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1 Requirements for Knowledge Discovery
Platforms

Real-world knowledge discovery processes typically con-
sist of complex data pre-processing, machine learning,
evaluation, and visualization steps. Hence a data mining
platform should allow complex nested operator chains or
trees, provide transparent data handling, comfortable pa-
rameter handling and optimization, be flexible, extendible
and easy-to-use. Depending on the task at hand, a user may
want to interactively explore different knowledge discov-
ery chains and continuously inspect intermediate results,
or he may want to perform highly automated experiments
off-line in batch mode. Therefore an ideal data mining plat-
form should offer both, interactive and batch interfaces. In
this paper, we propose YALE, Yet Another Learning Envi-
ronment, which meets these requirements.

2 Modeling Knowledge Discovery Processes
as Operator Trees

Knowledge discovery (KD) processes are often viewed as
sequential operator chains. In many applications, flat linear
operator chains are insufficient to model the KD process
and hence operator chains need to be nestable. Consider
for example a complex KD process containing a learning
step, whose parameters are optimized using an inner cross-
validation, and which as a whole is evaluated by an outer
cross-validation. Nested operator chains are basically trees
of operators. In YALE, the leafs in the operator tree of a
KD process correspond to simple steps in the modeled pro-
cess. Inner nodes of the tree correspond to more complex
or abstract steps in the process, like e.g. cross-validation or
feature selection. The root of the tree hence corresponds
to the whole experiment. Operators define their expected
inputs and delivered outputs as well as their obligatory and
optional parameters, which enables YALE to automatically
check the nesting of the operators, the types of the objects
passed between the operators, and mandatory parameters.

YALE uses XML (eXtensible Markup Language), a
widely used language well suited for describing structured
objects, to describe the operator trees modeling KD pro-
cesses. XML has become a standard format for data ex-
change. Furthermore this format is easily readable by hu-
mans and machines. YALE can be started off-line, if the
experiment configuration is provided as XML file, which
can be edited with both arbitrary text or XML editors and
with the YALE GUI (graphical user interface). The YALE
GUI provides a tree view corresponding to the XML docu-
ment. The GUI allows the guided design of operator trees,
interactive control and inspection of running experiments,

and continuous monitoring of the experimental results.
Figure 1 shows a screenshot of the YALE GUI for a fea-
ture selection experiment using a genetic algorithm (GA)
approach. The lower window at the left displays the ex-
periment chain as operator tree and the upper window at
the right depicts a result graph for the relative error of this
approach in dependence on the GA generation number.

Figure 1: YALE screenshot: operator tree and result view.

3 Transparent Data Handling in YALE

Since operators define their expected inputs, delivered out-
puts, and parameters, YALE can automatically check their
nesting, the types of the objects passed between them, and
their mandatory parameters. YALE achieves a transparent
data handling by supporting several types of data sources
and hiding internal data transformations and partitionings
from the user, i.e. one may simply exchange the data source
or some other operator in an experiment and leave every-
thing else unchanged. The supported data sources include
pre-defined standard file formats like the ARFF format
used by Weka [Witten and Frank, 2000] and CSV (comma-
separated values), user-definable file formats, and SQL
databases like Oracle, MySQL, and PostgreSQL. If oper-
ators generate data sets internally, these can also easily be
integrated into the YALE data flow.



3.1 Handling Input and Output Objects
The input objects of an operator may be consumed or
passed on to following or enclosing operators. Especially
if the input objects are not required by this operator, they
are simply passed on. They do not even need to be in-
terpretable by this operator. However, these input objects
may be needed or used by later or outer operators. This
increases the flexibility of YALE by easing the match of
the interfaces of consecutive operators and allowing to pass
objects from one operator through several other operators
to their goal operator. Objects typically passed between
operators are example sets, prediction models, evaluation
vectors, etc. Operators may add information to input ob-
jects, e.g. labels to previously unlabeled examples, or new
features in a feature generation operator, and deliver these
extended objects. The specification of meta data is possi-
ble and allows for example the automatic selection of data
pre-processing operators fitting to the data types at hand.

3.2 Efficient Data Management
No matter whether a data set is stored in memory, in a file,
or in a database, YALE internally uses a special type of data
table to represent it. In order not to unnecessarily copy the
data set or subsets of it, YALE manages views on this table,
so that only references to the relevant parts of the table need
to be copied or passed between operators. By maintaining
a stack of views, these views are nestable as is for example
required for nested cross-validations For an example set,
views on the rows of the table correspond to subsets of the
example set, and views on the columns correspond to the
selected features used to represent these examples.

4 Extending YALE
YALE supports the implementation of user-defined opera-
tors. The user simply needs to define the expected inputs,
the delivered outputs, the mandatory and optional parame-
ters, and the core functionality of the operator [Fischer et
al., 2003]. Everything else is done by YALE. The operator
description in XML allows YALE to automatically create
corresponding GUI elements. External programs can be in-
tegrated by implementing wrapper operators and can then
be transparently used in any YALE experiment.

5 Example Applications and Download
YALE is used by researchers and practitioners in more than
20 countries and has already been applied in a number
of domains like feature generation and selection [Klinken-
berg et al., 2002; Ritthoff and Klinkenberg, 2003; Rit-
thoff et al., 2001; 2002], concept drift handling [Klinken-
berg and Joachims, 2000; Klinkenberg and Rüping, 2003;
Klinkenberg, 2003], and transduction [Daniel et al., 2002;
Klinkenberg, 2001]. Current applications of YALE also in-
clude the pre-processing of and learning from time series
[Mierswa, 2003] and text processing and classification.

YALE is available as open-source software under the
GNU Public License (GPL)1. The YALE tutorial [Fischer
et al., 2003], the GUI manual, and a long version of this
paper [Mierswa et al., 2003] provide further information
about YALE, the underlying concepts, its usage, an opera-
tor reference, and how to define additional operators.
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