
Learning Minesweeper with Multirelational Learning ∗

Lourdes Pẽna Castillo
Otto-von-Guericke-University

Magdeburg, Germany
pena@iws.cs.uni-magdeburg.de

Stefan Wrobel
Fraunhofer AIS, Sankt Augustin
and University Bonn, Germany

wrobel@ais.fraunhofer.de

Abstract

Minesweeper is a one-person game which looks
deceptively easy to play, but where average hu-
man performance is far from optimal. Playing
the game requires logical, arithmetic and prob-
abilistic reasoning based on spatial relationships
on the board. Simply checking a board state for
consistency is an NP-complete problem. Given
the difficulty of hand-crafting strategies to play
this and other games, AI researchers have al-
ways been interested in automatically learning
such strategies from experience. In this paper,
we show that when integrating certain techniques
into a general purpose learning system (Mio),
the resulting system is capable of inducing a
Minesweeper playing strategy that beats the win-
ning rate of average human players. In addition,
we discuss the necessary background knowledge,
present experimental results demonstrating the
gain obtained with our techniques and show the
strategy learned for the game.

1 Introduction
Minesweeper is a popular one–player computer game writ-
ten by Robert Donner and Curt Johnson which was in-
cluded in Microsoft Windowsc© in 1991. At the beginning
of the game, the player is presented with ap × q board
containingpq tiles or squares which are all blank. Hidden
among the tiles areM mines distributed uniformly at ran-
dom on the board. The task of the player is to uncover all
the tiles which do not contain a mine. At each turn the
player can select one of three actions (moves): to mark a
tile as a mine; to unmark a tile; and to uncover a tile. In the
last action, if the tile contains a mine, the player loses; oth-
erwise, the number of mines around the tile is displayed. In
the4×4 board depicted in Fig. 1 left, the number1 located
on the second row from top indicates that there is one and
only one mine hidden among the eight blank neighbouring
tiles.

Although the simplicity of its rules makes Minesweeper
look deceptively easy, playing the game well is indeed chal-
lenging: A player requires logic and arithmetic reasoning
to perform certain moves given the board state, and proba-
bilistic reasoning to minimize the risk of uncovering a mine
when a safe move cannot be done. Given the difficulty of
hand-crafting playing strategies for this and other games,

∗This paper appears in the Proceedings of the Eighteenth In-
ternational Joint Conference on Artificial Intelligence.c©IJCAII

M S S

S

S S

S

S

Figure 1: Left: Available information on a board. Right:
Seven tiles can be determined safe (s) and one a mine(m)

AI researchers have always been interested in the possibil-
ity of automatically learning such strategies from experi-
ence. However, with the exception of TD-Gammon which
uses reinforcement learning[Tesauro, 1995] and LOGIS-
TELLO which applies GLEM[Buro, 2002] , most of the
playing strategies and heuristics used in game playing pro-
grams are coded and tuned per hand instead of automati-
cally learned. In this work, we use a general purpose ILP
system, Mio, to learn a playing strategy for Minesweeper.
Multirelational learning or ILP consists in learning from
examples usually within the framework provided by clausal
logic.

The task of learning rules to deduce Minesweeper moves
proved itself to be an arduous test for current multirela-
tional learning systems. In this paper, we describe how
recent optimizations make possible for Mio to discover a
Minesweeper playing strategy. Experimental results ob-
tained by playing Minesweeper using this strategy show a
better performance than that obtained on average by non-
expert human players.

The remainder of this paper is organized as follows. The
next section discusses the complexity of the game and de-
scribes the learning task. Section 3 describes the back-
ground knowledge, the learning system and the new tech-
niques used. Section 4 shows our empirical results on the
effectiveness of the learning techniques, the strategy ob-
tained and its performance at game playing. Related work
is surveyed in Section 5 and Section 6 concludes.

2 Minesweeper
2.1 Why Is Minesweeper Interesting?
Minesweeper has been shown to be NP-complete by sim-
ulating boolean circuits as Minesweeper positions[Kaye,
2000]. Kaye describes theMinesweeper consistency prob-
lemas the problem of determining if there is some pattern
of mines in the blank squares that give rise to the num-
bers seen in a given board partially filled with numbers and
marked mines, and thus determining that the data given is
consistent.

One realizes the complexity of the game by calculating
an estimate for the size of its search space. Consider an
8× 8 board withM = 10 mines; in this case at the begin-
ning of the game the player haspq = 64 tiles from which to
choose a move (i.e., a tile to uncover) and in the last move,
assuming the player does not uncover a mine, there are11
tiles from which to choose one. This leads to54! ≈ 1071

possible move sequences to win a game. Alternatively, one
can calculate the probability of a random player winning
a game. In the first move the probability that the ran-
dom player chooses a tile which does not contain a mine
is 54/64, and in the last move it has1/11 chance to choose
the only tile without a mine. Then, the probability of a ran-
dom player winning a game is1/

(
64
54

)
≈ 10−12 and that is

only for the easiest playing level!
Another measure of the complexity of Minesweeper is

the number of games won on average by non-expert human
players. To estimate the average human performance play-
ing Minesweeper, we carried out an informal study. In the
study, eleven persons who have played Minesweeper be-
fore were asked to play at least ten times in an8× 8 board
with 10 mines. Every participant was told to aim for accu-
racy rather than for speed. In this study, a person won on
average35% of the games with a standard deviation of8%.

2.2 The Learning Task
In Minesweeper there are situations that can be “solved”
with nontrivial reasoning. For example, consider Fig. 1
left where the only available information about the board
state are the numbers. After careful analysis one finds that
the squares with ans (see Fig. 1 right) do not contain a
mine, the square with anm is a mine, and the state of
the blank tiles cannot be determined if we do not know
how many mines are hidden in the board. There are other
Minesweeper situations where the available information is
not enough to identify a safe square or a mine, as in Fig. 2,
and the best option available to the player is to make an in-
formed guess, i.e., a guess that minimizes the risk of blow-
ing up by uncovering a mine.

In this work, we consider the learning task in
Minesweeper to be the induction of rules to identify all
the safe squares1 and squares with a mine which can be
deduced given a board state. For instance, we want the sys-
tem to learn rules to classify all the blank tiles in Fig. 1
either assafeor mine.

3 The Learning Tools
In machine learning it is possible to choose between a
propositional representation (in the form of attribute-value
tuples) and a multirelational representation (in the form
of logic predicates). A multirelational representation has
the expressiveness required to describe the concepts in-
volved when reasoning about Minesweeper, and is thus
more intuitive than the propositional one. For this rea-
son we use multirelational learning for the learning task
described above. Usually a multirelational learning sys-
tem takes as input background knowledgeB, positive (E+)
and negative (E−) examples of a target concept such that
E = E+∪E− andE+∩E− = ∅, and has to find a clausal
theory T which minimizes the classification error on fu-
ture instances. Next we describe the background knowl-
edge and the system used.

1A safe square is a blank tile which given the current board
state cannot contain a mine.

Figure 2: The position of the last mine cannot be deter-
mined

Search for a clause C in the
hypothesis space H using e
to guide the search.

Add C to the theory T

E+ is empty?

T

E+B

Select an example e in E+

Remove examples in E+
covered by C.

No

Yes

E−

Figure 3: Example-driven covering algorithm

3.1 Background Knowledge
The background knowledge provides the system with infor-
mation about the domain and is given in the form of logic
predicates (facts and rules, or clauses). A predicate is de-
scribed asname(arg1, . . . , argn) and, in our case,argi

indicates the argument’s type. The background knowl-
edge provided to the learning system about Minesweeper
is shown in Table 1. The predicates in the background
knowledge were defined by trying to abstract the concepts
used by humans when explaining their own Minesweeper
playing strategies. These concepts were obtained from the
first author’s Minesweeper playing experience and from
Minesweeper pages on the web.

In the predicates listed in Table 1, aTD is a determined
or uncovered tile, i.e., a number0 . . . 8 is shown on the
tile; a TU is an undetermined or blank tile;Board is the
board state given as a list ofp × q characters0 . . . 8,m, u;
Zone is a list of determined tiles, andSet is a set of un-
determined tiles together with the number of mines hidden
among those tiles. In addition, each symbol preceding an
argument denotes how that argument should be instantiated
when calling the predicate. A+argi is an input argument
and should be instantiated to a non-variable term; a−argi

is an output argument and should be uninstantiated, and a
#arg indicates that the constant value of an output argu-
ment can appear in a rule.

3.2 The System
Mio is an example-driven covering system (see Fig. 3) in-
troduced by Pẽna Castillo and Wrobel[2002b] which uses
a Progol-like declaration language and, the same as Pro-
gol [Muggleton, 1995], lower bounds the search space with
amost specific clause⊥ (also called bottom clause). This⊥

Predicate Description
zoneOfInterest(+TU, +Board, -Zone) returns in Zone the tiles which are determined neighbours of TU and

the determined tiles which share an undetermined neighbour with them
(see Fig. 4 center).

totalMinesLeft(+Board,-Int) returns how many mines remained to be marked.
allMinesInFringe(+Board, -Set) gives the set of tiles in the fringe3 where all the remaining mines are.
setHasXMines(-TD, +Board, +Zone, -Set)gives in Set the undetermined neighbours of TD (TD is in Zone),

and the number of mines hidden among them (see Fig. 4 right).
diffSetHasXMines(+Set1, +Set2, -Set). . . returns in Set all and only the tiles of Set1 which are not also in Set2

and the number of mines hidden among the tiles in Set.
inSet(+TU, +Set) . is true when TU is a member of Set.
lengthSet(+Set,+Int) . is true when Set contains Int tiles.
minesInSet(+Set,-#Int). returns the number of mines hidden among the tiles in Set.

Table 1: Minesweeper background knowledge

is a maximally specific clause which entails (covers) a pos-
itive examplee. Mio performs a general-to-specific (top-
down) IDA* [Korf, 1985] search to find a clause to add to
the theory. In addition, Mio selects stochastically the ex-
amples from which it learns, performs parallel search to
increase the stability of the example-driven approach, and
enforces type strictness. Three other techniques are imple-
mented in Mio to allow the learning of Minesweeper rules:
macro-operators (or macros, for short) to reduce the search
space, greedy search with macros to speed up the learning
process, and active learning to guide the exploration of the
instance space.

Macros

Macros in multirelational learning[Pẽna Castillo and Wro-
bel, 2002a] are a formal technique to reduce the hypothesis
space explored by a covering system. A macro is a se-
quence of literals, chosen from the bottom clause, which is
created based on provider-consumer relationships between
the literals. A literal is a provider if it has output arguments,
and it is a consumer if it receives as an input argument a
variable provided by another literal in the bottom clause.
Pẽna and Wrobel show that by adding macros instead of
literals to a clause, the number of clauses evaluated by the
system is significantly reduced.

Greedy Search with Macros

In [Pẽna Castillo and Wrobel, 2002a] macros are used with
IDA*. It is well known that greedy search explores on av-
erage less nodes than IDA*; however, greedy search could
miss a solution because it underestimates the importance
of provider literals without discriminative power which are
nonetheless necessary to introduce new variables (this is
known as the myopia problem). Since macros add several
literals at once to a clause, they might reduce the myopia
of greedy search allowing us to gain in efficiency without
losing too much in effectiveness. We implement a greedy
search with macros which consists of a lookahead step
where all the macros are combined with each other and the
best evaluated clauses are selected. Then if the selected
clauses can be extended (refined) the system tries to com-
bine these clauses with all the macros available and selects
the best candidates. This last step is repeated until there is
no clause which can be extended and the best candidates
are returned.

3Fringe refers to all the blank tiles with a determined neigh-
bour.

Active Inductive Learning
In the covering algorithm a clause is learned which covers
(explains) some positive examples and none (or few) nega-
tive ones; however, in domains such as games and puzzles,
thousands of examples are required to contain most of the
possible game situations; on the other hand, considering
thousands of examples when evaluating a rule slows down
the learning process. Thus, to improve the efficiency of the
exploration of the instance space, active learning[Cohnet
al., 1994] is included in Mio.

Active inductive learning consists of the following steps.
At the beginning, Mio learns from few randomly drawn ex-
amples and when it has learned some clauses gives these
clauses to an active learning server. The active learning
server returns to Miocounterexamples4. These counterex-
amples are selected from examples given by a random ex-
ample generator (or random sampler). While Mio iterates
on the new examples received, the server tests the rules ob-
tained against randomly drawn examples, discards all the
rules below a user-defined accuracy value and collects new
counterexamples. This validation step on the server side
avoids overfitting5. These steps are repeated until a user-
defined maximum number of iterations is reached or no
counterexample is found.

Active inductive learning is similar in spirit to integra-
tive windowing [Fürnkranz, 1998] with two main differ-
ences: in our approach random sampling is done dynami-
cally and a client-server architecture is used which allows
to treat testing and learning as separated processes.

4 Empirical Results
4.1 Improvements Obtained with each

Technique
Experiments were carried out to determine the effects on
the rules obtained and on the system efficiency, of macros,
greedy search with macros, and active inductive learning.
To produce the training examples, we randomly generate
board configurations and take all blank tiles with at least
one determined neighbour as examples. If the blank tile
does not contain a mine is labeled as safe, otherwise it is
labeled as mine. Afterwards, contradictory examples are
removed. In the experiments, the learning task was to learn

4A counterexample is a positive example not covered by a set
of clausesT or a negative example covered by at least one clause
in T .

5Overfitting refers to obtaining results with high classification
error over new data despite null or almost null training error.

safe?

ZoneOfInterest

41

34 35

set([34,35],1)

set([34,35,41],2)set([40,41],1)

40

safe!

Figure 4: A rule learned by Mio. Left: Is the highlighted tile safe? Center: zoneOfInterest corresponding to the highlighted
tile. Right: Applying difference operations to the sets determined by the tiles inside a circle is concluded that the tile 40 is
safe

rules to identify safe tiles. The rule to discover mines was
learned using the best setting (i.e., using active learning,
macros and greedy search).

For the completeness of this work, we ran Progol[Mug-
gleton and Firth, 2001] and Foil [Quinlan and Cameron-
Jones, 1995] on the same learning task as Mio; however,
we failed to make the systems learn correct rules about safe
tiles. Progol search was interrupted due to search limits
implemented in the system (although the maximum stack
depth and resolutions steps were set to 50000 and 10000,
respectively), and Foil pruned determined literals which are
needed. This might imply that the optimizations included
in Mio are indeed necessary to learn a Minesweeper play-
ing strategy. Table 2 shows the empirical results with four
Mio settings.

All the experiments with active learning were performed
with the same seeds which means that the same training
examples are generated by the random sampler and that
Mio selects the same examples to guide the search. For
the experiments without active learning, we took five ran-
dom samples from the set of examples used in the active
learning experiments. The size of the sample is equal to
the number of examples received by Mio when perform-
ing active learning (40 positive and 34 negative examples).
We carried out an extra experiment where Mio was given
the complete set of examples (2890 positive and 1306 neg-
ative) used by the active learning server to test Mio’s rules
and select counterexamples; however, this experiment was
stopped after Mio ran for 10 days. To reduce the running
time of the experiments, we set the maximum number of
clauses explored per search to 4000 clauses.

Table 2 shows that each optimization added to Mio re-
duces the average number of rules (nodes) explored per
search and the number of times the search is interrupted
because of the search limit. Without active learning, over-
fitting occurs and erroneous rules are obtained. The per-
formance of the rules obtained with IDA*+M is worse than
that of the IDA* rules because Mio with macros explores a
larger part of the hypothesis space and thus the IDA* + M
setting overfits more the training data. However, if no limit
in the maximum number of clauses explored per search
is set, both settings (IDA* and IDA*+M) obtain the same
rules. The running time of the fastest setting (AL+GS+M)
is 56hrs.

4.2 Rules Learned

Table 3 shows the rules with the highest winning rate
which were obtained by using both AL+GS+M and
AL+IDA*+M. An extra rule was obtained with the latter

setting; however, this extra rule does not improve the play-
ing performance. One important feature of the rules learned
by Mio is that they can be applied independently of the size
of the board and the number of mines. The rules vary in
complexity. Rule S-1 and Rule M-1 correspond to the triv-
ial situations where a determined tile needsk mines and
k mines are already marked, and where a determined tile
needsk mines and it hask blank neighbours, respectively.

On the other hand, Rule S-3 can be seen as one of the
most complex rules because it involves three determined
tiles to deduce a safe tile. Fig. 4 left shows a board state
where Rule S-3 is the only one which allows to identify a
safe tile. The rule obtains the zoneOfInterest corresponding
to the undetermined tile considered (Fig. 4 center). Then by
applying difference operations on the sets determined by
three uncovered tiles from the zoneOfInterest (see Fig. 4
right), the set([40], 0) is obtained and thus it is deduced
that tile 40 is safe.

4.3 Game Playing

To evaluate the performance at game playing of each set
of rules obtained, we used each set of rules as the play-
ing strategy of an automatic Minesweeper player and cal-
culated the percentage of games won by the player in 1000
random games (see Table 2). The playing conditions were
the same as the ones presented to the human players; i.e., at
the beginning the player is presented with an empty8 × 8
board withM = 10 mines and can uncover a mine in the
first move. Note that in most Minesweeper implementa-
tions, one never hits a mine in the first move.

Let us analyze the performance of the best rule set (see
Table 3). In 1000 games, the player made 15481 moves
from which 2762 where random guesses, 169 used Rule S-
1, 10285 used Rule S-2, 54 used Rule S-3, and 2211 used
Rule M-1.

In addition, we examined the effect of adding probabilis-
tic reasoning. In the experiment, we instructed the player
using the rules shown in Table 3 to select a tile which min-
imizes the probabilityP (Tu) that an undetermined tileTu

is a mine when none of the rules can be applied.P (Tu) is
equal tomaxTd

(fm(Td)
fn(Td)) whereTd is a determined neigh-

bour of Tu, fm(Td) returns the number of mines needed
by Td andfn(Td) returns the number of blank neighbours
of Td. Every time the player has to guess, it selects the
tile which minimizesP (Tu). This player wins 579 of 1000
random games.

Mio
IDA* IDA*+M AL+IDA*+M AL+GS+M

Ave. No. clauses explored per search 3135 1462 1008 566
% of searches which reached 4000-clause limit 70% 23% 4% 3%
Ave. No. of rules obtained 2.8 4 4 3
Ave. % of games won with rules 42.6% 34.0% 52.4 % 52.0%

Table 2: Performance of various Mio settings used to learn rules about safe tiles (AL = Active Learning, GS = Greedy
Search, IDA* = Iterative Deepening A*, M = Macros)

Rules about Safe Tiles

%% RULE S-1 %%
safe(TILEUK,BOARD):-

zoneOfInterest(TILEUK,BOARD,ZONE), setHasXMines(TILEK,BOARD,ZONE,SET),
inSet(TILEUK,SET), minesInSet(SET,0).

%% RULE S-2 %%
safe(TILEUK,BOARD):-

zoneOfInterest(TILEUK,BOARD,ZONE), setHasXMines(TILEK0,BOARD,ZONE,SET0),
setHasXMines(TILEK1,BOARD,ZONE,SET1), diffSetHasXMines(SET1,SET0,SET3),
inSet(TILEUK,SET3), minesInSet(SET3,0).

%% RULE S-3 %%
safe(TILEUK,BOARD):-

zoneOfInterest(TILEUK,BOARD,ZONE), setHasXMines(TILEK0,BOARD,ZONE,SET0),
setHasXMines(TILEK1,BOARD,ZONE,SET1), setHasXMines(TILEK2,BOARD,ZONE,SET2),
diffSetHasXMines(SET1,SET0,SET3), diffSetHasXMines(SET2,SET3,SET4),
inSet(TILEUK,SET4), minesInSet(SET4,0).

Rules about Mines

%% RULE M-1 %%
mine(TILEUK,BOARD):-

zoneOfInterest(TILEUK,BOARD,ZONE), setHasXMines(TILEK,BOARD,ZONE,SET),
inSet(TILEUK,SET), minesInSet(SET,INT), lengthSet(SET,INT).

Table 3: Minesweeper rules learned by Mio

5 Related Work

5.1 Minesweeper Playing Programs

There are several Minesweeper programs available on the
web. These programs are not learning programs but play-
ing programs where the authors have embedded their own
game playing strategy. Among these programs, John D.
Ramsdell’s PGMS is quite successful winning 60% of
10000 random games in a8× 8 board with 10 mines.

PGMS plays using theEquation Strategybased on find-
ing approximate solutions to derived integer linear equa-
tions, and probabilities. As mentioned by Ramsdell[2002],
PGMS represents the information available on the board as
a set of integer linear equations. Associated with an un-
determined tile is a variablex that has the value1 if the
tile hides a mine, or0 otherwise. An equation is generated
for each uncovered tile with an adjacent undetermined tile.
Each equation has the formc =

∑
i∈S xi, whereS is a set

of undetermined tiles, andc is the number of mines hid-
den amongS. To simplify notation, this equation is written
asc

.= S. Since the total number of hidden mines is known,
an additional equation simply equates this number with the
sum of all of the undetermined tiles.

Every time a tilet is determined safe or a mine, the board
changes are propagated to all the equations containingt
and a new equation for the undetermined neighbours oft
is added. In addition, ifc0

.= S0 and c1
.= S1 are two

equations such thatS0 is a proper subset ofS1, the equation
c1 − c0

.= S1 \ S0 is added. To determine whether a tile

is safe or a mine, PGMS iteratively applies the following
rules until none are applicable7:

• If 0 .= S, all tiles inS are safe.

• If c
.= S andc = |S|, all tiles inS are a mine.

• Let c0
.= S0 andc1

.= S1 be two equations andtu be
an undetermined tile such thatc0 < c1, andtu ∈ S0

andtu ∈ S1. If c1 − c0 = |S1 \ S0|, all the tiles in
S1 \ S0 are a mine and all the tiles inS0 \ S1 are safe.

PGMS must guess when presented with a board to which
none of the rules apply. For each tilet it computes the
valueP (t) as follows. Given an equationc

.= S, define
its single equation probability to bec/|S|. P (t) is equal
to maxt∈S(c/|S|). PGMS picks the tilet that minimizes
P (t). A random choice is made when there is more than
one tile that minimizesP (t).

We were surprised to notice that although Mio was only
given general background knowledge about Minesweeper,
the rules it learned are similar to the rules programmed in
PGMS. For example, Mio’s Rule S-1 and Rule S-2 corre-
spond to the first and third rule in PGMS, respectively; and
Mio’s Rule M-1 is similar to PGMS second rule. To com-
pare PGMS performance with the performance of Mio’s
best playing strategy, we let our best player (i.e., the player
using the rules in Table 3 and probabilities) play 10000 ran-
dom games in a8×8 board with 10 mines. Its winning rate

7In these rules|S| is the cardinality ofS andS0 \ S1 is the
difference betweenS0 andS1.

is also 60%.

5.2 Multirelational Learning for Games
Other work has been done which applies ILP systems to
learn heuristics or playing strategies for games. Ramon
et al. [2001] used Tilde[Blockeel and Raedt, 1998] to
learn a theory that predicts the value of a move in Go.
Morales[1996] applied the system PAL to learn chess pat-
terns for constructing chess playing strategies. Nakano et
al. [1998] presented an approach to generate an evaluation
function for Shogi mating problems using ILP.

6 Conclusions and Future Work
In this paper we described how the use of new ILP tech-
niques such as macros, greedy search with macros, and ac-
tive inductive learning allow Mio to learn a Minesweeper
playing strategy. This learning task proved itself to be
a challenging testbed for general purpose multirelational
learning systems.

The best rules obtained by Mio win 52% of the games in
a8×8 board with 10 mines, while on average a non-expert
human player wins 35% of the games. The performance of
the playing program using these rules as playing strategy
improves to 60% when adding the use of probabilities.

By examining the games played using Mio’s rules, we
notice that there are still situations where the player guesses
without need (i.e., a sure move can be deduced). As future
work, we want to use other ILP systems (e.g., Tilde), and
other machine learning approaches to learn Minesweeper
playing strategies and compare their performance.

Acknowledgments
We thank all the persons who participated as guinea pigs
playing Minesweeper, the anonymous reviewers for their
comments, and Oscar Meruvia for proofreading. The sec-
ond author was partially supported by DFG (German Sci-
ence Foundation), projects WR40/1-3 and WR40/2-1.

References
[Blockeel and Raedt, 1998] Hendrik Blockeel and Luc De

Raedt. Top-down induction of first order logical de-
cision trees. Artificial Intelligence, 101(1-2):285–297,
June 1998.

[Buro, 2002] Michael Buro. Improving heuristic mini-
max search by supervised learning.Artificial Intelli-
gence, 134(1–2):85–99, 2002.

[Cohnet al., 1994] David Cohn, Les Atlas, and Richard
Ladner. Improving generalization with active learning.
Machine Learning, 15(2):201–221, 1994.

[Fürnkranz, 1998] Johannes F̈urnkranz. Integrative win-
dowing. Journal of Artificial Intelligence Research,
8:129–164, 1998.

[Kaye, 2000] Richard Kaye. Minesweeper is NP-
complete.The Mathematical Intelligencer, 22(2):9–15,
Spring 2000.

[Korf, 1985] Richard E. Korf. Iterative-deepening A*: An
optimal admissible tree search. InProc. of the 9th IJCAI,
pages 1034–1036, 1985.

[Morales, 1996] Eduardo Morales. Learning playing
strategies in chess. Computational Intelligence,
12(1):65–87, 1996.

[Muggleton and Firth, 2001] Stephen Muggleton and John
Firth. Relational rule induction with CProgol4.4: a tu-
torial introduction. In S. Ďzeroski and N. Lavrǎc, edi-
tors,Relational Data Mining, pages 160–187. Springer-
Verlag, 2001.

[Muggleton, 1995] Stephen Muggleton. Inverse entail-
ment and Progol.New Generation Computing, 13:245–
286, 1995.

[Nakanoet al., 1998] Tomofumi Nakano, Nobuhiro In-
uzuka, Hirohisa Seki, and Hidenori Itoh. Inducing
Shogi heuristics using inductive logic programming. In
D. Page, editor,Proc. of the 8th Int. Conf. on ILP, pages
155–164, 1998.

[Pẽna Castillo and Wrobel, 2002a] Lourdes Pẽna Castillo
and Stefan Wrobel. Macro-operators in multirelational
learning: a search-space reduction technique. In T. Elo-
maa, H. Mannila, and H. T. T. Toivonen, editors,Proc. of
ECML’2002, volume 2430 ofLecture Notes in AI, pages
357– 368, 2002.

[Pẽna Castillo and Wrobel, 2002b] Lourdes Pẽna Castillo
and Stefan Wrobel. On the stability of example-driven
learning systems: a case study in multirelational learn-
ing. In C. A. Coello Coello, A. de Albornoz, E. Su-
car, and O. Cairo, editors,Proc. of MICAI’2002, volume
2313 ofLecture Notes in AI, pages 321–330, 2002.

[Quinlan and Cameron-Jones, 1995] J. Ross Quinlan and
R. Michael Cameron-Jones. Induction of logic pro-
grams: FOIL and related systems.New Generation
Computing, 13(3-4):287–312, 1995.

[Ramonet al., 2001] Jan Ramon, Tom Francis, and Hen-
drik Blockeel. Learning a tsume-go heuristic with
TILDE. In T. A. Marsland and I. Frank, editors,Proc. of
the 2nd Int. Conf. Computers and Games, volume 2063
of Lecture Notes in AI, pages 151–169, 2001.

[Ramsdell, 2002] John D. Ramsdell, November 25, 2002.
Personal communication.

[Tesauro, 1995] Gerald Tesauro. Temporal–difference
learning and td–gammon.Communications of the ACM,
38(3):58–68, 1995.

