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Abstract

The input representation is one of the crucial fac-
tors of learnability. For knowledge discovery in
databases, the transformation of the given data
into an appropriate representation is the task of
preprocessing and there most efforts are spent.
It is our goal to support the design of the over-
all chain of steps in preprocessing. In this pa-
per, we present a practical application together
with its design process. This example case might
inspire case designers in a similar situation to
try the same procedure that we detected in the
end. The key to successful predicting surren-
der of insurance policies from insurance data
was the transformation into a frequency repre-
sentation. This transformation delivered a con-
densed data set which we characterise as a TCat-
concept[Joachims, 2002]. The learnability of
TCat-concepts by a support vector machine can
be shown before running it. However, Joachim’s
theory can only be applied after the transforma-
tion. In order to support designers of knowledge
discovery cases, we propose a heuristic which
can be evaluated on the untransformed data in
the database to decide whether the transforma-
tion should be applied.

1 Introduction
The success of knowledge discovery depends on several
aspects, among them the quality and completeness of the
data, the clarity of the task, and the availability of efficient
tools. Whereas research on efficient tools for the data min-
ing step has a long tradition, the preprocessing steps have
come into focus only recently. Preprocessing inspects data
characteristics (e.g., class distribution), enhances the qual-
ity of data (e.g., handling of missing values or biased sam-
pling), selects an algorithm for the data mining step, and
transforms the given data into the format which the algo-
rithm requires. Some preprocessing tasks such as, e.g., fea-
ture generation and selection have raised some attention.
Similar to the investigation of a data mining algorithm, re-
search on preprocessing algorithms deal with a single step
of the overall knowledge discovery process. However, the
steps are interdependent: we choose an algorithm which
best fits the data characteristics, but we also change the
data such that a given algorithm becomes applicable. For
instance, we use a decision tree learner in order to replace
missing values by the predicted ones before we apply it
or a support vector machine for data mining[Morik and

Scholz, 2003]. Focussing on this design task may provide
us with insight into principles that relate data characteris-
tics, their transformation, and properties of algorithms. At
least, cases of successful knowledge discovery can be used
as a guideline for the design of new, similar cases.

In this paper, we want to present a case whose solution
was hard to find1. We were provided with data from an
insurance company in anonymous form. The task was to
predict surrender in terms of a customer buying back his
life insurance. The classification into possible surrender or
continuation would be used in order to select those cus-
tomers for further actions who are likely to re-buy their
contract, and in order to calculate the financial deposits
needed in order to pay the re-bought contracts. Data about
customers, about contracts and about the components of
contracts were given in a time-stamped manner. The gen-
eration and selection of relevant features from the given
data was the primary task. The choice of the appropriate
algorithm for the data mining step is dominated by the cho-
sen feature set. We experimented with decision tree learn-
ing, association rule learning, and the support vector ma-
chine (MY SVM ) [Rüping, 2000]. We present the first trials
which did not exceed a precision of 57%. A precision of
96.8% was only achieved when using new features for the
changes in contracts that were generated in analogy to term
frequency and inverse document frequency (TF/IDF).

We explain the astonishingly good result by theoretical
findings about the learnability of text classification by sup-
port vector machines[Joachims, 2002]. Now, that we have
transformed the data into TF/IDF feature vectors, we can
see how they fit Joachim’s TCat model. A posteriori we
can base our discovery results on sound principles. For the
apriori support of the design process we propose a heuristic
that is calculated on the given time-stamped data.

The paper is organized as follows. First, we describe the
application in Section 2. Second, in Section 3 we describe
the first experiments focusing on handling the history of
contracts. Third, we describe the successful case in Sec-
tion 4.1 and in Section 4.2 analyse it in terms of the TCat
model and the distribution of the transformed input space.
An estimate of the data space after transformation is de-
rived (Section 4.3). We conclude by a proposal to gather
successful cases of knowledge discovery at an abstract level
and discuss related work in Section 5.

1Internal studies at the insurance company found that for some
attributes the likelihood of surrender differed significantly from
the overall likelihood. However, these shifts of probabilities can-
not be used for classification.



2 The Insurance Application
The database consists of 12 tables with 15 relations be-
tween them. The tables contain information about 217586
contracts, 533175 components and 163745 customers. The
contracts belong to five kinds of insurances: life insurance,
pension insurance, health insurance, incapacitation insur-
ance and funds bounded insurance. Every contract consists
on average of 2 components. Overall the table of contracts
has 23 columns and 1 469 978 rows whereas the table of
components has 31 columns and 2 194 825 rows. Each
contract and each component may be changed throughout
the period of an insurance. For every change of a contract
or a component there is an entry in the database with the
new values of the features, a unique mutation number, a key
representing the reason of change and the date of change.
Each contract is on average changed 6 times, each compo-
nent on average 4 times.

Figure 1 shows an extract of the table storing the con-
tracts to give an idea how the data looks like. The table has
the following attributs (not all are shown in the figure):

• VVID is the key identifying a contract.

• VVAENDNR is the unique mutation number

• VVWIVON gives the begin of the validity period of
the current record

• VVWIBIS gives the end of the validity period of the
current record

• VVAENDART is the key representing the reason of
change (for example 1 = rejected application, 4 = can-
cellation of the mutation expiry, 22 = expiry of pre-
mium payment, 110 = inclusion of a person)

• VVAENDDAT gives the date of change

• VVVERSART is the kind of insurance (life, pension,
health, incapacitation or funds bounded)

• VVWAE is the currency in which benefits and premi-
ums are paid

• VVSTACD gives the status of the contract

• VVPRFIN states how the premium is paid

• VVPRZA is a technical field

• VVINKZWEI states the number of premium pay-
ments per year

• VVBEG gives the begin date of the insurance contract

• VVEND gives the end date of the insurance contract

• VVINKPRL gives the amount of the premium

• VVINKPRE gives the amount of a single allocation

• VVABVB identifies the insurance agent

• VVABGA identifies the insurance agency

• VVSTIFCD is the provision foundation

• VVVORSCD is the kind of provision

• VVBVGCD states whether the insured has a claim for
a company pension plan

• VVEUCD states the amount of benefits in case of dis-
ability

• PDID identifies the product

Surrender is only observed in 7.7 % of the contracts.
Hence, the first characteristic of the case is that it is an
example of so-called skewed data[Bi et al., 2001]. Over-
all 2 181 401 attributes are present in the data warehouse

which makes the data very high dimensional. Second, the
data are sparse in the following sense: if the attribute val-
ues would be transformed into binary attributes, many of
the attribute values would be zero. Third, those attribute
values occurring frequently do so in the surrender class
as well as in the regular class. These characteristics, of
course, remind us of the text classification characteristics
established by Joachims[Joachims, 2002] and as we will
see later on, the analogy actually holds. We found out that
attributes concerning the customer did not support the clas-
sification into surrender and not surrender. Relevant are
the attributes describing the contract and its components.
The fourth characteristic is that the data show the history
of a contract. Changes of a contract and/or its components
are time-stamped. This means, that the same contract is
described in several rows of the contract table, each row
describing one state of the contract with an attached date.

3 First Experiments

There are many ways to handle time-related data, e.g.,
[Blockeel et al., 2001; Daset al., 1998; Mannilaet al.,
1995; Morik, 2000].

It is hard to select the appropriate approach. The first
choice that is often successful, is to ignore the time infor-
mation (Section 3.1). In our case, this means to select for
each contract the latest valid record. The second choice is
modelling explicitly the sequential structures (Section 3.2).
In our case, this means that for each attribute of a contract,
the begin date and the end date of a particular attribute
value is written as a time interval. The third choice is to
compile the time information into the representation. Here,
we counted for each attribute how often its value changed
within one contract (Section 4).

3.1 Predicting surrender without time
information

Feature selection from the given database attributes is
hardly obtained without reasoning about the application
domain. Our first hypothesis was, that data about the cus-
tomers could indicate the probability of surrender. There-
fore, we applied decision tree learning andMY SVM to cus-
tomer data, sampling equally many customers who con-
tinued their contract and those who re-bought their con-
tract. The data were preprocessed in two ways: the age
of a customer was grouped into 20 years classes and a bi-
nary attributesurrenderwas generated from the raw data.
The resulting set of eleven attributes was transformed into
the input formats of the learning algorithms. Decision tree
learning achieved a precision of 57% and a recall of 80%.
MY SVM obtained a precision of 11% and a recall of 57%
with its best parameter setting (radial kernel)[Bauschulte
et al., 2002]. Trying association rule learning with the con-
clusion fixed to surrender, did deliver correlated attributes.
However, these were the same correlations that could be
found for all customers[Bauschulteet al., 2002]. The de-
scription of customers in the database does not entail the
relevant information for predicting surrender.

Changes in a customer’s situation, e.g., buying a house,
marriage, or child birth is not stored. These events can
only indirectly be observed by changes of the contract or
its components. Hence, we focused in a second experi-
ment on the modification tables related with contract com-
ponents. 33 database attributes for each component of a
contract were selected. Attributes of a component were



Figure 1: Extract of the contract table

combined with a year (1960 - 2002) stating when this at-
tribute was changed. Some of the 1386 combinations did
not occur. The resulting table of 991 columns shows in
each row the complete set of changes of a component and
whether the corresponding contract was re-bought, or not.
The tables were transformed into the input format of the
learning algorithms. Learning association rules with the
conclusion fixed to surrender clearly showed the peak of
changes at 1998 where the Swiss law changed and many
customers re-bought their contracts. Other changes were
just the procedure of surrender, such as finishing the com-
ponent and the payment. UsingMY SVM , 44% precision
and 87% recall were achieved using a linear kernel. These
results show either that the data do not entail relevant infor-
mation for surrender prediction, or the representation pre-
pared for learning was not well chosen. They were suffi-
cient, however, to select from the overall data set those at-
tributes that describe contracts and no longer search within
the customer data for reasons of surrender.

3.2 Predicting surrender on the basis of time
intervals

Taking into account the time aspect of the contract changes
was considered an opportunity to overcome the rather dis-
appointing results from previous experiments. There, time
was just part of an attribute name. Now, we represented
time explicitly. The time stamps of changes were used to
create time intervals during which a particular version of
the contract was valid. Relations between the time intervals
were formulated using Allen’s temporal relations[Allen,
1984]. Following the approach of Ḧoppner [Höppner,
2002] who applies theAPRIORI algorithm to one win-
dowed time series[Agrawalet al., 1993] a modification to
sets of time series has been implemented[Fisseler, 2003].
For each kind of an insurance, association rules about time
intervals and their relations were learned according to two
versions of time. The first version handles the actual dates,
finding that according to a change of Swiss law many cus-
tomers bought back their contracts around 1998. The sec-
ond version normalises the time according to the start of
the contract such that time intervals of changes refer to the
contract’s duration. A restriction of the learning set filter-

ing out the contracts around 1998 intended to prevent the
analysis from misleading effects of the law change. The
prediction of surrender was tried on the basis of both, com-
ponent data and a combination of component and contract
data, applying biased sampling such that surrender and
continuation became equally distributed. The rules learned
from the set of histories leading to surrender and the rules
learned from the set of continued contract/component his-
tories did not differ. The same interval relations were valid
for both sets. Hence, the features representing a sequence
of changes did not deliver a characterisation of surrender.
We are again left with the question whether there is noth-
ing within the data that could be discovered, or whether we
have just badly represented the data for our task.

4 Using TF/IDF Features
In the first experiments we have taken into account the cus-
tomer attributes, the contract attributes, the component at-
tributes and the time intervals for the states of components
and/or contract attributes. However, each change of a com-
ponent was handled as one event. Frequencies were only
counted for all contract histories during the data mining
step in order to calculate the support. Counting the fre-
quencies of changes within a contract could offer the rel-
evant information. It would be plausible to conclude that
very frequent changes of a contract are an effect of the cus-
tomer not being satisfied with the contract. If we transform
the chosen excerpt from the raw data (about contracts) into
a frequency representation, we possibly condense the data
space in an appropriate way. However, we must exclude
the frequencies of those changes that are common to all
contracts, e.g. because of a change of law. The feature
from statistical text representation formulates exactly this:
term frequency and inverse document frequency (TFIDF)
[Salton and Buckley, 1988]. Term frequency here describes
how often a particular attributeai of cj , the contract or one
of its components, has been changed.

tf(ai, cj) =‖ {x ∈ time points | ai of cj changed} ‖
The document frequency here corresponds to the number

of contracts in whichai has been changed. The set of all
contracts is writtenC.



df(ai) =‖ {cj ∈ C | ai of cj changed} ‖
Hence the adaptation of the TFIDF text feature to con-

tract data becomes for each contractcj :

tfidf(ai) = tf(ai, cj)log
‖ C ‖
df(ai)

This representation allows one to classify contracts into
those that are re-bought and those that are continued. For
data in TF/IDF a support vector machine is a promising
algorithm to choose.

4.1 Preprocessing

14 attributes from the original database were selected. We
transformed the values of the attribut which indicates the
reason for a change of a contract (VVAENDART) into bi-
nary values. For each of the 121 different values a new
attribut with the name MUTx, where x is the attribut value,
was constructed. Thus we obtained 134 features describ-
ing changes of a contract. To calculate the TFIDF values
for these features we considered the history of each con-
tract. We ordered all mutations of a contract by its times-
tamps and compared two successive mutations with each
other. For the 13 original attributes we obtained the term
frequency by counting how often the value of the features
changed. Figure 2 illustrates the procedure. For the 121
newly created features we counted how often they occurred
within the mutations. Figure 3 shows how the calculation
was done. It was now easy to calculate the document fre-
quencies for each feature as the number of contracts with a
term frequency greater than 0.

4.2 Results

Since surrender is only observed in 7.7% of the contracts
we needed a strategy to handle this bias. First we experi-
mented with biased samples.MY SVM learned on random
samples with 1000 and 2000 examples and tested on the
remaining instances of the population. The best result we
achieved with this strategy was a precision of 96.8%, an ac-
curacy of 98.6%, and a recall of 86% using a linear kernel.
Our second approach was to perform a 10-fold crossval-
idation on 10000 examples punishing the negative exam-
ples by a factor of 3. This led to a precision of 94.9%, an
accuracy of 99.4%, and a recall of 98.2% on the test set.

4.3 Explanation

The original data space was first reduced by selecting only
the contract data. However, this excerpt still is not well
suited for learning. The transformation into a frequency
representation allows to model the data as TCat-concepts.
TCat-concepts model text classification tasks such that
their learnability can be proven[Joachims, 2002].

Definition of TCat-concepts: ”The TCat-concept

TCat([p1 : n1 : f1], ..., [ps : ns : fs])

describes a binary classification task withs sets of dis-
joint features. The i-th set includesfi features. Each
positive example containspi occurrences of features
from the respective set, and each negative example
containsni occurrences. The same feature can occur
multiple times in one document.”[Joachims, 2002]

In order to describe the newly constructed data set in terms
of TCat-concepts, we need to partition the feature space
into disjoint sets of positive indicators, negative indica-
tors and irrelevant features. Using the simple strategy of
selecting features by their odds ratio, there are 2 high-
frequency features that indicate positive contracts (surren-
der) and 3 high-frequency features indicating negative con-
tracts (no surrender). Similarly, there are 3 (4) medium-
frequency features that indicate positive contracts. In the
low-frequency spectrum there are 19 positive indicators
and 64 negative indicators. All other features are assumed
to carry no information.

To abstract from the details of particular contracts, it is
useful to define what a typical contract for this task looks
like. An average contract has 8 features. For positive ex-
amples on average 25% of the 8 features come from the set
of 2 high-frequency positive indicators while none of these
features appear in an average negative contract. The rela-
tive occurence frequencies for the other features are given
in Table 1. Applying these percentages to the average num-
ber of features, this table can be directly translated into the
following TCat-concept.

TCat ( [2 : 0 : 2], [1 : 4 : 3], # high frequency
[3 : 1 : 3], [0 : 1 : 4], # medium frequency
[1 : 0 : 19], [0 : 1 : 64], # low frequency
[1 : 1 : 39] # rest

)

The learnability theorem of TCat-concepts[Joachims,
2002] bounds the expected generalization error of an unbi-
ased support vector machine after training onn examples
by

R2

n + 1
a + 2b + c

ac− b2
(1)

whereR2 is the maximum Euclidian length of any feature
vector in the training data, anda, b, c are calculated from
the TCat-concept description as follows:

a =
s∑

i=1

p2
i

fi
b =

s∑

i=1

pini

fi
c =

s∑

i=1

n2
i

fi

a = 5.41, b = 2.326, c = 5.952 can be calculated
directly from the data. The Euclidian length of the vec-
tors remains to be determined. We want to see whether
the data transformation condenses the data properly. For
texts, Zipf’s law gives the approximation[G.K.Zipf, 1949].
Experimental data suggests that Mandelbrot distributions
[Mandelbrot, 1959]

tfi =
c

(k + r)φ

with parametersc, k andφ provide a better fit. For the con-
tract data figure 5 plots term frequency versus frequency
rank. The line is an approximation withk = −0.6687435
andφ = 1.8. We see that (as is true for text data) also the
contract data can be shrinked by the frequency transforma-
tion.

R2 =
d∑

r=1

(
c

(r + k)2

)2

We boundR2 ≤ 37 according to the Mandelbrot distri-
bution and come up with the bound of the expected error
according to equation 1 of22n+1 , consequently after training
on 1000 examples the model predicts an expected general-
ization error of less than 2.2%. It turns out that the trans-
formed data sets can easily be separated by a support vector



Figure 2: Calculating the term frequency for the original attributes

Figure 3: Calculating the term frequency for the newly created features

machine. Hence, the good learning results (0.6% error) are
explained.

However, we cannot apply the TCat model to the given
data. In order to ease the design process of knowledge
discovery we need some hint when the TF/IDF represen-
tation is worth the transformation effort. In other words,
we should know before the transformation whether the data
space will be condensed, or not. We order the original table
with time stamps such that the states of the same contract
are in succeeding rows. We consider each contractc a vec-
tor and calculate the frequency of changes for each of its
n attributesa1...an in parallel “on the fly”. We can then
determine in one database scan the maximum value of the
Euclidian length of a vector:

R̂ = max




√√√√
n∑

i=1

tf(ai, cj)2


 (2)

If R̂ ≤ √
nm wherem is the maximum frequency, the

transformation into TF/IDF features is worth a try. In our
casen = 14 andm = 15 so thatR̂ = 22, 913 which is in
fact less than

√
1415 = 56.12.

5 Related Work and Conclusion
In this paper, we have presented a knowledge discovery
case together with its design process. The design process
can be viewed as the search for a data space which is small
enough for learning but does not remove the crucial infor-
mation. The first approaches and background knowledge
could effectively focus the search for an excerpt of the
given database on contract data. Feature selection could
not be guided in the usual wrapper manner[Kohavi and

John, 1997], because no subset of the original features al-
lows for successful learning. The reason lies in the han-
dling of time-stamped data. Only using the current state
of a contract abstracts away the crucial information. Fol-
lowing the approach of[Mannilaet al., 1995] by explicitly
representing time intervals during which a contract had a
certain state was not effective, either. The key idea to solv-
ing the discovery task was to create TF/IDF features for
changes of contracts. We explained the good learning re-
sults when using these features by Joachim’s learnability of
TCat-concepts. In[Domeniconiet al., 2002] the solution
of a event prediction is also explained by Joachim’s theory.
They argue on the basis of the data characteristics similar
to our description in Section 2. We move beyond this by
actually computing the TCat-concept of our application. In
addition, their argument justifies to select a support vector
machine for learning. Our focus is on the preprocessing,
particularly on the feature construction. In our view, the
original idea in the event prediction case was the feature
generation form different event types observed in event
sequences: moving a window over the sequence, an event-
by-window matrix of sizem × n is created wheren is the
number of monitor windows. If the number of occurences
of an event type within a window is taken as the value of
the new feature, then also in the event prediction task there
is a frequency encoding. The feature construction of the
event prediction case differs from our feature construction.
In particular, it does not take into account an analogy to the
document frequency as we do. The substantial difference
between the paper of Domeniconi and colleagues and ours
lies in the focus of the argument. They focus on the use-
fulness of a support vector machine for their learning task.
We focus on how to transform a data set such that learning



high frequency medium frequency low frequency
2 pos. 3 neg. 3 pos. 4 neg. 19 pos. 64 neg. 39 rest

pos. contract 25% 12.5% 37.5% 0% 12.5% 0% 12.5%
neg. contract 0% 50% 12.5% 12.5% 0% 12.5% 12.5%

Table 1: Composition of an average positive and an average negative contract

Figure 4: TCat-Concept for the contract data

becomes possible. We derive from the characteristics of the
transformed data which learning algorithm to choose.

We are tackling the subject of how to guide the design of
knowledge discovery processes. Our subject is the overall
sequence of steps. In the application described here, the
steps are:
• selecting contracts as the relevant aspect for surrender

prediction,

• selecting 14 attributes from the contract tables,

• counting the frequencies of the features in each con-
tract (term frequency),

• counting the frequencies of features in all contracts
(document frequency),

• creating a table with the target attribute “surrender”
and the 134 features of TF/IDF type,

• splitting the set of records for cross validation,

• runningMY SVM on the training set, and

• evaluating the learning result on the test set.
There are some approaches taking into account the over-
all process. TheIDEA system plans operator sequences on
the basis of applicability and outcome conditions and eval-
uates alternative algorithms[Bernsteinet al., 2002]. This
approach applies to small datasets and the tools of weka
[Witten and Frank, 2000]. In our applications to existing
very large databases, the sequences become too large and
there are too many choices for a planning approach. For
similar reasons, the multi-agent approach that develops a
chain of steps is not applicable in our case[Zhonget al.,
2001].

We cannot provide case designers with automatic plan-
ning in the space of all possible features and algorithms.
However, we can offer case designers
• successful cases of knowledge discovery documented

at the meta-level,

• means for the adaptation of an abstract case to a new
data set,

• operators for the preprocessing steps,

• applicability conditions for operators that can be
tested on the meta-data or the original database and

• heuristic tests for the usefulness of certain feature gen-
eration operators.

The MiningMart system already provides users with all ser-
vices except for the last one[Morik and Scholz, 2003]2. In
this paper, we investigated the last point, i.e. how to de-
velop heuristics for the usefulness of frequency features.
As always, a good theory is the best practice. The success
of this knowledge discovery process can be explained using
Joachim’s proof of the learnability of TCat-concepts. This
theory, however, does not tell us, when to transform given
data into the form of TF/IDF features – where the theory
applies. We proposed an efficient estimate for when you
might want to transform the given attributes into TF/IDF
features and calculate the TCat-concept in order to estimate
the learnability.
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