
Learning Logic Programs with
Unary Partial Function Graph Background Knowledge�

(extended abstract)

Tamás Horváth�

Institute of Computer Science III, University of Bonn
and Fraunhofer Institute for Autonomous intelligent Systems

tamas.horvath@ais.fraunhofer.de

Robert H. Sloan
Department of Computer Science, University of Illinois at Chicago

sloan@uic.edu

György Turán
Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago

and Research Group on Artificial Intelligence, Hungarian Academy of Sciences, Szeged
gyt@uic.edu

Abstract

The product homomorphism method is a com-
binatorial tool that can be used to develop
polynomial PAC-learning algorithms in predi-
cate logic. Using the product homomorphism
method, we show that a single nonrecursive def-
inite Horn clause is polynomially PAC-learnable
if the background knowledge is a function-free
extensional database over a single binary pred-
icate and the ground atoms in the background
knowledge form a unary partial function. That
is, the background knowledge corresponds to a
directed graph, where each node has outdegree
at most 1. The proof is based on a detailed analy-
sis of products and homomorphisms of the class
of digraphs corresponding to unary partial func-
tions.

1 Introduction
Attribute-value languages are often not suitable for rep-
resenting complex real-world machine learning problems.
Therefore, one of the research challenges in machine learn-
ing is to study learning in other representation languages.
Among such approaches, inductive logic programming
(ILP) [8] is concerned with learning in predicate logic, in
particular, with learning logic programs.

The general ILP learning problem is computationally
intractable. Therefore, one of the challenging problems
in ILP is to show positive and negative theoretical re-
sults about the efficient learnability of different fragments
of predicate logic in the formal models of computational

�This paper appeared in: L. De Raedt and T. Washio (Eds.),
Proceedings of the First International Workshop on Mining
Graphs, Trees and Sequences (MGTS-2003), Cavtat-Dubrovnik,
Croatia, 2003.

�Partially supported by the DFG project (WR 40/2-1) Hy-
bride Methoden und Systemarchitekturen für heterogene Informa-
tionsräume.

learning theory. Most of such positive results have been ob-
tained by restricting the hypothesis language. In particular,
the most frequently used restrictions are determinateness
and learning with constant depth bound [5].

In contrast to these approaches, in this work we present
a positive learnability result by restricting the background
knowledge. We assume that there is a single binary back-
ground predicate �, and that the ground �-atoms in the
background knowledge represent a unary partial function.
This structural assumption implies that the background
knowledge corresponds to a digraph where each vertex
has outdegree at most �. To prove polynomial learn-
ability for such family of learning problems in the PAC
model of learning [9], we use the product homomorphism
method [4], a general combinatorial method specific to de-
riving polynomial learning algorithms in predicate logic.
The method is based on finding a combinatorial charac-
terization for the existence of a certain homomorphism
from products of relational structures. From the structural
assumption on the background knowledge it follows that
we have to study products and homomorphisms related to
unary partial function graphs.

Using the product homomorphism method, we obtained
positive PAC result for the cases when the ground atoms
in the background knowledge form a forest [4] or a unary
function graph [3] (i.e., when each vertex has outdegree
�). The result of this paper generalizes these results, as
unary partial function graphs include both cases; a con-
nected component of a unary partial function graph is al-
ways either a tree or a function graph consisting of a sin-
gle connected component. Though the structural difference
between unary function and unary partial function graphs
may seem to be insignificant, it turns out that the presence
of both types of components requires a careful revision of
the results in [3].

The paper is organized as follows. In Section 2, we first
give the necessary concepts related to unary partial func-
tion graphs, and in Section 3 we then formulate our learn-
ing problem. In Section 4, we briefly describe the prod-

uct homomorphism method, and in Section 5, we derive
a polynomial PAC-learning algorithm by using the prod-
uct homomorphism method. Finally, in Section 6, we give
some concluding remarks along with some open problems.
Due to space limitation, we omit the proofs in this extended
abstract.

2 Graphs and unary partial function graphs
We assume the reader is familiar with the basic concepts
of graph theory (see, e.g., [2]). Throughout this paper, by
graphs we always mean directed graphs. For a graph �,
we denote by � ��� (resp. ����) the set of vertices (resp.
edges) of �.

Let �� be a graph for � � � � �. The product � ���
����� is a graph with � ��� �

��
��� � ���� such that

for all �� � ���� 	 	 	 � ���, �
 � �
�� 	 	 	 �
�� � � ��� it holds
that �����
� � ���� iff ����
�� � ����� for every � �
�� 	 	 	 � �. The �-th power of �, denoted ��, is the product
of � copies of�.

A homomorphism from a graph �� to a graph �� is
a map � � � ���� � � ���� such that ������ ��
�� �
����� whenever ���
� � �����. We call a homomor-
phism singly rooted if we specify the image of one vertex in
� ���� in advance, and we call a homomorphism multiply
rooted if we specify images of multiple vertices in � ����
in advance. A homomorphism from �� to �� mapping ��
to
� for � � �� 	 	 	 � � is denoted by

�� ������������
�����������������

�� 	

We note that a homomorphism always maps one connected
component into one connected component.

2.1 Unary partial function graphs
A graph � is a unary partial function graph if every ver-
tex of � has outdegree at most �. The name is justified by
viewing� as a graph representing a unary partial function

 � � ��� �� � ��� such that
��� �
 iff ���
� � ����
for every ��
 � � ���. As an example, the graph given in
Fig. 1 is a unary partial function graph consisting of three
connected components. Except ��, each vertex has outde-
gree 1.

���
�
���

���
�
���

���
�
���

���
�
���

���
�
���

���

���
�

���

�

�

���
�

����
�
���

����

�

����
�
���

����
�
���

����
�
���

��	
�
���

���

�
���

�

���
�

�
��

�

�
��	�

�

���

�

Figure 1: The directed graph representing the unary func-
tion
 .

For the rest of this section, let � denote a unary partial
function graph consisting of a single connected component.
Then it holds that � has at most one vertex of outdegree 0.
If � has such a vertex then � is acyclic, as in this case it is
a directed tree such that the edges are directed towards the

root (which is the vertex of outdegree �). Otherwise (i.e.,
when each of the vertices of the connected component has
outdegree 1) � is cyclic and it may be viewed as a directed
cycle with directed trees “hanging” from some vertices of
the cycle. The edges of the trees are directed towards the
cycle. We note that the directed cycle may be a loop (i.e.,
a cycle may have length 1). Cyclic vertices are those on
the cycle (e.g., ��� on Fig. 1). The other vertices are called
noncyclic.

For a vertex
 � � ���, we denote by
�
� the suc-
cessor of
. We define
 �
��
� �
 and
 ����
� denotes

�
 ������
�� for every � � �. Note that
 ����
� may be
undefined. For instance, for the graph on Fig. 1 it holds that

 ������� � �� and
 ������� is undefined.

Let � � � be an integer. We define ��
 ����
��, the height
of
 ����
�, by

��
 ����
�� �������
�����

����� �
 ����
� �
 ������ for some � � � ����
if
 ����
� is noncyclic

� if
 ����
� is cyclic

� otherwise .

For the graph on Fig. 1, we have ��
 �������� � ����� � 	,
��
 �������� � �, and ������ ��.

If � is cyclic then Æ�
� denotes the length of the unique
directed path connecting
 to the cycle, otherwise (i.e., if
� is a tree) it denotes the length of the unique directed path
connecting
 to the root. In both cases, the other endpoint

 �Æ�����
� of the path is denoted by ��
� and is referred to
as the root of
. In our example on Fig. 1, Æ���� �
, as
����� � ��, and Æ����� �
, as ������ � ���.

If � is cyclic then we denote by �cycle��� the length of
its cycle; if � is a tree then �cycle��� � �. If
 is a vertex
of a general unary partial function graph (i.e., one which
may consist of more than one connected component) then
�cycle�
� denotes �cycle��

��, where �� is the connected
component containing
. In Fig. 1, � cycle����� � �.

Let ��
 � � ��� such that � � ���� and
 � ��
�.
Then ����
� is the smallest nonnegative integer � satis-
fying
 ������ �
. Note that by the definition of � and

, both of them are either cyclic or noncyclic. In the first
case, ����
� denotes the length of the (smallest) directed
path leading from � to
 on the cycle of �. In the second
case, both � and
 must be roots of a tree. Since � con-
sists of a single connected component, � �
 and hence,
����
� � � always holds for this case.

Now let ��
 � � ��� such that ���� � ��
�. Then there
is a unique maximal integer �, � � � � ��
�Æ���� Æ�
��,
such that
 �Æ��������� �
 �Æ�������
�. This node is called
the least common ancestor of � and
, and is denoted by
������
�.

We are ready to define the distance between two vertices.
Let ��
 � � ���. Then their distance is an ordered pair of
nonnegative integers defined by

�	
 ���
� ����
��

���� ��� such that
 ������� � ������
� �
 �����
�
if ���� � ��
�

�Æ��� � ������� ��
��� Æ�
�� otherwise .

On Fig. 1, �	
 ���� ��� � ���
�, as ������� ��� � ��, and
�	
 ����� ���� � �
 � �� ��.

In the following proposition we formulate some proper-
ties of products of unary partial function graphs, that will
be used many times in what follows.

Proposition 2.1 Let �� be unary partial function graphs
and �� � � ���� for � � �� 	 	 	 � �. Let � �

��
����� be the

product of the��’s and�� � ���� 	 	 	 � ��� be the product ver-
tex obtained from the ��’s. Then for � and �� the following
properties hold.

(�) � is a unary partial function graph.

(��) �� is cyclic iff all the ��’s are cyclic.

(���) If �� is cyclic then the length of the cycle containing ��
is given by

�cycle���� � lcm��cycle����� 	 	 	 � �cycle����� �

where lcm���� 	 	 	 � ��� denotes the least common mul-
tiple of ��� 	 	 	 � ��.

3 Learning simple logic programs
In this section we define a special class of logic pro-
grams [7] that will be discussed from the point of view of
learnability.

3.1 Simple logic programs
Throughout this paper we consider (relational) vocabular-
ies consisting of a target predicate � of arity �, a binary
background predicate �, and constants ��� 	 	 	 � ��. Thus,
a term is either a variable or a constant, and an atom is
of the form � ���� 	 	 	 � ��� or ����� ���, where the �’s are
terms. Depending on its predicate symbol, an atom is said
to be a � -atom or an �-atom. A literal is an atom or
its negation. An atom is ground if it contains no vari-
ables. A basic clause is a first-order Horn clause of the
form �
 	 ��� 	 	 	 � �
 where �
 is a � -atom and �� is
an �-atom for � � �� 	 	 	 � �. It is also viewed as the set of
literals it contains. A simple logic program consists of a
basic clause and a set
 of ground�-atoms. Since � is bi-
nary, the ground �-atoms in
 form a directed graph with
vertices ��� 	 	 	 � ��.

A substitution � � ������� 	 	 	 � ������ is a mapping of
variables to terms such that �� �� �� for � � �� 	 	 	 � �. Let�
be a literal (respectively a clause). Then �� is the literal
(respectively clause) obtained from� by rewriting simul-
taneously each variable �� to �� in � for � � �� 	 	 	 � �. A
clause subsumes a clause !, denoted �� !, if there
exists a substitution � such that � � !.

To close this subsection, let be a basic clause,
 be a
set of ground�-atoms, and" be a ground � -atom. We say
that subsumes" with respect to
, denoted ���� ", if
 subsumes the basic clause "	
, i.e., �� �"	
).
It holds that ���� " iff " is implied by the simple logic
program consisting of and
.

3.2 The learning problem
In this section we give a formal description of the family
of learning problems considered in this paper. We assume
that the reader is familiar with the basic notions of the PAC-
model of learning [9].

Let
 be a set of ground �-atoms. In what follows,
 is
referred to as background knowledge, and its elements are
called background atoms. As� is a binary predicate,
 can
be viewed as a graph with vertices ��� 	 	 	 � ��.

The instance space of the learning problem is the set of
all ground � -atoms. Let be a basic clause. Then the

concept � represented by wrt.
 is the set of ground
� -atoms implied by the simple logic program consisting of
 and
, i.e.,

 � � �" � " is a ground � -atom and ���� "� 	

The concept class
���, corresponding to
 is the family
of concepts �, where is a basic clause. (For the next
definition, we recall that � is the arity of the target pred-
icate � .) Throughout this paper, we consider the family
���� (��� � �) of learning problems defined by

���� � �
��� �
 corresponds to a unary partial
function graph over � vertices� 	

That is, a concept class
��� belongs to ���� iff for every
�� there is at most one �� such that ����� ��� �
 (� �
�� # � �). The parameters measuring the size of a learning
problem in ���� are� and �.1

4 The product homomorphism method
In order to prove polynomial PAC-learnability for ����,
we shall apply the following basic result [1] from compu-
tational learning theory.

Theorem 4.1 A family of learning problems is polynomi-
ally PAC-learnable if

(�) the hypothesis finding task can be solved in time poly-
nomial in the parameters,

(��) the VC-dimension of the concept classes is bounded
by a polynomial of the parameters.

According to the first step of the above theorem, we have
to show that the hypothesis finding problem for the con-
cept classes in ���� can be solved in time polynomial in
� and �. More precisely, we consider the following single
clause hypothesis finding problem: Given
��� � ����

and disjoint sets �
 and�� of ground � -atoms, find a ba-
sic clause such that�
 � � and��� � � �, if such
a basic clause exists, and output “no”, otherwise.

In [4], we have shown that
��� is closed under
nonempty intersection for every
��� � ����. That is,
for every subset
 �
��� satisfying

�
��� $ �� � it holds

that
�

��� $ �
���. This implies that for a set % of
ground � -atoms, the intersection of all concepts contain-
ing %, denoted ���%�, is also a concept in
���, i.e.,
���%� �
���, where

���%� �
�
� � �
��� � % � �� 	

In other words,���%�, also referred to as the concept gen-
erated by %, is the smallest concept in
��� that contains
%. But this means that a consistent clause for the above
defined single clause hypothesis finding problem exists iff
���%� and �� are disjoint. Thus, the single clause hy-
pothesis finding problem can be solved by computing first
an efficiently evaluable basic clause representing the con-
cept����

� and then testing whether����

���� � �

holds.
The following theorem, a special case of the product ho-

momorphism theorem in [4], gives a combinatorial char-
acterization of the concept generated by a set of ground
� -atoms.

1In Section 5.4, we shall show that the size of the target ba-
sic clause as parameter can be omitted by extending the standard
representation language.

Theorem 4.2 Let
��� � ����, % � �� ������ 	 	 	 � ������

	 	 	 � � ������ 	 	 	 � ������ for some � � �, and let ��� denote
����� � 	 	 	 � ����� for # � �� 	 	 	 ��. Then ���%� is the set�
� ���� 	 	 	 � ��� �
� �����������������������

�������������������������������������

�
�

where ��� denotes the (�-tuple) product constants
���� 	 	 	 � ��� for � � �� 	 	 	 � �.

Theorem 4.2 above provides the following method, called
the product homomorphism method [4], for obtaining a hy-
pothesis finding algorithm for ����:

1. Find a combinatorial characterization for the existence
of multiply rooted homomorphisms from products of
unary partial function graphs to unary partial function
graphs.

2. Give an algorithm such that for every
��� � ����

and for every set % of ground � -atoms it translates
the combinatorial characterization in time polynomial
in�, �, and �%� into a basic clause such that

� � � ���%� and
� can be evaluated with respect to
 in time

polynomial in� and �.

5 Application of the product
homomorphism method

Using the product homomorphism method, in this section
we derive an efficient PAC algorithm for learning sim-
ple logic programs with partial function graph background
knowledge.

5.1 Homomorphisms between unary partial
function graphs

In order to apply the product homomorphism method to
unary partial function graphs, we first need to find neces-
sary and sufficient conditions for the existence of multi-
ply rooted homomorphisms from products of unary partial
function graphs into unary partial function graphs. Since
unary partial function graphs are closed under product by
(i) of Proposition 2.1, in the next theorems we study rooted
homomorphisms between unary partial function graphs.
Furthermore, as a homomorphism always maps one con-
nected component into one connected component, it is suf-
ficient to consider unary partial function graphs consisting
of a single connected component.

Theorem 5.1 Let �� and �� be unary partial function
graphs consisting of a single connected component, let
��� 	 	 	 � �� � � ���� be distinct vertices for some � � �,
and $�� 	 	 	 � $� � � ����. Then�� �����������

�����������������
�� iff

(i) �� �����
�������

�� for every � � �� 	 	 	 � �,

(ii)
 �����$�� �
 �����$�� for every � � � &
 � �,
where ���� ��� � �	
 ���� ���.

Condition (i) of the above theorem indicates that one
has to study singly rooted homomorphisms between unary
partial function graphs. The following theorem gives a
necessary and sufficient condition for the existence of a
singly rooted homomorphism between unary partial func-
tion graphs. We denote by �� � �� that �� divides ��.

Theorem 5.2 Let �� and �� be unary partial function
graphs consisting of a single connected component and let
� � � ����, $ � � ����. Then �� ����

�����
�� iff

(�) �� is cyclic satisfying �cycle���� � �cycle���� when-
ever �� is cyclic,

(��) ��
 ����$�� � ��
 ������� for every � � � .

5.2 Products of unary partial function graphs
The product homomorphism method indicates that the
learning algorithm must consider the product of � copies of
the graph representing the background knowledge, where
� is the number of positive examples. However, that prod-
uct is exponentially large; it contains �� nodes, where �
is the number of constants mentioned in the background
knowledge. Therefore we cannot work with this graph ex-
plicitly. Instead, we must show that the relevant parame-
ters implied by Theorems 5.1 and 5.2, i.e., cycle lengths,
heights, and distances between vertices can be computed
directly from those of the original graph corresponding to
the background knowledge.

For computing cycle lengths, we can directly apply (iii)
of Proposition 2.1. We start by giving a lemma that can be
used for determining the height of a product vertex.

Lemma 5.3 Let �� be unary partial function graphs for
� � �� 	 	 	 � �, � �

��
�����, and �� � ���� 	 	 	 � ��� � � ���.

Then ��
 �������� � ��
��������� ��

�������� for every � �

�.

To state Lemma 5.6 below for computing the distance
between two product vertices, in the following lemma we
first characterize the distance of a product vertex from its
root. Then, in Lemma 5.5, we give a necessary and suffi-
cient condition for two vertices of the product graph to be
in the same connected component.

Lemma 5.4 Let �� be unary partial function graphs, �� �
� ���� for � � �� 	 	 	 � �, and consider the product graph
� �

��
����� and product vertex �� � ���� 	 	 	 � ��� �

� ���. Let ' denote the set of indices �� � � � � �

�� ����� is noncyclic�. Then the distance of �� from its root
����� is given by

Æ���� �

	
������������ Æ���� if ' � �

��
��� Æ���� otherwise .

Lemma 5.5 Let �� be unary partial function graphs for
� � �� 	 	 	 � �, � �

��
�����, and �� � ���� 	 	 	 � ��� �$ �

�$�� 	 	 	 � $�� � � ���. Then �� and �$ are in the same con-
nected component of � iff for every � � �� 	 	 	 � � it holds
that
 �Æ����
������ �
 �Æ������$��, where � � � if some of
the ��’s belongs to a noncyclic connected component; oth-
erwise, � is a nonnegative integer satisfying

� � ��
 �Æ�
���������

�Æ������$��� ���� �cycle�����

for every � � �� 	 	 	 � �.

The following lemma follows directly from Lemmas 5.4
and 5.5.

Lemma 5.6 Let ��, �, ��, and $�, � � � � �, be defined as
in the previous lemma and assume that the product vertices

�� � ���� 	 	 	 � ��� and �$ � �$�� 	 	 	 � $�� belong to the same
connected component of �. Then

�	
 �����$� �

�
�Æ����� ��� Æ��$�� ��� if ����� � ���$�

�Æ���� � ��� Æ��$�� otherwise ,

where �� � ����� � � �
 �Æ�
���������� �
 �Æ��������$��

for � � �� 	 	 	 � �� and �� is the smallest nonnegative inte-
ger satisfying

�� � ��
 �Æ�
���������

�Æ������$��� ���� ���

for every � � �� 	 	 	 � �.

Since the congruence system in Lemmas 5.5 and 5.6 can be
solved efficiently (see, e.g., [6]), one can decide efficiently
whether�� and �$ are in the same connected component, and
if so, then their distance �	
 �����$� can be computed in poly-
nomial time.

5.3 A combinatorial characterization of ��
Combining the results of Sections 5.1 and 5.2 with Theo-
rem 4.2, in this section we give a combinatorial characteri-
zation of the concept generated by a set of ground � -atoms
wrt. unary partial function graph background knowledge.
Let % be the set of ground atoms �� �b��� 	 	 	 � � �b���,
where b� � ������ 	 	 	 � ����� for � � �� 	 	 	 � � (� � �). Let���
denote the product vertex ����� � 	 	 	 � ����� for # � �� 	 	 	 ��.
Let

'const�%� �

��#� (� � � � # � �� � � (� �� and��� � ���� �

'var�%� �

�# � � � # � ����� �� ��� for some (, � � (� �� �

'cyclic�%� �

�# � 'var�%� � ������ is cyclic� �

)pairs�%� �

����
� � ��
 � 'var�%�� � &
� and������� are in

the same connected component� �

)const�%� �

��#� (� � # � 'var�%�� � � (� �� and��� ���� are in

the same connected component� 	

Theorem 5.7 If
 is a unary partial function graph then

���%� � �� ���� 	 	 	 � ��� �

�� � �� for all �#� (� � 'const�%�, (1)

 ��cycle�
��� ��������� � ����� for all # � 'cyclic�%�, (2)

��
 �������� � ��

��������� for all � � �� 	 	 	 � �

and # � 'var�%�, (3)

 �������� �
 �������� for all ���
� �)pairs�%�,

where ���� ��� � �	
 ���������, (4)

 �������� �
 �������� for all �#� (� �)const�%�,

where ���� ��� � �	
 ���� ������ (5)

Proof sketch By Theorem 4.2, � ���� 	 	 	 � ��� � ���%� iff

�
�� �����������������������
�������������������������������������

 	 (6)

Thus, it is sufficient to show that (6) holds iff conditions (1)
- (5) hold. For the “only if” part, the proof of (1) is auto-
matic, (2), (3) hold by Theorem 5.2, and (4), (5) by (ii) of
Theorem 5.1. To prove the “if” part, the connected compo-
nents of �
�� can be considered separately.

(i) For connected components not containing any non-
constant product vertex from ���� 	 	 	 ����, there are
projections providing a homomorphism into
 and
mapping each occurring product constant �� to �.

(ii) By Theorems 5.1 and 5.2, (2)–(4) provide the re-
quired rooted homomorphisms for connected compo-
nents containing at least one non-constant vertex from
���� 	 	 	 ����.

(iii) Finally, for connected components containing at least
one non-constant vertex from ���� 	 	 	 ���� and at least
one constant product vertex, (2)–(3) and (5) provide
the required rooted homomorphisms by Theorems 5.1
and 5.2.

5.4 Concept representation and polynomial
learnability

The last step of the product homomorphism method is to
give an algorithm translating the combinatorial character-
ization given by Theorem 5.7 into an efficiently evaluable
basic clause. From our previous results [4] on the length of
product cycles it follows that there are cases when the size
of any consistent basic clause is exponential in �, i.e., when
�cycle����� in (2) is exponential in �. Thus, the standard
representation using only the predicates � and � is not
suitable for polynomial learnability if the size of the target
concept is not considered as a learning parameter. There-
fore, we introduce new predicates of the form PATH ���� *�,
which hold if there is a path of length � from � to *, for ev-
ery �. Note that PATH���� �� holds iff � � � or � � � and
�cycle��� � �. Using the extended representation language,
we are ready to give Algorithm 1 computing a clause that
represents���%� for a set % of ground � -atoms and unary
partial function graph background knowledge
.

Steps (1)–(5) of Algorithm 1 translate Conditions (1)–
(5) of Theorem 5.7, respectively. We have the following
theorem.

Theorem 5.8 Algorithm 1 is correct, i.e., � � ���%�,
and it is polynomial in �, �, and �%�. The size of (in
the extended representation language) is+

�� ���

�
.

can be evaluated wrt.
 in time polynomial in � and �.

Example 5.9 To illustrate Algorithm 1, consider the unary
partial function graph � given in Fig. 1. Using the binary
background predicate �, let
 be the corresponding back-
ground knowledge, i.e., ����
� �
 iff ���
� � ���� for
every ��
 � � ���.2

Let � be a ternary target predicate and % �

�� ���� ��� ����� � ����� �	� �����. Thus, ��� � ���� ����,
��� � ���� �	�, and ��� � ����� ����. By definition,
'const�%� � �, 'var�%� � ���
� ��, and by (ii) of Proposi-
tion 2.1, 'cyclic�%� � ���. To compute)pairs�%�, we apply
Lemma 5.5 for every ���
�, ��
 � 'var�%�. For ���
� cor-
responding to ��������� � ����� ����� ���� �	��, we have to
check whether

 �Æ�
����
������ �
 �Æ�

��������� (7)

2We note that B is obtained from the background knowledge
in the running example of [3] by removing edge ���� ���.

Algorithm 1 UNARYPARTIALFUNCTIONGRAPH

Require: ground set % � �� �b��� 	 	 	 � � �b��� and a
unary partial function graph

Ensure: clause such that � � ���%�

1: let � �� ���� 	 	 	 � ����, where �� � �� if �#� (� �
'const�%� for some (, otherwise �� is the variable ����
for # � �� 	 	 	 ��

2: for all # � 'cyclic�%� do
if Æ����� � � then
 � � ��PATH�cycle�

����
��� � ����

else
 � �
��PATHÆ�����

��� � *����PATH�cycle�
����

�*� � *���

3: for all # � 'var�%� and � � �� 	 	 	 � Æ����� do
if � & ��
 ����Æ������� &� then
 � �
��PATH���� � *

�
����PATH��
 ���������

�*��� � *
�
���

4: for all ���
� �)pairs�%� do
 � � ��PATH������ ,������PATH������ ,�����

where ���� ��� � �	
 ���������

5: for all �#� (� �)const�%� do
 � � ��PATH����� � ,

�
������PATH����� � ,

�
�����

where ���� ��� � �	
 ���� �����

6: return

and

 �Æ�
����
������� �
 �Æ�

�������	� (8)

hold for � � �. By Lemma 5.4, we have

Æ����� � Æ����� ������ ��

�����

Æ���� � Æ���� � �

Æ����� � Æ����� �	�� � ��

�����

Æ���� � Æ�����
 	

In both equations, ' � ���, as ������ and ���	� are cyclic.
The equations in (7) and (8) thus hold by

 ������� � �� �
 ������� and
 �������� � ��� �
 �����	�

respectively. Hence, ���
� �)pairs�%�. It can be shown in
the same way that)pairs�%� � ����
�� and)const�%� � �.

Now we are ready to illustrate Algorithm 1 step by step
on inputs % and
.

Step 1: � �� ����� � ���� � ������ because 'const � �.

Step 2: Since 'cyclic�%� � ���, we have to compute Æ�����
and �cycle�����. By Lemma 5.4, Æ����� � �, and
from (iii) of Proposition 2.1 we have �cycle����� �
lcm��� 	� � �
. Thus, in this step we add the literal
�PATH������� � ����� to .

Step 3: For # � � and � � � we first have to compute
��
 �
�������. By Lemma 5.3, we have ��
 �
������� �

��
���
 �
������� ��
 �
�������� � ��
��� �� � �.
For # � � and � � Æ����� � �, ��
 ��������� � � by
Lemma 5.3. Since ��
 ��������� � �, we add no literals
to . For similar reasons, we add no new literals to
 for # �
� �.

Step 4: As)pairs � ����
��, we have �	
 ��������� �
���
� by Lemma 5.6, and add therefore
�PATH������ � ,������PATH������ � ,���� to .

Step 5:)const�%� � � and thus, no literals will be added
to in this step.

Step 6: The algorithm finally returns the clause

� ����� � ���� � �����	

PATH������� � ������

PATH������ � ,����� PATH������ � ,���� 	

Since the VC-dimension of a concept class
 is at most
����
�, from the bound on the size of the target concept
in Theorem 5.8 it follows that the VC-dimension of
���
is polynomial in � and � if
 is a unary partial function
graph. Thus, by Theorems 4.1 and 5.8 we have the follow-
ing main result of this paper.

Theorem 5.10 Using the extended representation lan-
guage, simple logic programs with
 being a unary partial
function graph are efficiently PAC-learnable.

6 Remarks and open problems
Using the product homomorphism method, we have
shown that simple logic programs with unary partial func-
tion graph background knowledge are polynomially PAC-
learnable in an extended representation language. The im-
portance of this result is that we have not assumed any
bound on the size of the target clause, the target clause is
not necessarily determinate, and its size may be exponen-
tial in the standard representation language.

Finally, we list some interesting open problems for fur-
ther research. In practical applications, usually there is no
consistent hypothesis consisting of a single clause. Since
unary partial function graphs generalize forests, from our
previous results in [4] it follows that the problem of de-
ciding whether there exists a consistent hypothesis con-
sisting of � clauses is NP-complete for any fixed � � �
for unary partial function graph background knowledge. It
would be interesting to see whether the optimal solution
can be approximated in polynomial time. A further re-
search topic would be to investigate whether the positive
PAC result of this paper holds for colored unary partial
function graphs, i.e., when the vocabulary is extended by
a set of unary background predicates. Finally, it would be
interesting to apply the product homomorphism method to
other classes of directed graphs, in particular to classes gen-
eralizing unary partial function graphs.

References
[1] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. War-

muth. Learnability and the Vapnik-Chervonenkis di-
mension. Journal of the ACM, 36(4):929–965, 1989.

[2] R. Diestel. Graph theory. Springer-Verlag, New York,
2nd edition, 2000.

[3] T. Horváth, R. Sloan, and G. Turán. Learning
logic programs by using the product homomorphism
method. In Proc. of the 10th Annual Conference on
Computational Learning Theory (COLT-97), pages
10–20, New York, 1997. ACM Press.

[4] T. Horváth and G. Turán. Learning logic programs
with structured background knowledge. Artificial In-
telligence, 128(1-2):31–97, May 2001.

[5] J.-U. Kietz and S. Džeroski. Inductive logic program-
ming and learnability. SIGART Bulletin, 5(1):22–32,
1994.

[6] D. E. Knuth. The Art of Computer Programming, Vol-
ume 2: Seminumerical Algorithms. Second Edition,
Addison-Wesley, Reading, 1981.

[7] J. W. Lloyd. Foundations of Logic Programming, Sec-
ond Edition. Springer-Verlag, 1987.

[8] S. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic
Programming, 19/20:629–679, 1994.

[9] L. G. Valiant. A theory of the learnable. Communica-
tions of the ACM, 27(11):1134–1142, 1985.

