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Abstract

Adaptive user interfaces adapt themselves
to the user by reasoning about the user and
refining their internal model of the user’s
needs. In machine learning, artificial sys-
tems learn how to perform better through
experience. By observing examples from a
sample, the learning algorithm tries to in-
duce a hypothesis which approximates the
target function. It seems obvious, that ma-
chine learning exactly offers what is desper-
ately needed in intelligent adaptive behav-
ior. But when trying to adapt by learning,
one will sooner or later encounter one or
more well–known problems, some of which
have been discussed in [Webb et al., 2001].
We propose a framework for describing user
modeling problems, identify several reasons
for inherent noise and discuss few promising
approaches which tackle these problems.

Keywords. Machine Learning for User Modeling,
Sample size, Noise, Interpreting User Interactions.

1 Problems in ML for UM

There are several demands on adaptive systems:1 they
need to be quick because response latency or delay
in adaptation is generally unwanted. They need to
be very accurate, for wrong predictions can be worse
than no adaptation at all. Additionally, they need to
be able to work with very few examples as the user
is in general not willing to give feedback or spend ex-
tra effort in interaction. Furthermore, one requires a
user model to be scrutable and, of course, non-trivial.
Finally, the effort in domain modeling shall be mini-
mized, which means, that there is only very few back-
ground knowledge available. Each single problem rules
out a few method or favors a certain learning approach
— but there is no single solution which satisfies all re-
quirements. The formalization of a Machine Learning
problem as defined along with the introduction of the
PAC learning model in [Valiant, 1984] can be trans-
ferred and applied to user modeling problems quite
well. Since the PAC model is a rather pessimistic
measure, the question arises, whether user models are

1Here and in the remainder of the paper we focus on
individual, content–based user modeling.

learnable at all: Many systems make heavy use of do-
main restrictions and severe implicit requirements on
the structure of the domain. This, and the nature of
feedback are permanent sources of noise which might
explain why learning about the user is such a hard
problem.
As an example, one might consider (affective) adap-
tive tutoring systems: The goal is to boost a student’s
learning progress as it is measured by a model of a stu-
dent’s skill. To increase a student’s motivation an af-
fective interface should express admiration when a task
was solved correctly. But as correct affective behavior
depends on a student’s personality, the system needs to
learn correct (user dependent) emotive behavior. How-
ever, the teaching signal is based on the student’s skill
as measured in relation to domain knowledge, while
the actions taken by the system try to motivate the
student further under the assumption that increased
motivation yields increases learning progress. Accord-
ingly, it must be clearly stated, what kind of infor-
mation shall be learned by which data. [André and
Müller, 2003] discuss this issue in the context of affec-
tive interaction.
Figure 1 shows the parallels and differences of machine
learning (lower part) and user modeling (upper part).
In machine learning, a learning algorithm A induces
a hypothesis h, which, according to the inductive hy-
pothesis, shall approximate the target function t based
upon several observations in a sample s. Each observa-
tion in s is assumed to be labeled by a teacher signal
which is assumed to be correct with respect to the
learning target.
In user modeling, the learning target is an intensional
description of a user’s needs or plans iu, whereas the
label o that is assigned to an observable event presup-
poses a certain planning behavior of the user and an
according interpretation of the observed interaction:
The intention behind performing an observable action
o(x) on x is veiled by the fact, that the user tries to
realize his interest iu based on his very own idea of
the functionality of interactive elements of the system
(labeled by a question mark in figure 1).
Furthermore, the label o(x) that is taken as a teacher
signal for the learning task is based on system’s built-
in interpretation of the user’s interactions x. As such,
it is subject to noise for two reasons: First, the ob-
servation obs(x) itself may be noisy, and second, the
interpretation int(obs(x)) of the user’s interactions is
also prone to delivering vague or uncertain results.
The outcome of the user modeling process is a user



Mu ∼ iu iu
?

vvllllllllllllllll

User– Observation

obs

��
o

  B
BB

BB
BB

BB
BB

BB
BB

BB
B

Domain– Interpretation

int

''OOOOOOOOOOOOO

Background
Knowledge

ONMLHIJKGFED@ABCA

KS

+3

��

f = [〈x,o(x)〉, . . .]
s = [〈x, t(x)〉, . . .]

ks F (m, o)
S (m, t)

��

? · o

Domain–

h ∼ t ∆

t

OO

Figure 1: Parallels and differences in ML and UM

model Mu which shall approximate iu — but actu-
ally, Mu rather learns to predict the most probable
interaction based on earlier feedback.
Concluding, it seems that a closer investigation on how
interactions pertain to user interests and feedback la-
bels illucidates problems one encounters when trying
to quickly induce user models from recorded data (see
also [Kobsa, 2001]).

2 Examples for Learning User Models
Machine Learning plays an increasingly important role
in user adaptive systems. Accordingly, many different
techniques have been successfully employed in various
approaches. We give a brief, non-exhaustive, overview
of techniques by examples and point out some hidden
disadvantages.

2.1 Näıve Bayesian Classifiers
Nbcs, [Cowell et al., 1999], are very popular for learn-
ing classifiers and thus, adaptive recommender sys-
tems, c.f. [Billsus and Pazzani, 1999]. They deliver fast
and precise results which withstand most comparative
evaluations. They are easy to implement for they do
not need any background knowledge. However, the re-
quirement that observables are pairwise conditionally
independent is usually violated. The Manic system,
[Stern and Woolf, 2000], tries to learn, whether a stu-
dent would ’want’ to read a certain paragraph within
an instructional text. If the student unfolds an offered
node, this is taken as positive feedback. To predict
likelihood of some topic to be viewed, the prior proba-
bilities of InstructionalType, MediaType, and Abstract-
ness are assumed to be independent. Even though
Nbcs require severe domain restrictions that in gen-
eral do not hold, it has been shown, that Nbcs perform
well enough.2

2In addition, there remains the problem of interpreting
’not clicking ’ as ’not wanting ’: For an object x of matching
difficulty o(x) = 0 implies iu(x) = 0 which is not neces-
sarily true, but this problem is independent of the learning

2.2 Bayesian Networks
Bayesian networks are a very popular approach in user
adaptive interfaces, because they inherently provide
us with a very elaborate theory on how to deal with
uncertainty. However, with growing networks, com-
putational effort increases rather quickly. The crucial
question concerning Bns addresses the origin of topol-
ogy and prior probability distribution. Both Bns and
Nbcs already work with ’random’ or Laplacian priors,
or relative frequencies from (few) observations. Never-
theless, initial probabilities need to be justified some-
how. The Ready system tries to recognize, reason
about and adapt to a user’s cognitive capacity which
is, e.e. determined by time pressure, lack of knowledge
or cognitive load. The structure of the underlying Bn
is motivated by a causal network whose architecture
and initial probability distribution have been empiri-
cally validated, [Jameson et al., 2000]. In this system,
the user model Mu shall not primarily describe a user’s
interest but his cognitive state. As the interpretation
of observed symptoms is empirically validated, noise
caused by int(obs(x)) can be assumed to be marginal.
Accordingly, this approach can be regarded to an ap-
proach where o delivers samples of high quality.

2.3 Finite State Machines and Hidden
Markov Models

In general, a user’s personality is said to be a set
of user specific characteristics which persist through
time, while emotions are rather short termed. Being
impatient is a feature of a person’s personality and
won’t change rapidly; but an impatient will sooner
react angrily than a patient person when repeatedly
confronted with unwanted data. Accordingly, [Gmy-
trasiewicz and Lisetti, 2001] describe an agent’s per-
sonality by a finite state machine. The Fsm consists of
nodes describing emotional states and links describing
transitions between emotional states. For example, if
the user is bothered, a cooperative system behavior

algorithm.



makes the user feel relaxed again, while an uncoop-
erative system response results in an angry user. In
context of learning emotive behavior, the problem of a
proper theory of emotions arises. In general, the Occ
model, [Ortony et al., 1988], is widely accepted, but
both number and types of emotions vary. [Murray and
Arnott, 1993] describe discriminative features in emo-
tion recognition from spoken language. But assuming
a restriction to reliable observables and a commensu-
rate discretization, one ends up with only four features
and three values each. Using the attribute–value pairs
described in [Murray and Arnott, 1993], one can not
learn to distinguish fear from anger any more. Much
more alarming is the fact, that happiness cannot be
discriminated from anger either. Among others, this
is a very important example for the need for a model-
ing language with sufficient expressive power.3

2.4 Artificial Neural Networks
Anns offer methods for huge data sets, weak back-
ground knowledge and sometimes even unlabeled data.
[Sklar, 2002] uses a multilayer perceptron to train
agents which copy or teach a user’s online Tron game
playing behavior (called clones, peers, and instruc-
tors) using backpropagation. The input layer consists
of eight surrounding obstacle sensors and the output
describes the next action to take (turns or forward).
The goal was to approximate a preset winning rate for
which this model already delivered quite impressive
results. For a more sophisticated model describing a
more general game playing strategy, the system would
have to take into account knowledge of more complex
wall configurations or even ‘understanding’ of an aerial
view of the scene.4 The training set consisted of one
half of 500 games played by 58 different humans. This
example shows, that Anns are capable of simulating
rather complex behavior by approximating much sim-
pler functions with literally no required background
knowledge on even very noisy data5. On the other
hand, training takes a lot of observed instances, which
in context of adaptive systems means, that for person-
alization many, many interactions are needed before
the system can adapt to the user. Similar consider-
ations apply to self organizing maps which are also
capable of unsupervised learning. Accordingly, they
can be applied to clustering problems similar to those
often solved by Nbcs, see [Eilert et al., 2001]. But
even though self-organizing maps are able to cluster
large sets of data, it is not guaranteed, that ‘simi-
lar’ concepts will be located next to each other on the
map. Finally (and quite obviously), it has to be noted,
that implicit knowledge as modeled by a trained Ann
can only partially be explained and therefore remains
rather incomprehensible to the user.

3Just as conditionally independence in Nbcs is usually
not guaranteed, Hmms are rather unspecific models insofar
as the current state is only determined by the previous
state but not by a larger history.

4Similarly, the network would require knowledge about
the game history in terms of past game states which need
to be incorporated into the Ann architecture by windowing
or a recurrent topology.

5In this example, the sample can be assumed to be
rather noise-free: There are exactly three observables for
each keystroke (left, right, or straight), and they can hardly
be misinterpreted.

2.5 Relational Learning

Complex domain descriptions involve huge back-
ground knowledge and require a rich description lan-
guage. Sometimes, a user model consists of a ‘pro-
gram’ describing procedural behavior. Trying to sat-
isfy the demand for scrutable user models, it seems rea-
sonable to employ machine learning techniques which
deliver intensional descriptions instead of ‘extensional
knowledge’ (as, e.g. in many collaborative approaches).
One machine learning technique which is able to sat-
isfy these needs is the underestimated approach of rela-
tional learning by inductive logic programming (Ilp).6
However, there are few recent approaches in Um which
make use of Ilp because of its ability to learn rela-
tional knowledge, explicate implicit knowledge and its
weak restrictions on the domain. [Kay and McCreath,
2001] describe an Ilp approach to the problem of per-
sonalized mail filtering called Mumilp. Learning how
to filter mail is supported by clearly labeled examples:
Moving mail into folders delivers reliable classification
data as a teacher signal t. Filtering spam is a bi-
nary decision, while filing mails into several folders is
a more sophisticated learning task. In terms of Ilp
(or relational learning in general), the task is to learn
a relation between messages and folders. Accordingly,
the domain model requires e-mails to be represented
in a way which includes predicates which identify the
sender and other meta data as well as string occur-
rence etc. Resulting rules then may identify spam by a
key word ‘cash’ as a mail subject, or classifies mails
from ‘jack’ or ‘jill’ as mails from friends.
Concerning the spam filtering application, f can be as-
sumed to be rather noise–free. Learning several classes
simultaneously is more prone to noise as a single mail
might belong to several classes at the same time. On
the other hand, the fact that a certain mail belongs
to a folder recreation, may support the proposition,
that it does not belong to conferences.7 But if we
are concerned with folders for several conferences with
overlapping committees, this discrimination is not as
easy as in the first case — but it is still a problem that
can be solved using Ilp methods.
Ilp still suffers from its bad reputation as being vul-
nerable to noise, rather slow and heavily dependent on
modeled background knowledge. Most disadvantages
can be circumvented by the choice of proper bias as it
also done in other approaches.

3 Hidden Pitfalls and How to Avoid
Them

What are the most popular machine learning meth-
ods in user modeling? So far, we have described a
few working systems which make use of different ap-
proaches and illustrated what kind of knowledge can
be learned by which means. Table 1 tries to summa-
rize advantages and problems that are likely to arise.
It is clear, that a qualitative comparison always heav-
ily depends on the actual application domain.

6It is interesting that user models now favor probabilis-
tic or statistical approaches, while early Um approaches
were based on logical descriptions, see [Kobsa, 1988].

7This has been discussed in detail in [Müller, 2002].



Algorithm Sample Size Backg. Knowledge Scrutability Training Effort Run Time Comment
Nbc Few/Avga Observables. Average Small Fast Cond. Indepen-

dence
Bn Few/Avga Causal Model. Ob-

servables.
Good Avg/High Fast Prior prob. Dist.;

Validation
Ann Many None Poor/None (Very) High Fast Implicit knowledge,

universal approx.
Ilp Average Avg/High Very Good (Very) High Average Discovery of im-

plicit knowledgeb

Ga/Gp Avg/Manyc None Code–dep.e (Very) Highd Code–dep.e Representatione

a works with Laplacian distribution. b given appropriate background knowledge. c works with random initialization.
d can be parallelized. e determined by representation of data as genome.

Table 1: A comparison of different ML techniques

4 Conclusion

Throughout this article, the user modeling problem
was put into close relation to the machine learning
problem. The aim in machine learning is to satisfy
h ∼ t by learning from t-labeled examples in a sam-
ple s. In user modeling, one tries to learn Mu ∼ iu,
but the examples are labeled by o 6= iu. Accordingly,
the error measured when comparing Mu with o is the
predictive error of the inferred user model on observed
interactions—but it is not the ‘descriptive’ error in the
user model itself. Similar considerations apply to the
evaluation of hypotheses: To check, whether h is ε-
good, the error estimation is based on the probability
distribution ∆ on the domain. In user modeling, ε
needs gives an estimate using a testing subset of the
feedback sample f—while a proper evaluation would
require a comparison of Mu and iu.
This article presented a more formal description of the
machine learning and user modeling problem. This
framework was used to describe several Ml4UM ap-
proaches. Several reasons for well-known problems one
might encounter when applying machine learning ‘out
of the box’ were shown.
It seems that—with reasonable restrictions and
biases—user models can be learned in nearly all appli-
cation domains. It has to be emphasized though, that
learning is not an all–purpose tool: Sometimes it takes
too long, sometimes there is to few data, sometimes
there is too few background knowledge and sometimes,
the tool simply does not fit the problem.
Keeping this in mind, one can circumvent several ob-
stacles, if:

1. The content of the user model is self–contained
and clearly restricted; and so is the domain

2. The domain is sufficiently well described

3. There is a legitimate trade–off between scrutabil-
ity, adaptivity and domain modeling effort

4. One can live with assumptions on the domain
and biases in learning

5. There is enough noise–free, reliable data available

Concluding, it should be noted, that the user model
learning domain has one big advantage: In learning
theory, ∆ is assumed to be unknown. But in user
adaptive system, we have the chance to guess, what a
user wants based on earlier observations, on empirical
evaluations, on different models of personalities and
rich contextual knowledge. If we are able to achieve

more knowledge about the process that makes a user
interact in a certain way, we might be able to de–
noisify f by understanding the intended actions. As
a consequence, an intelligent, adaptive user interface
will be able to ‘understand’ observed interactions o(x)
and thus yield a better approximation of the teaching
signal t.
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