
Effective Rule Induction from Molecular Structures Represented by
Labeled Graphs ∗

Susanne Hoche1†, Tamás Horváth2,1‡ and Stefan Wrobel1,2

1Fraunhofer Institute for Autonomous intelligent Systems
2Institute of Computer Science III, University of Bonn

{hoche,horvath,wrobel}@ais.fraunhofer.de

Abstract

Acyclic conjunctive queries form a polyno-
mially evaluable fragment of definite non-
recursive first-order Horn clauses. Labeled
graphs, a special class of relational struc-
tures, provide a natural way for represent-
ing chemical compounds. We propose an al-
gorithm specific to learning acyclic conjunc-
tive queries predicting certain properties of
molecules represented by labeled graphs. To
compensate for the reduced expressive power
of the hypothesis language and thus the po-
tential decrease in classification accuracy, we
combine acyclic conjunctive queries with con-
strained confidence-rated boosting. Prelimi-
nary experimental results indicate the poten-
tial of the method for problems involving la-
beled graphs.

1 Introduction

Machine Learning is traditionally concerned with the
problem of approximating an unknown target func-
tion f : X → Y , where the domain or instance space
X is the Cartesian product of a fixed set of attributes.
Attributes are usually unordered or linearly ordered
sets. Despite the number of successful real-world ap-
plications using attribute-value representation of the
instances, the need of applying other representation
languages in machine learning has long been recog-
nized. One obvious argument has been the problem
that attribute-value representation is not appropriate
for describing learning tasks involving instances with
complex structures. Multi-relational learning, also re-
ferred to as Inductive Logic Programming (ILP) [22;
30], is one of the most successful directions among the
approaches of considering more expressive representa-
tion languages in learning.

In ILP, various classes of first-order languages are
used to describe the input (i.e., examples and back-

∗This paper appeared in: L. De Raedt and T. Washio
(Eds.), Proceedings of the First International Workshop
on Mining Graphs, Trees and Sequences (MGTS-2003),
Cavtat-Dubrovnik, Croatia, 2003

†Partially supported by the DFG project (WR 40/1-3)
Nachhaltige Informationsfusion: Aktives Lernen

‡Partially supported by the DFG project (WR 40/2-1)
Hybride Methoden und Systemarchitekturen für heterogene
Informationsräume

ground knowledge) and output (i.e., hypotheses) com-
ponents of the learning algorithms. First-order lan-
guages, on the one hand, provide a natural way for
describing learning problems over structurally com-
plex instance spaces. In addition, hypotheses in this
language are relatively easy to understand for users.
On the other hand, however, serious decidability and
complexity problems may arise from their use during
the learning process. As an example, the member-
ship problem, i.e., the problem of deciding whether
an instance belongs to the concept represented by an
hypothesis, becomes undecidable in first-order logic.
To control such problems, different techniques (e.g.,
hypothesis language and search biases) have been pro-
posed in ILP.1

Labeled graphs are one of the most important tools
describing objects and the way they are connected.
They are relational structures defined usually over vo-
cabularies consisting of a single binary and a finite
set of unary predicate symbols. They provide, in par-
ticular, a natural way for representing chemical com-
pounds. Although ILP is concerned with learning from
relational structures, and many ILP applications have
been devoted to computational chemistry, surprisingly
there are only few results (see, e.g., [12]) in the direc-
tion of restricting instances to labeled graphs. Such a
structural assumption could then be exploited in the
learning process to control decidability and complexity
problems mentioned above.

In this work, we propose a boosted algorithm de-
signed to learn acyclic conjunctive queries predicting
unknown properties of chemical compounds. Our al-
gorithm assumes that compounds are represented by
relational structures corresponding to labeled graphs.
We consider learning problems of the following form:
Given disjoint sets E+ and E− of labeled graphs rep-
resenting chemical compounds, find a set of definite
first-order Horn clauses consistent (within some error)
with E+ and E−. Since examples are disjoint labeled
graphs, we use the learning from interpretations ILP
setting [7] as the most plausible model for our pur-
pose. In the algorithm presented, we apply top-down
induction, a popular technique based on refinement
operators [23] for first-order clauses. In our approach,
refinement operators are defined by building blocks.

1We note that limitations regarding expressive power
are not resolved completely by first-order logic, as first-
order sentences are only able to capture local properties of
structures (see, e.g., [8]).

In this work, we assume that such building blocks are
provided by an expert. We are working on automatic
extraction of building blocks for labeled graphs. We
will discuss this problem later on.

In computational chemistry, pattern matching is
usually defined by subgraph isomorphism. Since sub-
graph isomorphism generalizes the Hamiltonian path
problem, it is NP-complete. In planar graphs, how-
ever, it can be solved in linear time for any pattern of
constant size [9]. The importance of this result is that
many molecules can be represented by planar graphs.
In contrast to this approach, we define pattern match-
ing by first-order logical implication, which in turn is
equivalent to homomorphism [20] between relational
structures in the problem setting considered. Since
isomorphisms are special homomorphisms, we thus ap-
ply a more general operator in pattern matching. This
may be important e.g. in those applications, where the
length of paths connecting substructures is not rele-
vant. Homomorphism between finite relational struc-
tures generalizes the graph vertex k-coloring problem,
and is thus NP-hard. It becomes, however, polyno-
mial for patterns of small tree-width [26]. Intuitively,
tree-width measures the degree of cyclicity of struc-
tures. In this paper, we restrict the search space to
patterns of tree-width one, also referred to as acyclic
patterns. We note that homomorphism for this frag-
ment is LOGCFL-complete [14] and is therefore highly
parallelizable.

In [17], we have presented a greedy algorithm for
learning acyclic patterns. By this restriction, how-
ever, we reduce the expressive power of the hypoth-
esis language. To compensate for the reduced expres-
siveness and thus the decrease in classification accu-
racy potentially resulting from it, in the proposed al-
gorithm we combine acyclic patterns with confidence-
rated boosting [27]. Ensemble methods, in particu-
lar boosting, are successful tools for increasing the
prediction accuracy of classification learners by com-
bining a set of only moderately accurate base hy-
potheses into one highly accurate strong hypothesis.
Boosting works by repeatedly calling a base learner on
reweighted versions of the training data, and thereby
constructing an ensemble of specialized rules, or base
hypotheses, which are finally combined into one pre-
diction by weighted majority vote. In the framework
of confidence-rated boosting, each base hypothesis not
only predicts a classification but also generates a con-
fidence score for this prediction.

The rest of the paper is organized as follows. In
Section 2, we first review the necessary notions and re-
sults related to acyclic conjunctive queries. Section 3 is
devoted to constrained confidence-rated boosting. In
Section 4, we present our algorithm, and in Section 5,
we empirically evaluate it on the domain of mutagenic-
ity [19]. Finally, in Section 6 we conclude and discuss
directions for future works.

2 Acyclic Conjunctive Queries

In this work, we restrict the hypothesis space to acyclic
conjunctive queries, a practically relevant, efficiently
evaluable fragment of first-order definite Horn-clauses.
As an advantage over other ILP approaches using stan-
dard PROLOG evaluation techniques, we note that
acyclic conjunctive queries allow evaluation of a set

of instances in one single step. In this section we re-
peat the necessary notions related to acyclic conjunc-
tive queries from our previous work [17]. In the Ap-
pendix, we give further details on acyclic conjunctive
queries. For a detailed introduction to acyclic conjunc-
tive queries the reader is referred to e.g. [1].

Throughout this section, we consider vocabular-
ies consisting of a set of constant symbols, a dis-
tinguished predicate symbol called the target predi-
cate, and a set of predicates called the background
predicates. Thus, (non-constant) function symbols
are not included in the vocabulary. Examples are
ground atoms of the target predicate, and the back-
ground knowledge is an extensional database consist-
ing of ground atoms of the background predicates.
Furthermore, we assume that hypotheses are definite
non-recursive first-order clauses, or in the terminology
of relational database theory, conjunctive queries of
the form L0 ← L1, . . . , Ll, where L0 is a target atom,
and Li is a background atom for i = 1, . . . , l.

In order to define a special class of conjunctive
queries, called acyclic conjunctive queries, we first
need the notion of acyclic hypergraphs. A hyper-
graph (or set-system) H = (V, E) consists of a finite
set V called vertices, and a family E of subsets of V
called hyperedges. A hypergraph is α-acyclic [10], or
simply acyclic, if one can remove all of its vertices
and edges by deleting repeatedly either a hyperedge
that is empty or is contained by another hyperedge,
or a vertex contained by at most one hyperedge [15;
31]. Note that acyclicity as defined here is not a hered-
itary property, in contrast to e.g. the standard no-
tion of acyclicity in ordinary undirected graphs, as it
may happen that an acyclic hypergraph has a cyclic
subhypergraph. For example, consider the hyper-
graph H = ({a, b, c}, {e1, e2, e3, e4}) with e1 = {a, b},
e2 = {b, c}, e3 = {a, c}, and e4 = {a, b, c}. This is
an acyclic hypergraph, as one can remove step by step
first the hyperedges e1, e2, e3 (as they are subsets of
e4), then the three vertices, and finally, the empty
hypergraph is obtained by removing the empty hy-
peredge that remained from e4. On the other hand,
the hypergraph H ′ = ({a, b, c}, {e1, e2, e3}), which is
a subhypergraph of H , is cyclic, as there is no vertex
or edge that could be deleted by the above definition.
In [10], other degrees of acyclicity are also considered,
and it is shown that among them, α-acyclic hyper-
graphs form the largest class properly containing the
other classes.

Using the above notion of acyclicity, now we are
ready to define the class of acyclic conjunctive queries.
Let Q be a conjunctive query and L be a literal of
Q. We denote by Var(Q) (resp. Var(L)) the set
of variables occurring in Q (resp. L). We say that
Q is acyclic if the hypergraph H(Q) = (V, E) with
V = Var(Q) and E = {Var(L) : L is a literal in Q} is
acyclic. For instance, from the conjunctive queries

P (X, Y, X) ← R(X, Y), R(Y, Z), R(Z, X)
P (X, Y, Z) ← R(X, Y), R(Y, Z), R(Z, X)

the first one is cyclic, while the second one is acyclic.

3 Constrained Confidence-Rated
Boosting

Boosting has established itself as a successful method
for improving the classification accuracy of a learn-
ing system by combining the predictions of several
base classifiers learned in iterative calls to the un-
derlying learner. Numerous algorithms have emerged
which demonstrate superior performance on a broad
range of application problems (see, e.g., [11; 25; 5; 24;
16]).

The idea common to all boosting algorithms is to
“boost” a weak learner performing only slightly bet-
ter than random guessing into an arbitrarily accurate
learner by repeatedly calling it on reweighted versions
of the training data, and thereby constructing an en-
semble of specialized rules, or base hypotheses. Predic-
tions are based on all members of the learned ensemble
by combining the individual predictions by weighted
majority vote into one strong hypothesis.

The reweighted versions of the training set E =
E+∪E− on which the base learner is repeatedly called
are obtained by maintaining a probability distribution
Dt over E modeling the weight Dt

i associated with
each training example ei in the t-th iteration of boost-
ing. Dt

i indicates the influence of an instance ei when
learning a base classifier Ct. Initially, the influence of
all the instances is identical, i.e., the probability dis-
tribution D1 is uniform. In each iterative call t of the
base learner, a base hypothesis Ct with an associated
weight c̃t is learned based on E weighted according to
the current distribution Dt.

In the framework of confidence-rated boosting, the
prediction of a base hypothesis Ct is confidence-rated.
The sign of c̃t indicates the label predicted by Ct to
be assigned to an instance, whereas the absolute value
of c̃t is interpreted as Ct’s prediction confidence, or
the reliability of Ct’s prediction. A base hypothesis’
prediction confidence is, on the one hand, used as its
vote in the final, strong, hypothesis H , and, on the
other hand, to update the distribution Dt for the next
iteration of the base learner. The distribution is mod-
ified such that the weights of misclassified instances
are increased while the weights of correctly classified
instances are decreased. This way, the learner has to
focus on those examples which are not correctly clas-
sified by the current ensemble.

Depending on the exact framework, a base hypoth-
esis can apply distinct prediction confidences to differ-
ent examples. Here, we employ a form of confidence-
rated boosting in which a base hypothesis is restricted
to make a prediction only for those examples which are
covered by it, and to abstain otherwise. We further-
more restrict, following Cohen and Singer’s approach
to constrained confidence-rated boosting [5], the base
hypotheses to either of two forms. A hypothesis ei-
ther predicts, in the binary case we deal with here, the
positive class with a positive prediction confidence, or
it is the default hypothesis, just comprising the target
predicate to be learned and satisfying all examples,
with an assigned negative confidence.

We note that hypotheses obtained by boosting algo-
rithms are potentially more complex than those gen-
erated by standard ILP learning systems. However,
constraining the base hypotheses to either of the above
two forms improves comprehensibility of strong hy-

potheses.
As suggested by [5], we aim at minimizing the en-

semble’s training error by searching in each round of
boosting for a base hypothesis maximizing the objec-
tive function Z̃ which is, for a base hypothesis Ct,
defined based on the collective weight of all positive
and negative instances covered by Ct (in what follows,
x ∈ C denotes that instance x is covered by hypothesis
C):

Z̃(Ct) =
√ ∑

xi∈E+,xi∈Ct

Dt
i −

√ ∑
xi∈E−,xi∈Ct

Dt
i . (1)

After the last iteration of the base learner, the strong
hypothesis H is formed on the basis of all hypotheses
Ct learned over the course of iterations, and their as-
signed prediction confidences c̃t defined by

c̃t =
1
2

ln

(∑
xi∈E+,xi∈Ct

Dt
i + 1

2m∑
xi∈E−,xi∈Ct

Dt
i + 1

2m

)
, (2)

where m = |E| (see also [5]). To classify an instance
x, the prediction confidences of all base hypotheses
covering x are summed up. If this sum is positive, the
strong hypothesis classifies x as positive, otherwise x
is classified as negative:

H(x) = sign

(∑
ht

ht(x)

)
, (3)

where ht : X → � is defined by

ht(x) =
{

c̃t if x ∈ Ct

0 otherwise .
(4)

4 Boosting Acyclic Conjunctive
Queries

In this section, we present an algorithm designed to
learn acyclic conjunctive queries predicting unknown
properties of chemical compounds. Our algorithm as-
sumes that compounds are represented by relational
structures corresponding to labeled graphs. More pre-
cisely, we assume without loss of generality that the
vocabulary consists of a target predicate P of arity
mP , and predicates A and B of arities mA and mB,
respectively. For each compound, we have a ground
target atom of the form P (a1, . . . , amP), where a1 is
the identifier of the compound, and a2, . . . , amP are at-
tribute values for the whole compound (e.g., ε-lumo).
Each (chemical) atom is described by a fact of the form
A(b1, . . . , bmA), where b1 is the identifier of the com-
pound containing the atom, b2 is the atom’s identifier,
and b3, . . . , bmA are attribute values for the atom. Fi-
nally, each bond is represented by a ground atom of the
form B(c1, . . . , cmB), where c1 is the compound iden-
tifier, c2, c3 are the identifiers of the atoms connected
by the bond, and c4, . . . , cmB are attribute values for
the bond. Thus, the ground A and B atoms repre-
sent the (labeled) vertices and (labeled) edges of the
labeled graphs. We note that our approach assumes
that molecules are represented in the learning from
interpretation setting [7].

The algorithm combining top-down induction
of acyclic conjunctive queries with constrained
confidence-rated boosting is given in Algorithm 1. In

Algorithm 1 BACQ

Require: set E of +/− labeled ground P -atoms and a labeled graph represented by ground A and B atoms
Ensure: a set of confidence-rated acyclic conjunctive queries

1: let Cdefault be the unit clause P (X1, . . . , XmP)←
2: let D(xi) = 1/m for i = 1, . . . , m // where m = |E|
3: for t = 1, . . . , T do
4: for k = 1, . . . , K do
5: Ck = Cdefault

6: while ∃C ∈ R(Ck, N) such that Z̃(C) > Z̃(Ck), // see (1) for the definition of Z̃
where R(Ck, N) is a set containing (at most)
N randomly selected acyclic refinements of Ck do

7: Ck = C
8: end while
9: end for

10: let Ct = Cj satisfying Z̃(Cj) = max
k=1,...,K

Z̃(Ck)

11: let Rt =

{
Ct if Z̃(Ct) > |Z̃(Cdefault)|
Cdefault otherwise

12: let Cov ⊆ E be the set of examples covered by Rt

// Cov is computed in a single step (see Algorithm Evaluate in the Appendix)
13: for i = 1, . . . , m do
14: if xi ∈ Cov then
15: let D(xi) = D(xi) · e−yi·c̃Rt

// where yi ∈ {+1,−1} according to the label of xi, and c̃Rt is defined in (2)
16: end if
17: end for
18: let D(xi) = D(xi)/Zt for i = 1, . . . , m, where Zt =

∑
i=1,...,m

D(xi)

19: end for
20: return {(R1, c̃R1), . . . , (RT , c̃RT)}

Steps 1 and 2 of the algorithm, we first initialize the
target clause and the distribution over the set of train-
ing examples. Then, we learn T weak hypotheses
(Steps 3–19 of the Algorithm), where T is a user de-
fined parameter.

To find a weak hypothesis, i.e., an acyclic conjunc-
tive query, we apply top-down induction using the fol-
lowing refinement operator. We first select at random
a literal with one of the predicate symbols P , A, or B
from the clause to be refined. Then, depending on its
predicate symbol, we add a set of literals to the clause
as follows. If the selected literal is a P -literal (i.e., it
is the head of the clause), with the same probability,
• either an atom or an acyclic building block (e.g.,

a benzene ring) is added to the clause,
• or one of the attributes of the P -atom is selected

at random, and the best specialization for this
attribute with respect to Z̃ defined in Eq. (1) is
computed.

If an A-atom (i.e., a labeled vertex in the graph) has
been selected, we add to the clause
• either literals representing a labeled edge ending

in this vertex,
• or an acyclic building block containing the se-

lected vertex,
• or constraints specializing one of the attributes of

the vertex in a similar fashion as described above.
Finally, for B-atoms, i.e., for labeled edges,
• we add either a set of literals defining an acyclic

building block,

• or compute the best value for one of its attributes.
We note that none of the above refinements violates
the acyclicity property. In particular, building blocks
are restricted to be acyclic, and thus, as they share
at most one edge with the labeled acyclic graph corre-
sponding to Ck in Step 6, adding such a building block
always results in an acyclic clause.

At the same time of adding a set of literals (i.e.,
atom, bond, or acyclic building block) to the clause,
for each attribute of the literals we compute the best
value with respect to Z̃ and specialize the attribute
with the value for which Z̃ is maximal. In contrast
to the greedy search used in [5], in Steps 5–8 of the
algorithm, we apply simple local search for finding an
acyclic conjunctive query. That is, we start the local
search with the default clause, and refine it as long as
its randomly selected refinement improves the quality
measured by Z̃. We repeat the random local search
algorithm K times (see Step 4 of the algorithm) and
select the acyclic conjunctive query of the best quality
(Step 10). In Steps 12–18, we then update the distri-
bution over the training set.

4.1 Building Blocks
In the work presented here, we assume that buildings
blocks are provided by an expert. However, we are
working on the automatic extraction of acyclic build-
ing blocks. Since structures are restricted to labeled
chemical graphs, we are going to consider only cycle
and tree patterns. To extract cycle patterns, we are
going to compute the set of cycles of length �, for every
� = 2, . . . , L. L is a user defined parameter bounding

Table 1: Accuracy ± standard deviation for the Mutagenicity domain for BACQ with different numbers of
iterations ranging from 50 to 400 (i.e., T in Algorithm 1), in comparison to other systems

ACQ C2RIB FOIL Fors G-Net Progol STILL
[17] [16] [19] [18] [2] [19] [28]
87.0 88.0 82.0 89.0 92.0 88.0 90.0
n/a ±3.4 ±3.0 ±6.0 ±8.0 ±2.0 ±5.0

BACQ BACQ BACQ BACQ BACQ BACQ BACQ BACQ
50 100 150 200 250 300 350 400

89.9 89.9 91.5 90.4 92.0 92.0 91.5 91.5
±4.6 ±4.6 ±3.8 ±4.9 ±3.8 ±3.8 ±3.8 ±4.5

the length of cycles. For a fixed �, this can be done by
evaluating first the acyclic conjunctive query

cycle(Y1, . . . , Y�) ← B(X, Y1, Y2, Z1,1, . . . , Z1,mB−3),
B(X, Y2, Y3, Z2,1, . . . , Z2,mB−3),

...
B(X, Y�, Y1, Z�,1, . . . , Z�,mB−3)

and then removing from the answer set the tuples
(a1, . . . , a�) satisfying ai = aj for some 1 ≤ i < j ≤ �.
By this step we filter those closed walks that are not
cycles. If the remaining set is nonempty then for
all possible subsets {V1, . . . , Vk} of the nominal at-
tributes of A and B, and for all possible combina-
tions {v1, . . . , vk} of the values of these attributes, we
can check in a similar way, whether there is a cycle of
length � such that Vi = vi in each atom and in each
bond in the cycle for every i = 1, . . . , k. This method
is exponential in the number of nominal attributes of
A and B. However, it is effective if the number of
nominal attributes is small. To extract tree patterns,
we are going to investigate the labeled graph obtained
by removing all edges occurring in a cycle.

5 Empirical Results on the Domain of
Mutagenicity

We evaluated our approach on the ILP-benchmark
problem of Mutagenicity [19]. The learning task is to
predict the mutagenicity of nitroaromatic compounds.
Mutagenic compounds are often known to be carcino-
genic and to cause damage to the DNA. Not all com-
pounds can be empirically tested for mutagenicity, and
the prediction of mutagenicity is vital to understand-
ing and predicting carcinogenesis.

Of the several relational descriptions that are avail-
able for the domain [29], we use the strongly struc-
tured description B4 which comprises a description of
the atoms of the molecules and the bonds between
these atoms; global properties of the molecule as e.g.
their hydrophobicity; chemical structures present in
the molecules as e.g. benzenic or methylic groups.

Here, we consider the subset of 188 so called
regression-friendly compounds 125 of which are clas-
sified as having positive levels of mutagenicity. The
predictive accuracy is estimated by 10-fold-cross-
validation, where we use the same folds as [29] for their
experiments with Progol. The accuracy and standard
deviation obtained in our experiments with BACQ is
displayed in Table 1 for various numbers of iterations

ranging from 50 to 400, together with reference results
on the same dataset using background knowledge B4,
and the sources from which these results are reported.
ACQ is an ILP learner based on acyclic conjunctive
queries which we previously introduced [17] and which
serves as a starting point for the work presented in this
paper.

The classification accuracy obtained after only
T=50 iterations with BACQ is lower than, however
in the range of the standard deviation of, the best
result reported so far for the Mutagenicity domain,
accomplished with the system G-Net [2]. The result
is also on par with the second best result reported
for the domain, achieved with the system STILL [28].
For increasing T=250, and T=300, respectively, the
classification accuracy is identical to the best one re-
ported for this domain, G-Net [2], however with only
half the standard deviation. Irrespective of the num-
ber of boosting iterations, our results with BACQ lie
well in the range of the standard deviations reported
for the learning systems most successful on the Muta-
genicity domain. The classification accuracy of ACQ
is significantly outperformed by any result of BACQ.

In our experiments, carbon 5 aromatic ring, car-
bon 6 ring, carbon 5 ring, hetero aromatic 6 ring,
hetero aromatic 5 ring, ring6, ring5 were used as cycle
building blocks, and nitro and methyl as tree build-
ing blocks (see also [19]). As an example, the acyclic
building block defining carbon 5 aromatic ring is

carbon 5 aromatic ring(X, Y1, . . . , Y5)←
atom(X, Y1, c, U1, V1),
...
atom(X, Y5, c, U5, V5),
bond(X, Y1, Y2, 7),
bond(X, Y2, Y3, 7),
...
bond(X, Y5, Y1, 7)

6 Conclusion

In this paper, we have presented an algorithm spe-
cific to learning acyclic conjunctive queries predicting
unknown properties of chemical compounds. Here,
chemical compounds have been represented by rela-
tional structures corresponding to labeled graphs. In
our work, building blocks have been used for top-down

induction of acyclic conjunctive queries. In the exper-
iments, we have assumed that such buildings blocks
were provided by an expert. Although this seems to
be a reasonable assumption when considering chemical
graphs, we are working on the automatic extraction of
cycle and tree patterns as building blocks.

In ILP, examples are usually evaluated one by one
(by some PROLOG system). One of the major ad-
vantages of our approach is that acyclic conjunctive
queries allow, in contrast to the standard ILP evalua-
tion approach, examples to be evaluated in one step.

Restricting the search space to acyclic patterns im-
plies, however, a reduced expressiveness and a poten-
tial decrease in classification accuracy. These short-
comings are counteracted by applying constrained
confidence-rated boosting. Our first experiments indi-
cate that combining acyclic conjunctive queries with
constrained confidence-rated boosting has indeed a
potential for real-world problems involving labeled
graphs. As future work, we are going to evaluate the
method on further such domains.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations

of Databases. Addison-Wesley, Reading, Mass.,
1995.

[2] C. Anglano, A. Giordana, G. Lo Bello, and L.
Saitta. An experimental evaluation of coevolutive
concept learning. Proc. of the 15th Int. Conf. on
Machine Learning, 1998.

[3] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis.
On the desirability of acyclic database schemes.
Journal of the ACM, 30(3):479–513, 1983.

[4] P. A. Bernstein and N. Goodman. The power of
natural semijoins. SIAM Journal on Computing,
10(4):751–771, 1981.

[5] W. Cohen and Y. Singer. A Simple, Fast, and Ef-
fective Rule Learner. Proc. of 16th National Con-
ference on Artificial Intelligence, 1999.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Cam-
bridge, Mass., 1990.

[7] L. De Raedt and S. Dzeroski. First-Order jk-
Clausal Theories are PAC-Learnable. Artificial
Intelligence, 70(1-2): 375-392, 1994.

[8] H.-D. Ebbinghaus and J. Flum. Finite Model
Theory Springer-Verlag,Berlin,1995.

[9] D. Eppstein. Subgraph isomorphism in planar
graphs and related problems. J. Graph Algo-
rithms & Applications, 3(3):1–27,1999.

[10] R. Fagin. Degrees of acyclicity for hypergraphs
and relational database schemes. Journal of the
ACM, 30(3):514–550, 1983.

[11] Y. Freund, and R.E. Schapire. Experiments with
a New Boosting Algorithm. Proc. of 13th Inter-
national Conference on Machine Learning, 1996.

[12] T. Gärtner, P. A. Flach, and S. Wrobel. On Graph
Kernels: Hardness Results and Efficient Alterna-
tives. The Sixteenth Annual Conference on Com-
putational Learning Theory and The Seventh Ker-
nel Workshop (COLT-2003). To Appear.

[13] G. Gottlob. Subsumption and implication. Infor-
mation Processing Letters, 24(2):109–111, 1987.

[14] G. Gottlob, N. Leone, and F. Scarcello. The com-
plexity of acyclic conjunctive queries. In Proceed-
ings of the 39th Annual Symposium on Founda-
tions of Computer Science, pages 706–715. IEEE
Computer Society Press, 1998.

[15] M. Graham. On the universal relation. Technical
report, Univ. of Toronto, Toronto, Canada, 1979.

[16] S. Hoche and S. Wrobel. Relational Learning
Using Constrained Confidence-Rated Boosting.
Proc. 11th Int. Conf. on Inductive Logic Program-
ming (ILP), 2001.

[17] T. Horvath and S. Wrobel. Toward Discovery of
Deep and Wide First-Order Structures: A Case
Study in the Domain of Mutagenicity. Proc. Dis-
covery Science, 2001.

[18] A. Karalic. First Order Regression. PhD thesis,
University of Ljubljana, Faculty of Computer Sci-
ence, Ljubljana, Slovenia, 1995.

[19] A. Srinivasan, S. Muggleton, M. J. E. Sternberg,
and R. D. King. Theories for mutagenicity: A
study in first-order and feature-based induction.
Artificial Intelligence, 85:277-299, 1996.

[20] Kolaitis and Vardi. Conjunctive-query contain-
ment and constraint satisfaction. JCSS: Journal
of Computer and System Sciences, 61(2):302–332,
2000.

[21] S. Muggleton. Inverse entailment and Pro-
gol. New Generation Computing, 13(3-4):245–
286, 1995.

[22] S. Muggleton and L. De Raedt. Inductive logic
programming: Theory and methods. The Journal
of Logic Programming, 19/20:629–680, 1994.

[23] S.-H. Nienhuys-Cheng and R. de Wolf. Foun-
dations of Inductive Logic Programming, volume
1228 of LNAI. Springer, Berlin, 1997.

[24] D. Opitz, and R. Maclin. Popular Ensemble
Method: An Empirical Study. Journal of Ar-
tificial Intelligence Research 11, pages 169-198,
1999.

[25] J.R. Quinlan. Bagging, boosting, and C4.5. Proc.
of 14th Nat. Conf. on AI, 1996.

[26] N. Robertson, and P.D. Seymour. Graph minors
II: algorithmic aspects of tree-width. J. Algo-
rithms, 7:309–322,1986.

[27] R. E. Schapire, and Y. Singer. Improved boost-
ing algorithms using confidence-rated predictions.
Proceedings of COLT’98, pages 80–91, 1998.

[28] M. Sebag. Distance Induction in First Order
Logic. Proc. 7th Int. Workshop on Inductive Logic
Programming (ILP), 1997.

[29] A. Srinivasan, S. Muggleton, and R. King. Com-
paring the use of background knowledge by in-
ductive logic programming systems. Proceedings
of the 5th International Workshop on Inductive
Logic Programming, 1995.

Algorithm 2 Evaluate

Require: extensional database D and join tree T with root labeled by n0

Ensure: {n0θ: θ is a substitution mapping the nodes of T into D}
1: let R = {n0θ: θ is a substitution mapping n0 into D}
2: let the children of n0 be labeled by n1, . . . , nk (k ≥ 0)
3: for i = 1, . . . , k do
4: S = evaluate(D, Ti) // Ti is the subtree of T rooted at ni

5: R = the natural semijoin of R and S wrt. n0 and ni

6: end for
7: return R

[30] S. Wrobel. Inductive logic programming. In
G. Brewka, editor, Advances in Knowledge Rep-
resentation and Reasoning, pages 153–189. CSLI-
Publishers, Stanford, CA, USA, 1996. Studies in
Logic, Language and Information.

[31] C. T. Yu and Z. M. Ozsoyoglu. On determin-
ing tree query membership of a distributed query.
INFOR, 22(3), 1984.

Appendix: Acyclic Conjunctive Queries
In this appendix we give an algorithm for acyclic con-
junctive query evaluation. In [3] it is shown that the
class of acyclic conjunctive queries is identical to the
class of conjunctive queries that can be represented by
join forests [4]. Given a conjunctive query Q, the join
forest JF (Q) representing Q is an ordinary undirected
forest such that its vertices are the set of literals of Q,
and for each variable x ∈ Var(Q) it holds that the sub-
graph of JF (Q) consisting of the vertices that contain
x is connected (i.e., it is a tree).

Now we show how to use join forests for efficient
acyclic query evaluation. Let E be a set of ground tar-
get atoms, B be a set of ground atoms, and let Q be
an acyclic conjunctive query with join forest JF (Q).
In order to find the subset E′ ⊆ E implied by Q with
respect to B, we can apply the following method. Let
T0, T1, . . . , Tk (k ≥ 0) denote the set of connected com-
ponents of JF (Q), where T0 denotes the tree contain-
ing the head of Q, and let Qi ⊆ Q denote the query
represented by Ti for i = 0, . . . , k. The definition of
the Qi’s implies that they form a partition of the set
of literals of Q such that literals belonging to different
blocks do not share common variables. Therefore, the
subqueries Q0, . . . , Qk can be evaluated separately; if
there is an i, 1 ≤ i ≤ k, such that the Boolean con-
junctive query Qi (i.e., a conjunctive query with empty
head) is false with respect to B then Q implies none
of the elements of E with respect to B, otherwise Q
and Q0 imply the same subset of E with respect to
B. By definition, Q0 implies an atom e ∈ E if there
is a substitution mapping the head of Q0 to e and the
atoms in its body into B, and Qi (1 ≤ i ≤ k) is true
with respect to B if there is a substitution mapping
Qi’s atom into B. That is, using algorithm Evalu-
ate given below, Q implies E′ with respect to B if
and only if

(E′ ⊆ Evaluate(B ∪E, T0))

∧
(

k∧
i=1

(Evaluate(B, Ti) �= ∅)
)

.

It remains to discuss the problem of how to com-
pute a join forest for an acyclic conjunctive query.

Using maximal weight spanning forests of ordinary
graphs, in [4] Bernstein and Goodman give the follow-
ing method to this problem. Let Q be an acyclic con-
junctive query, and let G(Q) = (V, E, w) be a weighted
graph with vertex set V = {L : L is a literal of Q},
edge set E = {(u, v) : Var(u) ∩ Var(v) �= ∅}, and
with weight function w : E → IN defined by w :
(u, v) �→ |Var(u)∩Var(v)|. Let MSF (Q) be a maximal
weight spanning forest of G(Q). Note that maximal
weight spanning forests can be computed in polyno-
mial time (see, e.g., [6]). It holds that if Q is acyclic
then MSF (Q) is a joint forest representing Q. In addi-
tion, given a maximal weight spanning forest MSF (Q)
of a conjunctive query Q, instead of using the method
given in the definition of acyclic hypergraphs, in order
to decide whether Q is acyclic, one can check whether
the equation∑

(u,v)∈MSF (Q)

w(u, v) =
∑

x∈Var(Q)

(Class(x) − 1) (5)

holds, where Class(x) denotes the number of literals
in Q that contain x (see also [4]).

