
the symbolic theories, that are characterized by a better precision.

5 Conclusions

Research presented in this paper has focused on methods for learning user profiles
which are predictively accurate and comprehensible. Specifically, an intensive
comparison between an ILP and a probabilistic approach to learning models of
users’ preferences was carried out. Experimental results highlight the usefulness
and drawbacks of each one, that can suggest possible ways of combining the two
approaches in order to offer better support to users accessing e-commerce virtual
shops or other information sources. In particular, we suggest a simple possible
way of obtaining a cascade hybrid method. In this technique, the probabilistic
approach could be employed first to produce a coarse ranking of candidates and

the ILP approach could be used to refine the raccomandations from among the
candidate set.

Currently we are working on the integration in INTHELEX of techniques able
to manage numeric values, in order to treat in a more efficient way numerical
features of instances, and hence to abtain theories with a more fine grean size.

References

[1] M. Degemmis, P. Lops, G. Semeraro, and F. Abbattista. Extraction of user pro-
files by discovering preferences through machine learning. In M. A. Klopotek, S. T.
Wierzhon, and K. Trojanowski, editors, Information Systems: New Trends in In-
telligent Information Processing and Web Mining, Advances in Soft Computing,
pages 69–78. Springer, 2003.

[2] F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy Theory Revision:
Induction and abduction in INTHELEX. Machine Learning, 38(1/2):133–156, 2000.

[3] D. Mladenic. Text-learning and related intelligent agents: a survey. IEEE Intelligent
Systems, 14(4):44–54, 1999.

[4] Raymond J. Mooney and Loriene Roy. Content-based book recommending using
learning for text categorization. In Proceedings of the 5th ACM Conference on
Digital Libraries, pages 195–204, San Antonio, US, 2000. ACM Press, New York,
US.

[5] M. Orkin and R. Drogin. Vital Statistics. McGraw-Hill, New York, 1990.
[6] M. Pazzani and D. Billsus. Learning and revising user profiles: The identification

of interesting web sites. Machine Learning, 27(3):313–331, 1997.
[7] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, New York, 1983.
[8] G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. A logic framework

for the incremental inductive synthesis of datalog theories. In M. A. Klopotek, S. T.
Wierzhon, and K. Trojanowski, editors, Logic Program Synthesis and Transforma-
tion, number 1463 in Lecture Notes in Computer Science, pages 300–321. N. E.
Fuchs, 1998.

