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Abstract | | 'V'| S| S
Minesweeper is a one-person game which looks 2 1 2:Sl1:S
deceptively easy to play, but where average hu- i — |_ i — S |§
man performance is far from optimal. Playing
the game requires logical, arithmetic and prob- 1 1 1 1:S

abilistic reasoning based on spatial relationships
on the board. Simply checking a board state for

consistency is an NP-complete problem. Given
the difficulty of hand-crafting strategies to play
this and other games, Al researchers have al-
ways been interested in automatically learning
such strategies from experience. In this paper,
we show that when integrating certain techniques
into a general purpose learning system (Mio),
the resulting system is capable of inducing a
Minesweeper playing strategy that beats the win-
ning rate of average human players. In addition,
we discuss the necessary background knowledge,
present experimental results demonstrating the
gain obtained with our techniques and show the
strategy learned for the game.

Introduction

Figure 1: Left: Available information on a board. Right:
Seven tiles can be determined safe (s) and one a mine(m)

Al researchers have always been interested in the possibil-
ity of automatically learning such strategies from experi-
ence. However, with the exception of TD-Gammon which
uses reinforcement learnif@esauro, 1995and LOGIS-
TELLO which applies GLEM[Buro, 2002 , most of the
playing strategies and heuristics used in game playing pro-
grams are coded and tuned per hand instead of automati-
cally learned. In this work, we use a general purpose ILP
system, Mio, to learn a playing strategy for Minesweeper.
Multirelational learning or ILP consists in learning from
examples usually within the framework provided by clausal
logic.

The task of learning rules to deduce Minesweeper moves

1 proved itself to be an arduous test for current multirela-
Minesweeper is a popular one—player computer game writtional learning systems. In this paper, we describe how
ten by Robert Donner and_Curt Johnson which was intecent optimizations make possible for Mio to discover a
cluded in Microsoft Window® in 1991. At the beginning Minesweeper playing strategy. Experimental results ob-
of the game, the player is presented withy & ¢ board tained by playing Minesweeper using this strategy show a
containingpq tiles or squares which are all blank. Hidden better performance than that obtained on average by non-
among the tiles ard/ mines distributed uniformly at ran- expert human players.
dom on the board. The task of the player is to uncover all The remainder of this paper is organized as follows. The
the tiles which do not contain a mine. At each turn thenext section discusses the complexity of the game and de-
player can select one of three actions (moves): to mark acribes the learning task. Section 3 describes the back-
tile as a mine; to unmark a tile; and to uncover a tile. In theground knowledge, the learning system and the new tech-
last action, if the tile contains a mine, the player loses; oth-iques used. Section 4 shows our empirical results on the
erwise, the number of mines around the tile is displayed. Ireffectiveness of the learning techniques, the strategy ob-
the4 x 4 board depicted in Fig. 1 left, the numbelocated tained and its performance at game playing. Related work
on the second row from top indicates that there is one and surveyed in Section 5 and Section 6 concludes.
only one mine hidden among the eight blank neighbouring
tiles. 2 Minesweeper

Although the simplicity of its rules makes Minesweeper ; .
look decgptively easr,)y, pl)z;ying the game well is indeed c%al-z'_l Why Is Minesweeper Interesting? ,
lenging: A player requires logic and arithmetic reasoningMinesweeper has been shown to be NP-complete by sim-
to perform certain moves given the board state, and probailating boolean circuits as Minesweeper positipkaye,
bilistic reasoning to minimize the risk of uncovering a mine 200d. Kaye describes thilinesweeper consistency prob-
when a safe move cannot be done. Given the difficulty ofemas the problem of determining if there is some pattern

hand-crafting playing strategies for this and other gamesQf mines in the blank squares that give rise to the num-
bers seen in a given board partially filled with numbers and

*This paper appears in the Proceedings of the Eighteenth Inmarked mines, and thus determining that the data given is
ternational Joint Conference on Artificial Intelligen@dJCAII consistent.



One realizes the complexity of the game by calculating i L
an estimate for the size of its search space. Consider an
8 x 8 board withA/ = 10 mines; in this case at the begin- _LJ 4
ning of the game the player hag = 64 tiles from which to 2 _L
choose a move (i.e., a tile to uncover) and in the last move,
assuming the player does not uncover a mine, theréglare 1 2
tiles from which to choose one. This leadsitd ~ 107!
possible move sequences to win a game. Alternatively, ongigyre 2: The position of the last mine cannot be deter-
can calculate the probability of a random player winningmined
a game. In the first move the probability that the ran-
dom player chooses a tile which does not contain a mine @@
is 54/64, and in the last move it hdg/11 chance to choose ~
the only tile without a mine. Then, the probability of a ran-

dom player winning a game i/ () ~ 107! and that is
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Select an example e in B4,

. . 54

only for the easiest playing level! i :

Another measure of the complexity of Minesweeper is Search for a clause C in the
the number of games won on average by non-expert human hypothesis space H using

9 ge by p to guide the search.

players. To estimate the average human performance play- i
ing Minesweeper, we carried out an informa_ll study. In the Remove examples in E4
study, eleven persons who have played Minesweeper be- covered by C.
fore were asked to play at least ten times irBan 8 board i
with 10 mines. Every participant was told to aim for accu- Add C to the theory T

racy rather than for speed. In this study, a person won on

v
average35% of the games with a standard deviatiorét. @’ No

2.2 The Learning Task Yes

In Minesweeper there are situations that can be “solved” °
with nontrivial reasoning. For example, consider Fig. 1
left where the only available information about the board
state are the numbers. After careful analysis one finds that
the squares with as (see Fig. 1 right) do not contain a
mine, the square with am is a mine, and the state of
the blank tiles cannot be determined if we do not know3'1 Background Knowledge
how many mines are hidden in the board. There are othefhe background knowledge provides the system with infor-
Minesweeper situations where the available information ismation about the domain and is given in the form of logic
not enough to identify a safe square or a mine, as in Fig. 2predicates (facts and rules, or clauses). A predicate is de-
and the best option available to the player is to make an inscribed asname(arg,...,arg,) and, in our casegryg;
formed guess, i.e., a guess that minimizes the risk of blowindicates the argument’s type. The background knowl-
ing up by uncovering a mine. edge provided to the learning system about Minesweeper
In this work, we consider the learning task in is shown in Table 1. The predicates in the background
Minesweeper to be the induction of rules to identify all knowledge were defined by trying to abstract the concepts
the safe squarésand squares with a mine which can be used by humans when explaining their own Minesweeper
deduced given a board state. For instance, we want the syplaying strategies. These concepts were obtained from the
tem to learn rules to classify all the blank tiles in Fig. 1 first author's Minesweeper playing experience and from

Figure 3: Example-driven covering algorithm

either assafeor mine Minesweeper pages on the web.
In the predicates listed in Table 1,T® is a determined
3 The Learning Tools or uncovered tile, i.e., a numbér...8 is shown on the

. L . tile; a TU is an undetermined or blank til&oard is the
In machine learning it is possible to choose between g5, state given as a list pfx ¢ characters . . .8, m, u:

propositional representation (in the form of attribute-valuez,nais a list of determined tiles, anBetis a set of un-
tuples) and a multirelational representation (in the formyetermined tiles together with the number of mines hidden
of logic predicates). A m_ultirelational _representation ha?among those tiles. In addition, each symbol preceding an
the expressiveness Teq“'fed to Qescrlbe the concepts 'Brgument denotes how that argument should be instantiated
volved' Whgn reasoning about Minesweeper, and_ls thu§hen calling the predicate. A-arg; is an input argument
more intuitive than the propositional one. For this rea-;nq should be instantiated to a non-variable termpag;

son we use multirelational learning for the learning taskig 5 output argument and should be uninstantiated, and a

described above. Usually a multirelational learning sys— .;.; indicates that the constant value of an output argu-
tem takes as input background knowledgygositive ) ment can appear in a rule.

and negative ,~) examples of a target concept such that
E=EtUE- andETNE~ =0,andhastofindaclausal 32 The System
theory T which minimizes the classification error on fu-

ture instances. Next we describe the background knowlMio is an example-driven covering system (see Fig. 3) in-
edge and the system used. troduced by Pia Castillo and Wrobd20024 which uses

a Progol-like declaration language and, the same as Pro-

1A safe square is a blank tile which given the current boardgol [Muggleton, 1995 lower bounds the search space with
state cannot contain a mine. amost specific clausé (also called bottom clause). This



Predicate Description

zoneOflnterest(+TU, +Board, -Zone).. . . . returns in Zone the tiles which are determined neighbours of TU and
the determined tiles which share an undetermined neighbour with them
(see Fig. 4 center).

totalMinesLeft(+Board,-Int) ............ returns how many mines remained to be marked.

allMinesInFringe(+Board, -Set) ......... gives the set of tiles in the fringahere all the remaining mines are.

setHasXMines(-TD, +Board, +Zone, -Setjjives in Set the undetermined neighbours of TD (TD is in Zone),
and the number of mines hidden among them (see Fig. 4 right).

diffSetHasXMines(+Setl, +Set2, -Set) . . returns in Set all and only the tiles of Setl which are not also in Sef2
and the number of mines hidden among the tiles in Set.

inSet(+TU,+Set) ....................... is true when TU is a member of Set.
lengthSet(+Set,+Int).................... is true when Set contains Int tiles.
minesinSet(+Set,-#Int). ................. returns the number of mines hidden among the tiles in Set.

Table 1: Minesweeper background knowledge

is a maximally specific clause which entails (covers) a posActive Inductive Learning

itive examplee. Mio performs a general-to-specific (top- In the covering algorithm a clause is learned which covers
down) IDA* [Korf, 1989 search to find a clause to add to (explains) some positive examples and none (or few) nega-
the theory. In addition, Mio selects stochastically the ex-tive ones; however, in domains such as games and puzzles,
amples from which it learns, performs parallel search tothousands of examples are required to contain most of the
increase the stability of the example-driven approach, an@ossible game situations; on the other hand, considering
enforces type strictness. Three other techniques are impléaousands of examples when evaluating a rule slows down
mented in Mio to allow the learning of Minesweeper rules: the learning process. Thus, to improve the efficiency of the
macro-operators (or macros, for short) to reduce the searakploration of the instance space, active leardidghnet
space, greedy search with macros to speed up the learning,, 1994 is included in Mio.

process, and active learning to guide the exploration of the Active inductive learning consists of the following steps.

instance space. At the beginning, Mio learns from few randomly drawn ex-
amples and when it has learned some clauses gives these
Macros clauses to an active learning server. The active learning

Macros in multirelational learninfPeiia Castillo and Wro- ~ Server returns to Mieounterexamplés These counterex-

bel, 20024are a formal technique to reduce the hypothesisamples are selected from examples given by a random ex-
space explored by a covering system. A macro is a se2mple generator (or random sampler). While Mio iterates
quence of literals, chosen from the bottom clause, which i®n the new examples received, the server tests the rules ob-
created based on provider-consumer relationships betwedained against randomly drawn examples, discards all the
the literals. A literal is a provider if it has output arguments, fules below a user-defined accuracy value and collects new
and it is a consumer if it receives as an input argument &ounterexamples. This validation step on the server side
variable provided by another literal in the bottom clause.2voids overfitting. These steps are repeated until a user-
Pe”]a and Wrobe| ShOW that by add|ng macros instead ijeﬂned maX|mUm numbel‘ Of Iterations Is reached or no
literals to a clause, the number of clauses evaluated by theounterexample is found.

system is significantly reduced. Active inductive learning is similar in spirit to integra-
tive windowing [Furnkranz, 199Bwith two main differ-
Greedy Search with Macros ences: in our approach random sampling is done dynami-

cally and a client-server architecture is used which allows

In [Peia Castillo and Wrobel, 200Ranacros are used with {0 treat testing and learning as separated processes.

IDA*. It is well known that greedy search explores on av-
erage less nodes than IDA*; however, greedy search coul% .

miss a solution because it underestimates the importanc Empirical Results

of provider literals without discriminative power which are 4.1  Improvements Obtained with each
nonetheless necessary to introduce new variables (this is  Technique

known as the myopia problem). Since macros add sever%I

literals at once to a clause, they might reduce the myopi );pfurl';nsegé?a\iﬂlfgg ;ﬁérfr?tﬁgtstosgﬁeé?&gzntge g{fr?gzrgg
of greedy search allowing us to gain in efficiency without y Y, '

losing too much in effectiveness. We implement a greedyd"€€dY search with macros, and active inductive learning.
search with macros which consists of a lookahead step® produce the training examples, we randomly generate

where all the macros are combined with each other and th oard configurations and take all blank tiles with at least

best evaluated clauses are selected. Then if the select@d® determined neighbour as examples. 1f the blank tile

clauses can be extended (refined) the system tries to co %eesler:jo;;:omn;cﬁlen aArfrt'g:\i; dlsbgtlaenotlrgzigg?’ gf(g?nmfzg grles
bine these clauses with all the macros available and selec ) ! Yy P

the best candidates. This last step is repeated until there \rgmoved. In the experiments, the learning task was to learn

no clause which can be extended and the best candidates 4 cqunterexample is a positive example not covered by a set
are returned. of clausesI” or a negative example covered by at least one clause
inT.
3Fringe refers to all the blank tiles with a determined neigh-  ®Overfitting refers to obtaining results with high classification
bour. error over new data despite null or almost null training error.
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Figure 4: Arule learned by Mio. Left: Is the highlighted tile safe? Center: zoneOfInterest corresponding to the highlighted
tile. Right: Applying difference operations to the sets determined by the tiles inside a circle is concluded that the tile 40 is
safe

rules to identify safe tiles. The rule to discover mines wassetting; however, this extra rule does not improve the play-
learned using the best setting (i.e., using active learningng performance. One important feature of the rules learned
macros and greedy search). by Mio is that they can be applied independently of the size
For the completeness of this work, we ran Prddalig-  of the board and the number of mines. The rules vary in
gleton and Firth, 2001and Foil [Quinlan and Cameron- complexity. Rule S-1 and Rule M-1 correspond to the triv-
Jones, 1996on the same learning task as Mio; however, ial situations where a determined tile neddsines and
we failed to make the systems learn correct rules about safe mines are already marked, and where a determined tile
tiles. Progol search was interrupted due to search limitweeds: mines and it hag blank neighbours, respectively.

implemented in th_e system (although the maximum stack on the other hand, Rule S-3 can be seen as one of the
depth and resolutions steps were set to 50000 and 1000fhost complex rules because it involves three determined
respectively), and Foil pruned determined literals which argjjes to deduce a safe tile. Fig. 4 left shows a board state
needed. This might imply that the optimizations included,yhere Rule S-3 is the only one which allows to identify a
in Mio are indeed necessary to learn a Minesweeper playsafe tile. The rule obtains the zoneOfInterest corresponding
ing strategy. Table 2 shows the empirical results with fouryg the undetermined tile considered (Fig. 4 center). Then by
Mio settings. _ . ) applying difference operations on the sets determined by
All the experiments with active learning were performedthree uncovered tiles from the zoneOfinterest (see Fig. 4

with the same seeds which means that the same trainingght), the set([40],0) is obtained and thus it is deduced
examples are generated by the random sampler and thg{at tile 40 is safe.

Mio selects the same examples to guide the search. For

the experiments without active learning, we took five ran-

dom samples from the set of examples used in the activd.3 Game Playing
learning experiments. The size of the sample is equal to

the number of examples received by Mio when perform-rq eyaiyate the performance at game playing of each set
ing active learning (40 positive and 34 negative examples)ot rjes obtained, we used each set of rules as the play-
We carried out an extra experiment where Mio was givenng sirategy of an automatic Minesweeper player and cal-
the complete set of examples (2890 positive and 1306 negsjated the percentage of games won by the player in 1000
ative) used by the active learning server to test Mio’s rulesandom games (see Table 2). The playing conditions were
and select counterexamples; however, this experiment Waga same as the ones presented to the human players; i.e., at

§topped after Mio_ ran for 10 days. To re(;Iuce the runningp,o beginning the player is presented with an enspgy8
time of the experiments, we set the maximum number oly4.q with A/ — 10 mines and can uncover a mine in the

clauses explored per search to 4000 clauses. _ first move. Note that in most Minesweeper implementa-

duces the average number of rules (nodes) explored per L | h ; fthe b |
search and the number of times the search is interrupteg L€t US analyze the performance of the best rule set (see

because of the search limit. Without active learning, over-|2P/€ 3). In 1000 games, the player made 15481 moves
fitting occurs and erroneous rules are obtained. The peffoM which 2762 where random guesses, 169 used Rule S-
formance of the rules obtained with IDA*+M is worse than L+ 10285 used Rule S-2, 54 used Rule S-3, and 2211 used
that of the IDA* rules because Mio with macros explores aRule M-1.

larger part of the hypothesis space and thus the IDA* + M  In addition, we examined the effect of adding probabilis-
setting overfits more the training data. However, if no limit tic reasoning. In the experiment, we instructed the player
in the maximum number of clauses explored per searchising the rules shown in Table 3 to select a tile which min-
is set, both settings (IDA* and IDA*+M) obtain the same imizes the probability?(7T;,) that an undetermined til&,
rules. The running time of the fastest setting (AL+GS+M) is a mine when none of the rules can be appliedT’,) is

is 56hrs. equal t0made(§fffj;) whereTy is a determined neigh-

bour of T, f..(Ty) returns the number of mines needed
by T, and f,,(T,) returns the number of blank neighbours
Table 3 shows the rules with the highest winning rateof T,;. Every time the player has to guess, it selects the
which were obtained by using both AL+GS+M and tile which minimizesP(T,,). This player wins 579 of 1000
AL+IDA*+M. An extra rule was obtained with the latter random games.

4.2 Rules Learned



Mio
IDA* IDA*+M AL+IDA*+M AL+GS+M
Ave. No. clauses explored per search 3135 1462 1008 566
% of searches which reached 4000-clause limit 70% 23% 4% 3%
Ave. No. of rules obtained 2.8 4 4 3
Ave. % of games won with rules 42.6% | 34.0% 52.4 % 52.0%

Table 2: Performance of various Mio settings used to learn rules about safe tiles (AL = Active Learning, GS = Greedy
Search, IDA* = Iterative Deepening A*, M = Macros)

Rules about Safe Tiles

%% RULE S-1 %%
safe(TILEUK,BOARD):-
zoneOfinterest(TILEUK,BOARD,ZONE), setHasXMines(TILEK,BOARD,ZONE,SET),
inSet(TILEUK,SET), minesInSet(SET,0).

%% RULE S-2 %%
safe(TILEUK,BOARD):-
zoneOfinterest(TILEUK,BOARD,ZONE), setHasXMines(TILEKO,BOARD,ZONE,SETO0),
setHasXMines(TILEK1,BOARD,ZONE,SET1), diffSetHasXMines(SET1,SETO0,SET3),
inSet(TILEUK,SET3), minesInSet(SET3,0).

%% RULE S-3 %%
safe(TILEUK,BOARD):-
zoneOfinterest(TILEUK,BOARD,ZONE), setHasXMines(TILEKO,BOARD,ZONE,SETO0),
setHasXMines(TILEK1,BOARD,ZONE,SET1), setHasXMines(TILEK2,BOARD,ZONE,SET2),
diffSetHasXMines(SET1,SETO0,SET3), diffSetHasXMines(SET2,SET3,SET4),
inSet(TILEUK,SET4), minesInSet(SET4,0).

Rules about Mines

%% RULE M-1 %%
mine(TILEUK,BOARD):-
zoneOfinterest(TILEUK,BOARD,ZONE), setHasXMines(TILEK,BOARD,ZONE,SET),
inSet(TILEUK,SET), minesIinSet(SET,INT), lengthSet(SET,INT).

Table 3: Minesweeper rules learned by Mio

5 Related Work is safe or a mine, PGMS iteratively applies the following

. . rules until none are applicadte
5.1 Minesweeper Playing Programs o
_ . e If 0 =5, alltilesinS are safe.
There are several Minesweeper programs available on the

web. These programs are not learning programs but play-
ing programs where the authors have embedded their own e Letcy = Sy andc; = S; be two equations ang, be
game playing strategy. Among these programs, John D.  an undetermined tile such that < ¢;, andt, € S

Ramsdell's PGMS is quite successful winning 60% of andt, € Sy. If ¢; —cop = |S1\ Sol, all the tiles in
10000 random games insax 8 board with 10 mines. 51\ So are amine and all the tiles i, \ S; are safe.

PGMS plays using thEquation Strategyased on find-

ing approximate solutions to derived integer linear equa:
tions, and probabilities. As mentioned by Rams{2003, value P(t) as follows. Given an equation = S, define

PGMS represents the information available on the board ag single equation probability to be/|S|. P(t) is equal
a set of integer linear equations. Associated with an ung, mazies(c/|S|). PGMS picks the tile that minimizes

determined tile is a variable that has the valué if the  p 4y~ A random choice is made when there is more than
tile hides a mine, ob otherwise. An equation is generated 4 sile that minimize®(t).

for each uncovered tile with an adjacent undetermined tile. We were surprised to notice that although Mio was only

E:\chdecluatic_m gats.’l the for‘a;n: t%:ies xi,bwhe:ceS_is a ie.é given general background knowledge about Minesweeper,
8 unde erm|r]|_e u esl,_ anais the n#m er of mines Nid- - he ryles it learned are similar to the rules programmed in
en amongs. To simplify notation, this equation is written PGMS. For example, Mio's Rule S-1 and Rule S-2 corre-

asc = 5. Since the total number of hidden mines is known, g5 1 the first and third rule in PGMS, respectively; and
an additional equation S|m_ply equates this number with thg 4i1:s Rule M-1 is similar to PGMS second rule. To com-
sum of all of the undetermined tiles. _ pare PGMS performance with the performance of Mio’s
Every time a tilet is determined safe or a mine, the board pest playing strategy, we let our best player (i.e., the player
changes are propagated to all the equations containingsing the rules in Table 3 and probabilities) play 10000 ran-
and a new equation for the undetermined neighbours of 4om games in & x 8 board with 10 mines. Its winning rate

is added. In addition, ity = Sy ande; = S; are two
equations such th& is a proper subset ¢, the equation "In these rulegS| is the cardinality ofS andSp \ S: is the
1 —co = S1\ Sy is added. To determine whether a tile difference betwees, and.sS;.

e If c= S andc= 19|, alltilesinS are a mine.

PGMS must guess when presented with a board to which
hone of the rules apply. For each tildt computes the



is also 60%.

5.2 Multirelational Learning for Games

[Muggleton and Firth, 2041 Stephen Muggleton and John

Firth. Relational rule induction with CProgol4.4: a tu-
torial introduction. In S. Reroski and N. Lavig edi-

Other work has been done which applies ILP systems to tors,Relational Data Miningpages 160-187. Springer-
learn heuristics or playing strategies for games. Ramon Verlag, 2001.

et al. [2001] used Tilde[Blockeel and Raedt, 19980
learn a theory that predicts the value of a move in Go.
Morales[1994 applied the system PAL to learn chess pat-
terns for constructing chess playing strategies. Nakano
al.[1999 presented an approach to generate an evaluatio
function for Shogi mating problems using ILP.

6 Conclusions and Future Work

[Muggleton, 1995 Stephen Muggleton.

Inverse entail-
ment and ProgolNew Generation Computing3:245—
286, 1995.

e?ri\lakanoetal., 1999 Tomofumi Nakano, Nobuhiro In-

uzuka, Hirohisa Seki, and Hidenori Itoh. Inducing
Shogi heuristics using inductive logic programming. In
D. Page, edito’roc. of the 8th Int. Conf. on ILpages
155-164, 1998.

In this paper we described how the use of new ILP tech{pgia Castillo and Wrobel, 200pd ourdes P&a Castillo
niques such as macros, greedy search with macros, and ac-and Stefan Wrobel. Macro-operators in multirelational

tive inductive learning allow Mio to learn a Minesweeper

playing strategy. This learning task proved itself to be
a challenging testbed for general purpose multirelational
learning systems.

learning: a search-space reduction technique. In T. Elo-
maa, H. Mannila, and H. T. T. Toivonen, editoRspc. of
ECML'2002 volume 2430 of_ecture Notes in Alpages
357- 368, 2002.

The best rules obtained by Mio win 52% of the games in; . . o .
a8 x 8 board with 10 mines, while on average a non—expert[Pma CaSth”O and erobel, 2r(l)02ti_o_l|1.rdes% Paa C"I"St'"‘?
human player wins 35% of the games. The performance of ;’:md Stefan Wrob? - On the S(tjab.' ity OI _exi':\mp e-ldlrlven
the playing program using these rules as playing strategy _earnllng Csysgergs. Izlacgse ”stu Ay '3 m:|gre anong garn-
improves to 60% when adding the use of probabilities. Icne?r' annd O Céir(;)eecci)itor%’ero% of.MI%AI’ZC())r(r)IZO\Z/Q)Iuheu_

By examining the games played using Mio’s rules, we 2313 ofLecture Notes in Alpéges 321-330. 2002
notice that there are still situations where the player guesses ' '
without need (i.e., a sure move can be deduced). As futurEQuinlan and Cameron-Jones, 1996 Ross Quinlan and
work, we want to use other ILP systems (e.g., Tilde), and R. Michael Cameron-Jones. Induction of logic pro-

other machine learning approaches to learn Minesweeper grams: FOIL and related systemsNew Generation

playing strategies and compare their performance.

Computing 13(3-4):287-312, 1995.

[Ramonet al,, 2001 Jan Ramon, Tom Francis, and Hen-
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