Experimental Comparison of Symbolic Learning Programs
for the Classification of Gene Network Topology Models

AndreasD. Lattner!, Sohyoung Kim?, Guido Cervone?, John J. Grefenstette?

LCenter for Computing Technologies — TZI, University of Bremen,
PO Box 330 440, D-28334 Bremen, Germany, adl@tzi.de

2George Mason University, 4400 University Drive, Fairfax,
Virginia 22030-4444, USA, {skime|gcervonejgrefens} @gmu.edu

Abstract

This study addresses the problem of identifying
the large-scale topology of gene regulation net-
works from features that can be derived from
microarray data sets. Understanding large-scale
structures of gene regulation is fundamentally
important in biology. Recent analysis of net-
work properties of known biological networks
has shown that they display scale-free features,
but it is not yet clear whether these features are
generic to all biological networks. In this work
five different symbolic classifiers — AQ20, C4.5,
C4.5rules CN2 and RIPPER — were employed to
classify simulated networks as random or scale-
free. Inthe best case, an average accuracy of over
96% could be achieved by C4.5rules in ten cross-
validation runs.

1 Introduction

Understanding the large-scale structures of gene regula-
tion networks provides insights about universal biological
structural design principles and a better understanding of
dynamical processes of gene regulation. Gene regulatory
networks are connected structures between regulator genes
and target genes. The genes in these networks interact to
regulate their expression levels.

Recently, there has been growing interest in network
structure models that have specific design principles and
their inherent statistical properties [Albert and Barabési,
2002]. Three main classes of network models, exponen-
tial networks [ErdGs and Rényi, 1959], scale-free networks
[Barabasi and Albert, 1999], and small-world networks
[Watts and Strogatz, 1998], have been used to describe
topological features of various naturally occurring systems
including the Internet, social networks, and some biolog-
ical networks [Albert and Barabasi, 2002]. Recent analy-
ses of network properties of the metabolic maps [Jeong et
al., 2000], molecular interaction networks [Fox and Hill,
2001], and protein-protein interaction networks [Jeong et
al., 2001] have shown that these biological networks dis-
play scale-free features.

Scale-free networks are characterized by a connectiv-
ity distribution which follows power-law distribution. The
connectivity between nodes is very heterogeneous, i.e.,
there are many nodes with few connectivity and a small
number of nodes with high connectivity. Compared to
scale-free networks, in the random network model the con-
nectivity distribution follows a Poisson distribution, i.e., the
number of edges between nodes is quite even and nodes
with high connectivity are not very likely to occur.

The observations of scale-free features are encouraging
because the model provides important features that might
be especially beneficial to biological systems [Jeong et al.,
2001; Albert et al., 2000]. Knowing an appropriate model
for biological networks will allow us to understand addi-
tional statistical features of the model. Particularly, high
tolerance of scale-free networks for the random node fail-
ures in terms of structural integrity might suggest that net-
work topology partially accounts for the robustness of bio-
logical systems.

Although recent analyses of network properties of
known biological pathways or networks have shown that
the most examples of biological networks display scale-
free features [Jeong et al., 2000; Fox and Hill, 2001;
Jeong et al., 2001; Bhan et al., 2002; Ravasz et al., 2002], it
is not clear yet whether these features are generic to all bi-
ological networks, due to the limited available information
about pathways and connectivity. To overcome these lim-
itations, there have been attempts to understand topology
by inferring the underlying connectivity of gene networks
from microarray time series data [Bhan et al., 2002].

However, the inference of network connections from mi-
croarray data is a very difficult problem with current mi-
croarray data without further exhaustive experimental veri-
fication steps [Kitano, 2002]. Initial work applied a neu-
ral network to classify network structures from microar-
ray data based on measured global characteristics with-
out inferring individual connectivity between biological
molecules [Kim et al., 2003]. In this work the neural net-
work successfully classified the data with a predictive ac-
curacy of ca. 90%.

This work follows up [Kim et al., 2003] by applying a
series of symbolic machine learning programs to the same
data. The motivation for this approach is that unlike neu-
ral networks, symbolic methods provide answers in a form
that can be understood and validated by domain experts.
The main goal of this work is therefore trying to under-
stand if there are distinctive patterns that are characteristics
of the two classes. Such characteristics enable us to predict
features of topology and furthermore, to examine whether
such patterns have a biological meaning, or are simply ar-
tifacts of the data.

2 Input Data

The data consisted of 2400 events divided into two classes
(scale-free and random) of 1200 events each. Each event
contained 20 continuous attributes plus a binary class at-
tribute, and no missing values. The attributes represent
20 bins of gene frequencies and the binary class stands for
scale-free (0) or random network (1).

Random: histrogram attribute 1

*]
. mu

™ A m sk - |
° T T T T 1

0 20 40 60 80 100

Scale—free: histrogram attribute 1

] —

0 20 40 60 80
Random: histrogram attribute 2

] b .

0 10 20 30 40 50 60
Scale-free: histrogram attribute 2

Ef TV

0 10 20 30 40 50 60

|

100

0

Random: histrogram attribute 3

0 40 80
I -’}
i

. w‘ T T 1

0 10 20 30 40 50
Scale—free: histrogram attribute 3

0 40 80
I

T T T T 1
10 20 30 40 50

Random: histrogram attribute 4

s i
il
0

I T T T 1
0 10 20 30 40
Scale-free: histrogram attribute 4
8 3
©
o T o o y . v
0 10 20 30 40
Random: histrogram attribute 5
o 1 {
o
E
° I = T T T L T 1
0 5 10 15 20 25
Scale—free: histrogram attribute 5
o
S
m al
e # T il T T T 1
0 5 10 15 20 25

0 400 0 300 0 300 300 300 0 200 0 200 0 150 0 150

0 400

Random: histrogram attribute 6

T T T T 1
0 10 20 30 40

Scale-free: histrogram attribute 6

I 1 1 1 1
0 10 20 30 40

Random: histrogram attribute 7

T T T T T
o] 5 10 15 20

Scale-free: histrogram attribute 7

I T T T 1
0 5 10 15 20
Random: histrogram attribute 8

T T T T
0 5 10 15

Scale—free: histrogram attribute 8

[T T 1
0 5 10 15

Random: histrogram attribute 9

T T T 1
0 5 10 15

Scale-free: histrogram attribute 9

T T T 1
0 5 10 15

Random: histrogram attribute 10

T T T T
0 5 10 15

Scale-free: histrogram attribute 10

~ T T 1
0 5 10 15

Figure 1: Histogram of attribute values, attributes 1 - 10

The data was generated using a gene regulation network
simulator. It allows the simulation of Boolean networks
with arbitrary number of genes [Kim et al., 2003]. In these
experiments two network types (scale-free and random)
and five different connectivity rates (1 - 5) were taken into
account. For each of these ten topology/connectivity com-
binations 20 different networks with 500 genes were gener-
ated randomly. For all 200 networks perturbation propaga-
tion distributions were computed using 12 different pertur-
bation rates (1%, 3%, 5%, ..., 19%, 21%, 40%) resulting
in 2400 histograms. The procedure to create the perturba-
tion propagation histograms is the following:

1. Randomly initialize the gene network, represented by
an array of genes ¢;. Determine the status ¢, of the
gene network in the next time step by applying the
transition function.

2. The following steps are repeated 100 times:

e Apply perturbation to a certain percentage of
genes (specified by the perturbation rate) and
store the new gene network in ¢}.

e Apply the transition function to ¢} and store the
gene network of the next time step in ¢5.

e Compare the genes of ¢, and ¢, and accumulate
the number of discrepancy for each gene.

3. After 100 runs for each gene the frequency of pertur-
bation is known. Now different bins collect the fre-
quencies of genes with certain perturbation frequen-
cies. The 20 different bins sums up all genes that
show up 0 - 5%, 5 - 10%, ..., 95 - 100% perturba-
tion through the time series, where the first bin repre-
sents genes with lowest perturbation frequencies and
the last (twentieth) bin represents genes with highest
perturbation frequencies.

Each histogram with the 20 different bins represents one
training (or testing) event. The attributes represent different
bins, i.e., the frequency of genes with certain perturbation
frequencies. A more detailed description of the data gener-
ation can be found in [Kim et al., 2003].

Figures 1 and 2 summarize the input data in histograms.
These histograms do not show the single event histograms,
which were used for training and testing, but the value dis-

Random: histrogram attribute 11

0 400
.}

T T T T T T T
0 2 4 6 8 10 12

Scale—free: histrogram attribute 11

0 400
-}

I 1 1 1 1 T 1
0 2 4 6 8 10 12

Random: histrogram attribute 12

T T T T T T T
0 1 2 3 4 5 6

Scale-free: histrogram attribute 12

0 600
[N)

T T T T T T 1
0 1 2 3 4 5 6

Random: histrogram attribute 13

0 600
[NEE NN

T T T T T
0.0 05 1.0 15 2.0 25

Scale—free: histrogram attribute 13

0 600
L

T T T T 1
0.0 05 1.0 15 2.0 25

Random: histrogram attribute 14

0 600
[NEEEN]

T T T 1
0.0 0.2 04 0.6 0.8

Scale-free: histrogram attribute 14

0 600
[NEEEN]

T T T 1
0.0 0.2 0.4 0.6 0.8

Random: histrogram attribute 15

0 600
[NENEEN)

T T T 1
0.0 0.1 0.2 0.3 0.4

Scale—free: histrogram attribute 15

0 600
[NENENN]

0.0 0.1 0.2 0.3 0.4

0 600 0 600 0 600 0 600 0 600 0 600 0 600 0 600 0 600

0 600

Random: histrogram attribute 16

T T T 1
0.00 0.05 0.10 0.15 0.20

Scale-free: histrogram attribute 16

1 1 1 1
0.05 0.10 0.15 0.20

Random: histrogram attribute 17

T T T T 1
o] 20 40 60 80 100

Scale-free: histrogram attribute 17

T T T T 1
0 20 40 60 80 100

Random: histrogram attribute 18

T T T T 1
0 20 40 60 80 100

Scale-free: histrogram attribute 18

T T T T 1
0 20 40 60 80 100

Random: histrogram attribute 19

T T T T 1
0 20 40 60 80 100

Scale-free: histrogram attribute 19

T T T T 1
0 20 40 60 80 100

Random: histrogram attribute 20

T T T T 1
0 20 40 60 80 100

Scale-free: histrogram attribute 20

100

Figure 2: Histogram of attribute values, attributes 11 - 20

tributions for all scale-free and random model events for
each attribute. Each attribute corresponds to one of the
twenty bins mentioned before. The x-axis represents all
values of the attribute and the y-axis shows the number of
events with the corresponding value.

In the graphs no trivial separation between the two
classes can be found for single attributes. Nevertheless,
for some attributes differences in the frequency of values
can be seen. E.qg., for attribute 1 the scale-free model has a
higher peak for lower values than the random model. The
scale-free model leads to more values near zero than the
random model for attribute 3, 4, and 6. At attribute 5 events
of the random model tend more to concentrate between the
values 10 and 18 than the ones from the scale-free model.

Another interesting observation is that the two models
seem not to differentiate regarding attributes 15 - 20. Espe-
cially for attributes 17 - 20 all events have the value zero.
The explanation for that is, that these bins represent fre-
quencies of highly perturbed genes which do not occur in
this test data. Thus, attributes 17 - 20 could be left out in
experiments without impairing the results.

Figure 3 shows the distributions of the attributes 1 - 14
and their pairwise correlations. The figure is symmetric,
i.e., for each image above the diagonal exists a counterpart
underneath it. The images with the pairwise correlations
plot all events in two-dimensional graphs where the x-axis
represents the attribute in the current column and the y-
axis represents the attribute in the current row. The events
are represented by green triangles (random) or red circles
(scale-free). The diagonal shows the distributions for single
attributes, i.e., how often certain attribute values appear in
the data.

As the more important information seems to be in the
first part of the attributes, we do not display the distribu-
tions of and correlations with attributes 15 - 20. As it can
be seen the value distributions of attribute 2 - 5 are spread
out more evenly than the others. The remaining attributes
in this figure have a stronger tendency to lower values.
The correlation images between the attributes show, that
for some attribute combination parts of the events can be
separated from each other, as it is the case with different
combinations of attributes 8 - 13.

FNALLL
NEBAAL
BUPAL

o 20

o 20 40

h

10

10

08

il aml) o] o]] |)) 0])
| o al o = =
|l sl sl al o
Dmﬁﬂﬂﬂﬁﬂ

oo

==

(=]
&
&

o0 15

(=]
(=]
(=]
th
(=]
.

L
A
B
hoLUALN
Al 7@
hhld" S
hMALIFLC
DNAI
Add
Abha
Abha
Abd
P

EHHF’E

b ol ol cal el et o
B ah ol al al al

Y
>

s
.
&
i

0 40 100

o2

.-I

15

8]

o 10 20

i alt 4l 4l ol udi] o] -
R TFEETCOO

=

Hﬁ

00 23

a 15

Figure 3: Distributions and pairwise attribute correlations for first 14 attributes

3 Experiments

In this section the different experiments are described. Af-
ter introducing the evaluation criteria and learning pro-
grams the results of the learning programs are presented.

3.1 Evaluation Criteria

The evaluation of the learned knowledge was done using
different criteria. The most important is the predictive ac-
curacy, which represents the number of correct classifica-
tions over the total number of classifications. In the case
of AQ, this value must be paired with precision, since the
program may assign more than one class to each event (see
Section 3.2).

The learned knowledge is also compared in terms of time
and complexity which is computed as the size of the tree
for C4.5 and the number of rules and conditions for the
other decision rule learning programs. Only AQ20 pro-
vides training and testing times. Among the other tools,

RIPPER is the only one that writes its learning time to the
output. To be able to compare durations of the programs,
we used the GNU ti me command to get values for the
system and user time used during learning and testing.

Different criteria were chosen to emphasize the strength
and weakness of the algorithms. This is to reflect the fact
some algorithms may perform better in terms of predictive
accuracy, at the expense of a bigger learning time or rules
of higher complexity.

3.2 Learning Programs

In this section the learning programs employed in this study
are presented briefly. More detailed descriptions can be
found in [Cervone et al., 2001; Quinlan, 1993; 1996; Clark
and Niblett, 1989; Cohen, 1995].

AQ20
AQ?20 is an implementation of the AQ learning methodol-
ogy, which traces its origin to the A7 algorithm for solving

general covering problems of high complexity [Michalski,
1969a; 1969b].

An implementation of the AQ algorithm in combina-
tion with the variable-valued logic representation produced
the first AQ learning program, AQVAL/1, which pioneered
research on general-purpose inductive learning systems
[Michalski, 1975].

AQ20 is a machine-learning environment that supports
users in conducting machine-learning experiments. AQ is
a separate and conquer algorithm, also called progressive
covering. It learns hypotheses given a set of examples and
counter-examples that are either 1) complete and consistent
with the input data (theory formation mode), 2) that allow
either certain negative events to be included in the learned
hypotheses (complete and inconsistent), 3) that do not in-
clude all the positive events (incomplete and consistent) or
4) a combination of the last two (incomplete and inconsis-
tent). The ability of learning rules that are incomplete and
inconsistent is very important in data mining, because it
makes the algorithm cope well with noise.

Some of the most important features of AQ20 for this
work are: ability to work with continuous data without dis-
cretization, ability to learn hypotheses according to multi-
criterion optimization functions, and ability to test learn
hypotheses according to different events / ruleset matching
scheme.

AQ20 provides a collection of different algorithms for
rule learning, pre- and postprocessing. The program is still
under development and not all of the possible settings were
tested in our experiments. We applied the theory formation
(tf) mode, which learns complete and consistent rules for
the training events. The minimum number of unique cov-
ered events by a rule was set to 20 (minimum_u = 20), the
maximum number of rules kept by a star was 20 (naxrule
= 20), and the weight for specifying the tradeoff between
completeness and consistency was set to 0.0 (w=0.0). The
beam search was limited to the star size 1 (max_star = 1).

The rules were tested with the ATEST methodology (see
[Cervone et al., 2001]). For the interpretation of the dis-
junctions of rules the rule with the maximum match was
applied (aggregation = max) and for the interpretation of
conjunction (within a rule) the selectors ratio was used, i.e.,
the match is determined by ratio of the number of satis-
fied conditions to all conditions in a rule (node = selec-
tors_ratio).

All other programs were used with their default settings.

C4.5and C4.5rules

The decision tree learner C4.5 was developed by Quinlan
[Quinlan, 1993]. It is based on the ID3 (Induction of de-
cision trees) algorithm. In our experiments we used C4.5
Release 8, which is described in [Quinlan, 1996].

Given a set of training examples it generates a decision
tree, that can be used to classify unknown instances. In
the beginning all events of all classes are assigned to the
root node of a tree. Now, recursively the tree is grown by
selecting the attribute that leads to the best information gain
to divide the set of events in a node into subsets. A node
is not refined any further if it only consists of examples of
one class or another stop criterion is satisfied.

C4.5rules is the decision rule counterpart of C4.5. It gen-
erates a set of rules for each path from a learned decision
tree. Then it is checked if the rules can be generalized by
dropping conditions. In another step the most useful subset
of the rules is selected.

CN2

The CN2 algorithm was developed by Clark and Nibblet to
learn a set of propositional rules given a set of examples
and counter examples [Clark and Niblett, 1989].

This algorithm can be viewed as a hybrid of AQ learn-
ing and decision tree learning. It uses beam search as the
AQ algorithm, but it specializes rules in the same fashion
decision trees are built.

It first generates general rules which are then specialized
by adding conditions until the learned rules have statisti-
cal significance over the training events. The process is
repeated until all the training events have been covered.

CN2 can generate ordered or unordered decision rules.

RIPPER

Cohen developed the decision rule learner RIPPER by
modifying the “incremental reduced error pruning” (IREP)
method [Cohen, 1995]. The IREP method by Fiirnkranz
and Widmer [Fuirnkranz and Widmer, 1994] integrated pre-
pruning and post-pruning into learning.

IREP uses a separate-and-conquer algorithm to create
rulesets. It creates one rule at time and removes all posi-
tive (and negative) examples covered by this rule from the
example set. To create a rule the uncovered examples are
randomly split into a growing set and a pruning set. At rule
generation it is started with an empty conjunction of con-
ditions. The rule is grown by rapidly adding the condition
that maximizes the FOIL information gain criterion. After
growing the rule it is immediately pruned [Cohen, 1995].

In the “repeated incremental pruning to produce error re-
duction” (RIPPER) for each rule in the ruleset two rules are
generated: the “replacement” and the “revision” which are
formed by growing and pruning to minimize the error of
the complete ruleset. Then it is decided to keep the old rule
or replace it by one of its two modifications by using the
minimum description length (MDL) heuristic. This opti-
mization step can also be repeated by RIPPER.

The pruning set is used during the pruning of the rules.
The deletion of conditions of a rule depends on how many
positive and negative examples from the pruning set are
covered after the modification of a rule.

3.3 Resaults

A number of experiments was performed on experimental
data generated using the method presented in [Kim et al.,
2003]. In all experiments a cross-validation with ten splits
was performed, i.e., in each of the ten runs one split was
used for testing (10%) and nine splits were used for training
(90%). All experiments were run on a Pentium 4 (mobile),
1.8 GHz, 512 MB RAM, under Red Hat Linux 9.

The results of the different programs are compared
in Table 1. All values in the table are averages
of ten cross-validation runs and the standard deviation
(average value + stddev). To better compare the algo-
rithms, we used identical splits to train and test all the pro-
grams.

The generated ruleset were tested using each method’s
own testing procedure. In the case of AQ20, it was more
difficult to compare the results because this program may
assign more than one class to each event. The AQ20 testing
procedure generates degrees of match between events and
rulesets. An event is classified as belonging to the class
whose ruleset achieve the highest score. If more than one
class obtains the same score, or a score within a certain
tolerance, then the event is classified as belonging to all
the classes with top score. The event classification in these

Table 1: Results of the different programs in ten cross-validation runs

AQ20 C4.5 C4.5rules CN2 Ripper
Predictive accuracy (single) in % (92.2) | 95.69+1.56 | 96.33+1.49 | 90.78+2.28 | 95.669+1.54
Predictive accuracy (multiple) in% | 94.793+1.97 N/A N/A N/A N/A
Precision (multiple) in % 94.9954-2.59 N/A N/A N/A N/A
Total timein s 9.06+0.690 0.18+0.01 | 0.246+0.02 | 2.697+0.27 1.4744-0.19
#rules 17.77+£1.92 N/A 27.8+£1.99 38.1+3.67 13.3+2.26
conditions / size of tree 159.114+19 | 101.6+6.11 87.545.93 95.6+8.58 54.3+7.68

cases is counted as correct if the correct class is among the
assigned classes.

Because of the generation of multiple answers for each
event, a new measure called precision was introduced. Pre-

cision is defined as: (;ff:ﬁ)

where e is the number of events that matched at least one
of candidate rulesets with a degree of match equal to or
above the acceptability threshold, ¢ is the number of de-
cision classes, and d is the number of specific decisions
(unique or alternative). The precision is 1 when for each
testing event only one specific decision is returned, and O
when for each testing event all possible decisions are re-
turned as alternatives.

When the precision is 100%, the result of the predic-
tive accuracy can be directly compared to the one of other
methods.

In the experiments with AQ two classes were assigned
to 62 testing events (out of 2400 events in all runs), thus its
predictive accuracy can be almost directly compared to the
regular predictive accuracies of the other tools. If all mul-
tiple classification results had been counted as false classi-
fications (worst case), the average accuracy of the ten runs
would have been 2343 = 92.2% instead of 2275 = 94.79%.

The best accuracies have been achieved by C4.5rules. It
correctly classified 96.33% of the events on average. C4.5
and Ripper almost have the same accuracies (95.69% and
95.67%), followed by AQ20 (92.2%) and CN2 (90.78%).

C4.5 and C4.5rules are the fastest (0.18 and 0.246 s),
followed by Ripper and CN2 (1.474 and 2.697 s). AQ20
took most time (9.06 s).

Regarding complexity, Ripper generated the most com-
pact rulesets (13.3 rules with 54.3 conditions on aver-
age). Except AQ20 (17.7 rules with 159.11 conditions), the
other tools created more than the double number of rules
(C4.5rules: 27.8 rules and 87.5 conditions, CN2: 38.1 rules
and 95.6 conditions). The decisions trees learned by C4.5
had 101.6 nodes on average.

Figure 4 shows the usage of the attributes in the rules
created by the different programs. As expected, attributes
17 - 20 have never been used, because they do not carry any
information (in this data).

Sample outputs of the programs can be found in Ap-
pendix A. In all cases rules from the first cross-validation
run are shown.

4 Conclusion

Unlike previous methods for the inference of gene regu-
lation networks from ideal data, this approach attempts to
deal with data that is likely to be available from current ex-
perimental methods, such as microarray experiments.

As the results of the learning programs show, these
features are suitable to distinguish between two different
classes of network models, random and scale-free net-
works. The results of the experiments are very promising
as some of the learning programs classified over 95% of the
testing events correctly on average.

Specifically, C4.5rules showed the best accuracy with
96.33%. The decision trees of C4.5 and the rulesets gen-
erated by RIPPER performed almost the same. In these
experiments RIPPER’s and AQ20’s rulesets have a much
smaller complexity than the ones created by the other pro-
grams. With 13.3 rules RIPPER created less than half of
the number of rules generated by C4.5rules and CN2. The
rules of RIPPER also consist of much less conditions.

All the learning and testing times of the programs were
very fast (< 3 seconds each run), except for AQ20, which
took ca. 9 seconds for training and testing. C4.5 outper-
formed the other programs with the shortest duration of
0.18s per run on average.

The generated rulesets emphasize a big advantage of
symbolic learning: the learned classifiers are comprehen-
sible and can thus be evaluated by domain experts.

Attributes used in hypotheses of AQ20

] ||||‘|| HDD

123456789 1 13 15 17
Attributes used in hypotheses of C4.5

||“‘|| [l

123456789 1 13 15 17 19
Attributes used in hypotheses of C4.5rules

I““||W ||||‘|‘ I

123456789 11 13 15 17 19

Attributes used in hypotheses of CN2

|‘||II|HUUUD ffffffff

123456789 11 13 15 17 19
Attributes used in hypotheses of RIPPER

‘||||\I |

123456789 1 13 15 17 10
Attributes used in hypotheses (sum of all programs)

008
015 020

0.06

004
010

002
005

0.00
0.00

000 002 004 006 008 010 012 014
L L)
000 002 004 006 008 010 012
)

004 006 008 010

002

000 002 004 006 008 010 012 014
\

000

123456789 11 13 15 17 19

Figure 4: Attributes used by the different programs

References

[Albert and Barabési, 2002] R. Albert and A.-L. Barabasi.
Statistical mechanics of complex networks. Reviews of
Modern Physics, 74:47-97, 2002.

[Albert et al., 2000] R. Albert, H. Jeong, and A.-L.
Barabési. Error and attack tolerance of complex net-
works. Nature, 406:378-382, 2000.

[Barabasi and Albert, 1999] A.-L. Barabasi and R. Albert.
Emergence of scaling in random networks. Science,
286:509-512, 1999.

[Bhan et al., 2002] A. Bhan, D. J. Galas, and T. G. Dewey.
A duplication growth model of gene expression net-
works. Bioinformatics, 18:1486-1493, 2002.

[Cervone et al., 2001] G. Cervone, L. A. Panait, and R. S.
Michalski. The development of the AQ20 learning sys-
tem and initial experiments. In Proceedings of the
10th International Symposium on Intelligent Informa-
tion Systems, Zakopone, Poland, June 2001.

[Clark and Niblett, 1989] P. Clark and T. Niblett. The CN2
induction algorithm. Machine Learning, 3(4):261-283,
1989.

[Cohen, 1995] W. W. Cohen. Fast effective rule induction.
In Proceedings of the 12th International Conference on
Machine Learning, Lake Taho, California, 1995.

[Erd6s and Rényi, 1959] P. ErdGs and A. Rényi. On ran-
dom graphs I. Publ. Math. (Debrecen), 1959.

[Fox and Hill, 2001] J. J. Fox and C. C. Hill. From topol-
ogy to dynamics in biochemical networks. Chaos,
11:809-815, 2001.

[Furnkranz and Widmer, 1994] J. Fiirnkranz and G. Wid-
mer. Incremental reduced error pruning. In Machine
Learning: Proceedings of the Eleventh Annual Confer-
ence. Morgan Kaufmann, New Brunswick, New Jersey,
1994,

[Jeong et al., 2000] H. Jeong, B. Tombor, R. Albert, Z. N.
Oltvai, and A.-L. Barabési. The large-scale organization
of metabolic networks. Nature, 407:651-654, 2000.

[Jeong et al., 2001] H. Jeong, S. P. Mason, A.-L. Barabasi,
and Z. N. Oltvai. Lethality and centrality in protein net-
works. Nature, 411:41-42, 2001.

[Kimetal., 2003] S. Kim, J. N. Weinstein, and J. J.
Grefenstette. Inference of large-scale topology of gene
regulation networks by neural nets. In Proceedings of
the 2003 IEEE International Conference on Systems,
Man & Cybernetics, Washington, D.C., USA, October
2003. To appear.

[Kitano, 2002] H. Kitano. System biology: A brief
overview. Science, 295:1662-1664, 2002.

[Michalski, 1969a] R. S. Michalski. On the quasi-minimal
solution of the general covering problem. In Proceed-
ings of the V International Symposium on Informa-
tion Processing (FCIP 69), volume A3, pages 125-128,
Bled, Yugoslavia, October 8-11 1969.

[Michalski, 1969b] R. S. Michalski. Recognition of to-
tal or partial symmetry in a completely or incompletely
specified switching function. In Proceedings of the 1V
Congress of the International Federation on Automatic
Control (IFAC), volume 27, pages 109-129, June 16-21
1969.

[Michalski, 1975] R. S. Michalski. Synthesis of optimal
and quasi-optimal variable-valued logic formulas. In
Proceedings of the 1975 International Symposium on
Multiple-Valued Logic, pages 76—87, Bloomington, In-
diana, May 13-16 1975.

[Quinlan, 1993] J. R. Quinlan. C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann, 1993.

[Quinlan, 1996] J. R. Quinlan. Improved use of continu-
ous attributes in C4.5. Journal of Artificial Intelligence
Research, 4:77-90, 1996.

[Ravasz et al., 2002] E. Ravasz, A. L. Somera, D. A. Mon-
gru, Z. N. Oltvai, and A.-L. Barabési. Hierarchical orga-
nization of modularity in metabolic networks. Science,
297:1551-1555, 2002.

[Watts and Strogatz, 1998] D. J. Watts and S. H. Strogatz.
Collective dynamics of *small-world’ networks. Nature,
393:440-442, 1998.

A Sample outputs of the learning programs

The following rulesets and the decision tree are the outputs
of the different learning programs for the first of the ten
cross-validation runs. The original outputs have been
slightly changed for a more compact presentation. The
attributes g1 - g20 represent the twenty different bins in
the histograms of [Kim et al., 2003]. Class 1 stands for the
random model and class O for the scale-free model.

Sample rules of AQ20

[cl ass=0]
<-- [g4<=29.5] [g5=1.7..7.7] [g9=0.1001..7.3]
[910>=0. 1001] [g13<=0. 9]
: p=380, np=380, n=0, npq=1, u=24, cx=29, c=1 # 56747
<-- [g3<=32.7] [g4<=19.3] [g5<=9.3
[g6=0.5..10.1] [g7=0.3001..8.7] [g8=0.7001..8.2]
[99>=0. 1001] [g10<=11.9] [g13<=1.2] [gl4<=0.4]
: p=330, np=4, n=0, q=1, npg=1, u=20, cx=56, c=1 # 56763
<-- [gl<=5.5] [g4<=34.9] [g5<=18.8
[g6<=8.1] [g7<=11.9] [g8=0.3001..8.3] [g9>=0.3001]
[910>=0. 1001] [g1l1<=7.8] [g13<=1.3] [gl4<=0.4]
: p=315, np=214, n=0, npq=1, u=58, cx=57, c=1 # 56748
<-- [g2<=54.1] [g3=1.7..36.9] [g4<=11.7
[95<=22.7] [g6<=34.7] [g7<=20.7]
[98=0.3001..5.5] [g9<=3.5] [g13<=0.5999]
[914<=0. 4] [g15<=0. 09995
: p=312, np=41, n=0, =1, npg=1, u=25, cx=59, c=1 # 56753
<-- [gl<=4.1] [g2<=11.5] [g3<=45.9] [g4<=40
[95=3.1..19.4] [g6=1.3..32.8] [g7<=15.7] [g8<=7.5]
[99<=8.3] [g11>=0.1001] [g13<=1.1]
: p=187, np=50, n=0, q=1, npg=1, u=49, cx=59, c=1 # 56752
<-- [g1>=0.8] [g2<=55.7] [g3<=15.7]
[g4<=5.5] [g5<=18.9] [g6<=24.1]
[g7=0.1001..16. 2] [g8<=8.6] [g9<=13.1]
[913<=0.7] [g14<=0.4] [g15<=0.09995
: p=132, np=104, n=0, npq=1, u=55, cx=62, c=1 # 56749
<-- [g1=3.9..97.2] [g2<=15.1] [g3=0.9001..25. 3]
[g4=0. 1001. . 35. 3] [g5<=14.3] [g6<=9.1]
[97<=7.3] [g8<=9.4] [g9<=8. 4]
[910<=11.2] [g13<=1]
: p=85, np=73, n=0, q=1, npg=1, u=67, cx=61, c=1 # 56751
<-- [gl<=2.4] [g2<=3.5] [g5<=26.4]
[g7<=20. 4] [g8<=10.3] [g9>=2. 6]
[g11=1.3..10.1] [g13<=1.7] [gl4<=0.5] [g15<=0. 3]
: p=84, np=79, n=0, =1, npg=1, u=75, cx=52, c=1 # 56750
<-- [g1>=48.8] [g2<=4.9] [g3=0.3001..21.4
[94<=7.8] [g5<=4.3] [g6<=12.3] [g7<=6.8]
[98<=4.2] [g1ll<=4.9] [g13<=0.9] [gl1l4<=0.2999]
© p=27,np=23, n=0, g=1, npq=1, u=23, cx=57, c=1 # 56754

[cl ass=1]
<-- [9g1=6.5..35.6] [9g2<=30.7] [g3<=31.9]
[g4<=35. 6] [g5<=22.5] [g6<=25.1]
[97<=15.6] [g9<=4.9] [gl0<=2.1]
[911<=0.7] [g12<=0.3] [g13<=0.09995
: p=277,np=277, n=0, npq=1, u=49, cx=62, c=1 # 113357
<-- [91=2.9..31.9] [g2=2.8..35.3] [g5=4.7..15.3]
[96>=2.9] [g9<=2.7] [gl0<=0.5]
[911<=1.2] [g12<=0.3] [g13<=0.09995
© p=243, np=25, n=0, q=1, npg=1, u=25, cx=51, c=1 # 113367
<-- [g1=2..48.9] [g2=7.1..51.2] [g3<=44.8
[94=6.3..36.3] [g5>=2.9] [g7<=13
[99<=0.5] [g10<=0.09995] [g11<=0.09995] [g12<=0.09995]
© p=225, np=123, n=0, npg=1, u=78, cx=56, c=1 # 113360
<-- [g1=1.1..35.6] [g2=2.7..30.7] [g3=2..20.1]
[g4<=18.7] [g6<=20.7] [g7<=17.8]
[911<=9. 2] [g14<=0.5
: p=223, np=179, n=0, npq=1, u=71, cx=46, c=1 # 113358
<-- [gl=8.1..60.3] [g2>=15.8] [g3=4.1..37.5]
[g4<=26.8] [g6<=1.1] [g7<=0.5]
[g8<=0. 09995] [g9<=0.09995] [gl0<=0.09995
[g11<=0. 09995] [g12<=0.09995] [gl3<=0.2]
: p=152, np=149, n=0, npq=1, u=123, cx=64, c=1 # 113359
<-- [g1l=3.1..45.8] [g2<=13.3] [g3<=46.7]
[g4<=40.7] [g5<=20.6] [g6<=20.9]
[97<=14.2] [g9<=2.7] [gl0<=1.7]
[911<=0. 5] [g12<=0.09995] [g13<=0.09995] [g1l6<=0.09995
: p=114, np=60, n=0, npg=1, u=28, cx=67, c=1 # 113361

Sample tree of C4.5 (after pruning)

g8 <= 9 : gl >3.2, g5 >7.6, gl0 <= 0.8, ¢g11 <= 0.2

| gl1 <= 0.2 : -> class 1 [99.6%
| | g6 <= 5.4 : g2 <= 51, g3 > 10.6, g9 <=0, g10 <=0
| | | 910 <= 0 : -> class 1 [99.5%
| 1 |] 93 <=10.6 : gl >6, g6 >8.2
| 11 || g7>0: 0(92.0/1.4) -> class 1 [99.3%
I I I I I ?7 <=0 : ?2 > 19.?, g3/; 4.2, g7 <=0, g8 <=0
g2 <= 19.2 : -> class 1 99. 19
111111 g4<=0: g2 > 3.2 g6>11.8
1111 11| g5>0:0(7.0/1.3) -> class 1 [99.0%
L1111 1] g5<=0: g4 > 8.4, g8 <= 0.8, g1l0 <=0, gll1 <=10.2
I 11111111 92>4.6: 1(51.0/2.6) -> class 1 [98.8%
11T] 9g2<=4.6: g3 > 10.6, g6 <= 0.8, g9 <=0, gl1 <=0
LTl T 111 1] 93<=0.2: 1(62.0/13.8) -> class 1 [98.8%
' 111111111 g8>02:0(13.0/2.5) g6 > 5.4, g10 <= 0.4
1T 11111 g4>0: -> class 1 [98.7%
I 111111] 92<=12.2: 0 (70.0/1.4) g3 > 2.6, g8 >9
T] g2>12.2: -> class 1 [98.1%
' 111111111 g5<=0:1(6.023) g8 > 9, g9 > 10.2
' 11111111 g5>0: 0(18.0/1.3) -> class 1 [97.7%
I 11111 9g2>19.2: g6 > 2.8, g8 <=0.4
' 111111 9g8>0:0(50/1.2) -> class 1 [96.3%
L1111 | 9g8<=0: g2 > 12.2, g5 <=0
I 11 LI 11| g6<=0:1¢(70.0/1.4) -> class 1 [95.8%
L1111 1] g6>0: g2 > 4.6, g4 <=0, g6 <=0
I 11T 11 1] 93<=42:0(3011) -> class 1 [95.5%
111111 93>42:1(9.0/1.3) g3 <= 0.2, g4 <=0
I I I I ?3 > 10.6 : -> class 1 [84.4%
gll <=0
11111 9g9<=0: Default class: 1
| L1 1| 1] g2<=51: 1(240.0/1.4)
Il g2>51
TiiTii1 e =08 1 (2019 Sample rules of CN2 (unordered)
It 111111 g6>0.8:0(20/1.0) IF gl < 0.300000, g7 < 20.400002, g8 < 11.100000
It g9>0: THEN class = "0" [17 0
LTI 1 1] 9g4<=84:0/(17.0/1.3) IF g3 > 48.400002, g9 > 0.300000
I 1111 1| g4>8.4: THEN class = "0" [9 O
' 11111 1] g6>28: 1(33.0/1.4) IF g4 > 5.300000, g7 < 9.500000, g1l > 1.300000
11T 11 g6<=28: THEN class = "0" [252 0
' 1111111 98<=0.8:1(15.0/2.5) IF gl < 0.700000, g5 < 26.000000, g8 < 8.299999
Il 98>08:0(20/1.0) g12 > 0.500000
| 1111 gl1>0: THEN class = "0" [37 0
' 11111 g5<=5.2: 0(8.0/1.3) IF gl < 7.400000, g3 > 34.099998, g9 > 0.700000
1111 g5>52: THEN class = "0" [101 O
111111 91l<=28:0(20/10) IF g2 > 43.300003, g8 > 0.300000
L1111 91>28:1(8.0/1.3) THEN class = "0" [71 0
| || g0 >0 : IF gl > 56.099998, g5 > 0.500000
| 1 || g5 <=7.6: 0 (205.0/5.0) THEN class = "0" [99 0
' 111 g5 >7.6: IF g3 < 2.300000, g5 < 24.599998, g6 > 12. 800000
| 1111 91<=3.2: 0(25.0/2.5) g9 > 2.600000, g10 > 1.900000, g1l > 1.200000
I gl>32: gl2 > 0.300000
111 1] 910 <= 0.8 : 1 (21.0/1.3) THEN class = "0" [66 O
' 1111] 910 > 0.8 : 0 (2.0/1.0) IF gl > 77.699997, g2 < 15.900000, g3 > 0. 900000
| | g6 >5.4: g4 > 0.100000
| 1] g5>09.4: 1 (268.0/3.8) THEN class = "0" [74 0
| 1] g5 <=9.4: IF g2 > 26.100000, g4 < 13.700000, g1l > 0.100000
| |]] 910 <= 0.8 : 1 (12.0/1.3) THEN class = "0" [224 0
| 1]] 910 > 0.8 : 0 (5.0/1.2) IF gl > 95.099998, g3 > 0.300000
THEN class = "0" [21 0
IF g2 < 2.100000, g6 > 26.200001, g10 > 2. 300000
THEN class = "0" [27 0
Sample rules of C4.5rules IF g2 > 10.000000, g3 > 43.300003,
1.400000 < g6 < 2.900000, g8 > 0.500000
gl <=6, g6 <=9, g8 <=9, gl10 > 0.4, g11 > 0.2 THEN class = "0" [20 0]
-> ngsz_og a99égqi_ o 410 > 0.8 IF gﬁ < 3.100000t gA]> 41. 099998
= I % =9 . THEN class = "0" 70
-> cIass_O [99.69@_ IF g4 > 30.299999, g10 > 0. 700000
g4 <= 8.4, g6 <= 5.4, g9 >0 THEN class = "0" [62 0
-> class 0 [99.4% IF g2 > 53.500000, g3 < 21.299999, g4 < 4.200000
g6 <= 5.4, g1l > 0.2 0.900000 < g5 < 2.200000
-> class 0 [99.3% THEN class = "0" [10 0
g6 <= 11.8, g8 <= 9, gll > 1.6 IF 56.800003 < g2 < 57.300003
-> class 0 [99.3% THEN class = "0" [1 0]
g3 <= 10.6, g6 <= 5.4, g7 >0 IF g3 > 3.300000, g6 > 9.900000, g10 < 8.100000
-> class 0 [99.0% g1l < 4.100000
g3 <= 10.6, g6 <= 5.4, g8 >0 THEN class = "1" [0 334
-> C'SSS 05 298-233 o IF g2 > 9.000000, g5 < 0.100000, g6 < 0.100000
g5 <= 5.2, gl1 > THEN class = "1" [0 76
-> class 0 [98.8% IF gl > 2.100000, g4 > 11.900000, g10 < 0.100000
g5 <= 7.6, g8 <= 9, g10 > 0 g1l < 0.100000
-> class 0 [98.8% THEN class = "1" [0 217]
g2 <= 19.2, g3 <= 10.6, g5 > 0, g8 <=9, ¢gl1 <= 0.2 IF g3 > 9.900000, g7 < 1.100000, g8 < 0.100000
-> class 0 [98.7% g9 < 0.400000

g6 <= 2.8, g8 >0.8, g9 >0 THEN class = "1" [0 181]
-> class 0 [98.4%
g2 <= 12.2, g3 <= 10.6, g4 > 0, g8 <= 9, g1l <= 0.2
-> class 0 [98.2% (DEFAULT) class = "1" [1070 1090]
gl <= 1.6, g2 <=3.2, g8 <=9, gll1 > 1.6
-> class 0 [96.9%

g3 <= 4.2, g6 > 0, gll <= 0.2 Sample rules of RIPPER
-> class 0 [96.1% 0" :- g6<=8, g10>=0.2, g10>=0.8 (479/1)
gl <= 3.2, g6 <= 5.4, g10 >0 "0 :- g4<=8.4, g7>=0.2, g8<=9, g3<=14.6, g5<=19, g4<=6.8 (201/0)
-> class 0 [95.2% "0' :- g4<=7.6, 8>=0.2, g8<=8.2, g5<=21.8 (100/6)
92 <= 2, g8 <=9, g1l > 0.2 "0 i- gl>=75.2, g4>=0.2, g2<=11.8 (69/0)
-> class 0 [93.8% "0 :- gl<=4.6, g7<=7.2, gl1>=0.2, g5<=15, g4<=39.6 (63/0)
92 > 51, g6 > 0.8 "0 :- g5<=9.2, g9>=0.4, g2>=11, g5<=8 (55/1)
-> class 0 [92.29 "0 :- g3<=2.6, g5>=0.2, g9<=9.4, g4<=8.2 (42/7)
g2 <= 4.6, g3 > 0.2, g3 <= 10.6, g1l <= 0.2 "0 :- g1>=60.8, g6>=0.2 (13/1)
-> class 0 [90.5% "0 1. g1>=95, g3>=0.2 (15/4)
g3 <= 2.6, g8 > 9, g9 <=10.2 "0 :- g5<=10.4, g10>=0.2, ¢2>=30.8 (8/1)
-> class 0 [75.8% "0 :- g5<=9.8, g2<=7.8, g3>=23.4, g8>=2.8 (6/0)
g2 > 2, g6 > 9, gll <= 1.6 default '1' (1069/19)

-> class 1 [99.6%

