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Abstract. In the last years, the main orientation of Formal Concept
Analysis (FCA) has turned from mathematics towards computer sci-
ence. This article provides a review of this new orientation and analyzes
why and how FCA and computer science attracted each other. It dis-
cusses FCA as a knowledge representation formalism using five knowl-
edge representation principles provided by Davis, Shrobe, and Szolovits
[DSS93]. It then studies how and why mathematics-based researchers got
attracted by computer science. We will argue for continuing this trend
by integrating the two research areas FCA and Ontology Engineering,.
The second part of the article discusses three lines of research which
witness the new orientation of Formal Concept Analysis: FCA as a con-
ceptual clustering technique and its application for supporting the merg-
ing of ontologies; the efficient computation of association rules and the
structuring of the results; and the visualization and management of con-
ceptual hierarchies and ontologies including its application in an email
management system.
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1 Introduction

Formal Concept Analysis (FCA) has observed a major change of orientation in
the last years. Having been introduced as a mathematization of the concept of
‘concept’ in the early 1980ies, its main orientation has turned from mathematics



towards computer science during the last ten years: ten years ago, virtually all
FCA papers were given at mathematics conferences, while nowadays they are
given almost exclusively at conferences related to computer science. FCA is now
considered as the mathematical backbone of Conceptual Knowledge Processing
(CKP), a theory located in computer science, having as task to provide methods
and tools for human—oriented, concept—based knowledge processing.

In this article, the change of orientation will be reviewed from a subjective
point of view. During his stay at the Department of Mathematics at Darm-
stadt University of Technology and at computer science groups at Blaise Pascal
University, Clermont-Ferrand, and the University of Karlsruhe, the author has
observed and also actively shaped this new orientation. It will be analyzed why
FCA became attractive as a knowledge representation method for computer sci-
ence, and why computer science became attractive for researchers working on

FCA.

After a recall of some FCA basics in the next section, we start with the
analysis of why FCA is a suitable knowledge representation formalism, based on
the article “What is a knowledge representation?” by R. Davis, H. Shrobe, and
P. Szolovits [DSS93]. According to the authors, a knowledge representation is
(i) a medium of human expression, (ii) a set of ontological commitments, (iii) a
surrogate, (iv) a fragmentary theory of intelligent reasoning, and (v) a medium
for pragmatically efficient computation. We will show that principles (i) to (iii)
have been discussed intensively for FCA and can even be considered as its driving
forces. Although not completely neglected, principles (iv) and (v) were not in the
main focus of FCA in early times. They received increased attention when FCA
turned towards computer science, and led to the research area of Conceptual
Knowledge Processing.

Having analyzed the attractiveness of FCA as a knowledge representation
method for computer science, we will discuss why computer science became
attractive for researchers working on FCA. One important reason will turn out
to be that computer science showed to be much more open for a discussion of its
justifications, expectations, and possible consequences — a discussion claimed
necessary by H. von Hentig, whose program of restructuring sciences [Hn74] was
the main impulse to develop FCA in order to restructure mathematical lattice
theory. Another reason for the change of orientation will turn out to be that the
research questions attacked by mathematics-based FCA researchers started to
differ from those of main stream mathematics and found a new home in computer
science.

The new home is Conceptual Knowledge Processing. Its aim is to provide
methods and tools for acquiring, reasoning with, and representing knowledge,
and for making it available to human communication. As concepts are the ba-
sic units of human thought, CKP is based on theories for modeling concepts.
Primarily, this has been Formal Concept Analysis, but nowadays Conceptual
Graphs, are also considered, as well as links to Description Logics; and we will
argue for a future integration of ontologies. Currently, two main research trends
can be distinguished in CKP: Contextual Logic and Conceptual Knowledge



Discovery. Contextual Logic aims at restructuring mathematical logic, follow-
ing Hentig’s restructuring program. Conceptual Knowledge Discovery pursues
a human-centered approach to knowledge discovery, based on concept-oriented
theories. We will discuss these two research trends, with a focus on the latter.
We conclude with a discussion of some recent work witnessing the new ori-
entation of FCA as grouped together in the author’s habilitation thesis [St02a].
The aim is to show how this change of orientation inspired research within the
whole bandwidth from theory to applications. We discuss three lines of research:

— the use of FCA as a conceptual clustering technique and its application for
supporting the merging of ontologies,

— the efficient computation of association rules, and the structuring and re-
duction of the results,

— and the visualization and the management of conceptual hierarchies/onto-
logies, and its application in an email management system.

The article is an extended version of an invited talk given at the 10th Inter-
national Conference on Conceptual Structures [St02b].

1.1 Organization of the Article

In the next section, the most basic definitions of FCA are recalled, in order
to give the reader a taste of this theory. Section 3 provides a discussion about
knowledge representation with FCA according to the principles given in [DSS93].
In Section 4 we review the change of orientation of FCA towards computer
science. Its extension to Conceptual Knowledge Processing and Discovery is the
topic of Section 5.

Sections 6 to 8 present selected applications: Section 6 presents FCA as a
conceptual clustering technique and its application for supporting the merging
of ontologies; Section 7 shows the use of FCA for the efficient computation of
association rules and the structuring and reduction of the results; and Section 8
discusses the visualization and management of conceptual hierarchies including
its application in an email management system. Section 9 concludes the article.

2 Formal Concept Analysis: a Mathematization of
Concepts

This section is meant to be an ‘appetizer’ — to give the reader a taste of Formal
Concept Analysis. It provides a brief illustration of the core notions. Readers
familiar with FCA may skip this section.

Formal Concept Analysis (FCA) was introduced as a mathematical theory
modeling the concept of ‘concepts’ in terms of lattice theory. To allow a math-
ematical description of extensions and intensions, FCA starts with a (formal)
context.



Definition 1. A (formal) context is a triple K := (G, M, I), where G is a set
whose elements are called objects, M is a set whose elements are called at-
tributes, and I is a binary relation between G and M (i.e. I CGxM). (g,m) € I
is read “the object g has the attribute m”.

Figure 1 shows a formal context where the object set G comprises all airlines
of the Star Alliance group and the attribute set M lists their destinations. The
binary relation I is given by the cross table and describes which destinations are
served by which Star Alliance member.

Definition 2. For A C G, let
A':={me M |Vge A:(g,m) € I}
and, for B C M, let
B :={geG|VYme B:(g,m) eI} .

A (formal) concept of a formal context (G, M,I) is a pair (A, B) with A C G,
BC M, A =B and B = A. The sets A and B are called the extent and the
intent of the formal concept (A, B), respectively. The subconcept—superconcept
relation is formalized by

(Al,Bl) < (AQ,BQ) <= A C Ao (<:> B; D Bz) .

The set of all formal concepts of a context K together with the order relation < is
always a complete lattice," called the concept lattice of K and denoted by B(K).

Figure 2 shows the concept lattice of the context in Figure 1 by a line diagram.
Line diagrams follow the conventions for the visualization of hierarchical concept
systems as established in the German standard [DIN2331]. In a line diagram,
each node represents a formal concept. A concept ¢ is a subconcept of a concept
¢o if and only if there is a path of descending edges from the node representing
¢» to the node representing c¢;. The name of an object ¢ is always attached
to the node representing the smallest concept with g in its extent; dually, the
name of an attribute m is always attached to the node representing the largest
concept with m in its intent. We can read the context relation from the diagram
because an object g has an attribute m if and only if the concept labeled by g
is a subconcept of the one labeled by m. The extent of a concept consists of all
objects whose labels are attached to subconcepts, and, dually, the intent consists
of all attributes attached to superconcepts. For example, the concept labeled by
‘Middle East’ has {Singapore Airlines, The Austrian Airlines Group, Lufthansa,
Air Canada} as extent, and {Middle East, Canada, United States, Europe, Asia
Pacific} as intent.

In the top of the diagram, we find the destinations which are served by most
of the members: Europe, Asia Pacific, and the United States. For instance, beside

! I.e., for each subset of concepts, there is always a unique greatest common subcon-
cept and a unique least common superconcept.
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Fig. 1. A formal context about the destinations of the Star Alliance members

British Midland and Ansett Australia, all airlines are serving the United States.
Those two airlines are located at the top of the diagram, as they serve the fewest
destinations — they operate only in Europe and Asia Pacific, respectively.

The further we go down in the concept lattice, the more globally operating
are the airlines. The most destinations are served by the airlines at the bottom of
the diagram: Lufthansa (serving all destinations beside the Caribbean) and Air
Canada (serving all destinations beside Africa). Also, the further we go down in
the lattice, the fewer served are the destinations. For instance, Africa, the Middle
East, and the Caribbean are served by relatively few Star Alliance members.

Dependencies between the attributes can be described by implications. For
X,Y C M, we say that the implication X — Y holds in the context, if each
object having all attributes in X also has all attributes in Y. For instance,
the implication {Europe, United States} — {Asia Pacific} holds in the Star
Alliance context. It can be read directly in the line diagram: the largest concept
having both ‘Europe’ and ‘United States’ in its intent (i.e., the concept labeled
by ‘All Nippon Airways’ and ‘Air New Zealand’) also has ‘Asia Pacific’ in its
intent. Similarly, one can detect that the destinations ‘Africa’ and ‘Canada’
together imply the destination ‘Middle East’ (and also ‘Europe’, ‘Asia Pacific’,
and ‘United States’).

Formal Concept Analysis is also able to deal with many-valued contexts, i. e.,
contexts may not only have binary attributes, but attribute-value pairs. A many-
valued context is a tuple K := (G, M, (W )menm, I) where G is a set of objects,
M a set of attributes, W, the set of possible values for the attribute m € M,
and the relation I C G x {(m,w) | m € M,w € Wy}, with the constraint



United States
British Midland
Ansett Australia Latin America

(J
All Nippon Airways|
Air New Zealand

Middle East

Singapore Airlines United Airlines

|The Austrian Airlines Group
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(g,m,w1) € I,(g,m,w2) € I = w; = we imposed, indicates if an object g € G
has value w € W, for attribute m € M.

Conceptual scales reflect each a different view on the data. They are used (i)
to transform many-valued contexts (i. e., contexts consisting of object—attribute-
value triples) into one-valued contexts and (ii) to split large contexts into ‘vertical
slices’ having concept lattices of manageable size (see also ‘horizontal reduction’
in Section 6.1).

A conceptual scale for a subset B C M of attributes is a (one-valued) formal

context Sp:= (G, Mp,Ip) with Gg C X meBWm. The idea is to replace the
attribute values in W,,, which are often too specific by more general attributes
which are provided in Mp:

Let & be the set of conceptual scales for the many-valued context K :=
(G, M, W) men, I). For any subset S C & of scales, we can now translate the
many-valued context into a one-valued one: The derived contert Kg is defined
by Ks := (G,Us ,es MB, Is) with (g,n) € Is if there exists a scale Sp € S with
m € Mp and w € W, where (g,m,w) € I and (g,n) € Ig. We will give an
example for a special case below.



Non-American Destinations
American Destinations P

‘.
‘ ‘
British Midland

Middle East

IThai Airways International

United Airlines

Scandinavian Airlines

~_|Air Canada

Singapore Airlines
The Austrian Airlines Group

Fig. 3. A nested line diagram of the concept lattice in Figure 2

7



If S consists of two (or more scales), the concept lattice of the derived con-
text can be visualized in a nested line diagram (see Figure 3). In nested line
diagrams, the nodes of the concept lattice of the first scale are enlarged, so that
the concept lattice of the second scale can be drawn inside. The second lattice
is then used to further differentiate each of the extents of the concepts of the
first lattice. Conceptual scaling and nested line diagrams are for instance im-
plemented in the management system TOSCANA for conceptual information
systems [KSVW94, VW95]. A conceptual information system consists of a many-
valued context and a set of conceptual scales.

Conceptual scaling will not be discussed in general in this article; we restrict
ourselves to a sub-case: (One-valued) formal contexts are specific instances of
many-valued contexts, one just has W = {yes, no}. Conceptual scaling can also
be applied to this special situation, in order to obtain nested line diagrams.

Figure 3 shows a nested line diagram for the Star Alliance context. It is ob-
tained by the definitions above letting B; := { Europe, Asia Pacific, Africa, Mid-
dle East }, By := { United States, Canada, Latin America, Mexico, Caribbean },
Si == (P(B;), B;, ), for i € {1,2}, and S := & := {S4,S3}. The diagram shows
the direct product of the concept lattices of the scales Sy (as large diagram) and
Ss (as the inner diagrams). Its order relation can be read by replacing each of
the lines of the large diagram by eight parallel lines linking corresponding nodes
in the inner diagrams. The concept lattice given in Figure 2 is embedded (as
a join—semilattice) in this diagram, it consists of the bold nodes. The concept
mentioned above (labeled by ‘Middle East’) is for instance represented by the
left-most bold node in the lower right part.

The bold concepts are referred to as ‘realized concepts’, as their intents cor-
respond to intents of a concept of the realized scale. The non-realized concepts
are not only displayed to indicate the structure of the inner scale, but also be-
cause they indicate implications: Each non-realized concept indicates that the
attributes in its intent imply the attributes contained in the largest realized con-
cept below. For instance, the first implication discussed above is indicated by
the non-realized concept having as intent ‘Europe’ and ‘United States’, it is rep-
resented by the empty node below the concept labeled by ‘British Midland’. The
largest realized sub-concept below is the one labeled by ‘All Nippon Airways’ and
‘Air New Zealand’ — which additionally has ‘Asia Pacific’ in its intent. Hence
{ Europe, United States } — { Asia Pacific } holds. The second implication
from above is indicated by the non-realized concept left of the concept labeled
by ‘Scandinavian Airlines’, and the largest realized concept below, which is the
one labeled by ‘Singapore Airlines’ and ‘The Austrian Airlines Group’.

This section gave a short introduction to the core notions of FCA. Of course,
there exist more complex (data) structures capable to represent further relevant
aspects of conceptual knowledge. We refer to some of them in the subsequent
discussion.



3 Knowledge Representation with Formal Concept
Analysis

The convergence of FCA with computer science demands for a discussion about
their relationships. In [Zi92], [WZ94], [SWW98], [MSW99], [HSWWO00], and
[Wi01b], several aspects of this relationship have been studied. In this article
we take up the discussion. In [DSS93], R. Davis, H. Shrobe, and P. Szolovits
studied the question “What is a knowledge representation?” They provided five
principles a knowledge representation should follow. Together with a list of repre-
sentation levels (of semantic networks) provided by R. Brachman in [Bra79], we
will use these principles to “characterize and make explicit the ‘spirit’ of [Formal
Concept Analysis|, the important set of ideas and inspirations that lie behind
[...] the concrete machinery used to implement the representation.” [DSS93].
Davis et al’s principles are as follows:?

1. A knowledge representation “is a medium of human expression, i.e., a lan-
guage in which we say things about the world.”

2. “It is a set of ontological commitments, i.e., an answer to the following
question: In what terms should I think about the world?”

3. It “is most fundamentally a surrogate, a substitute for the thing itself, used to
enable an entity to determine consequences by thinking rather than acting,
i.e., by reasoning about the world rather than taking action in it.”

4. “It is a fragmentary theory of intelligent reasoning, expressed in terms of
three components: (i) the representation’s fundamental conception of intel-
ligent reasoning; (ii) the set of inferences the representation sanctions; and
(iii) the set of inferences it recommends.”

5. “It is a medium for pragmatically efficient computation, i.e., the computa-
tional environment in which thinking is accomplished. One contribution to
this pragmatic efficiency is supplied by the guidance a representation pro-
vides for organizing information so as to facilitate making the recommended
inferences.”

The authors claim that these principles offer a framework for making explicit the
‘spirit’ of a representation, and the way it emphasizes on one or more of them
characterizes the fundamental ‘mindset’ of the representation. Each knowledge
representation formalism is in some way a trade-off between these principles. We
will use these five criteria for discussing the role of FCA as knowledge represen-
tation method.

It will turn out that the first three principles (especially the first one) have
been the driving forces for the development of FCA, while interest on the last
two principles — although not completely absent at the beginning (see for in-
stance knowledge acquisition with attribute exploration, implicational theories,
and efficient computation of concept lattices [Ga87]) — increased during the
change of orientation of FCA towards computer science.

2 Davis et al discuss these principles in the order 3-2-4-5-1. Here we reorder them to
follow more closely the historical development of FCA.



3.1 FCA as a medium of human expression

“Knowledge representations are [...] the medium of expression and communi-
cation in which we tell the machine (and perhaps one another) about the world.
[...] Knowledge representation is thus a medium of expression and communi-
cation for the use by us” [DSS93]. In other words: “A representation is the
language in which we communicate, hence we must be able to speak it without
heroic effort”.

This observation has always been predominant for the development of theory
for and applications of FCA, as the strong emphasis on its philosophical roots
shows. When introducing FCA in [Wi82], R. Wille’s purpose was to restruc-
ture lattice theory: “Restructuring lattice theory is understood as an attempt
to unfold lattice-theoretical concepts, results, and methods in a continuous rela-
tionship with their surroundings [...]. One basic aim is to promote better com-
munication between lattice theorists and potential users of lattice theory” [Wi82,
pp- 447]. The program of restructuring lattice theory followed a programatic dis-
cussion about the role of sciences in our society by H. von Hentig [Hn74]. Hentig
requests that the sciences “uncover their non-intended aims, declare their in-
tended aims, select and adjust their means according to those aims, discuss
openly and understandably their justifications, expectations, and possible con-
sequences, and therefore disseminate their means of research and results in com-
mon language” [Hn74, pp. 136 f; translated by the author]. As application, Wille
referred to the roots of the lattice idea, namely hierarchies of concepts, which
played an important role in attempts to formalize logic [Sc90]. Wille discusses
in his visionary article “how parts of arithmetic, structure and representation
theory of lattices may be developed out of problems and questions which occur
within the analysis of contexts and their hierarchies of concepts” [Wi82, pp. 448].

A second philosophical foundation of FCA is the pragmatic philosophy of
Ch. S. Peirce [Pe31], and the Theory of Communicative Action of J. Haber-
mas [Ha81] (cf. [Wi94,Wi99]). Peirce considers knowledge as always incomplete,
formed and continuously assured by human discourse. J. Habermas took up these
ideas in his Theory of Communicative Action where he emphasizes on the im-
portance of the inter-subjective community of communication. He observes that
humans operate in argumentative dispute on the normative basis of practical-
ethical rules. Even in scientific statements (i.e., in assertions), one tries to con-
vince the listener and expects agreement or counter-arguments. Hence even in
these apparently objective domains the ethical norms of equality and acceptance
are thus present (cf. [Ho95, p.338]). Following this line of argumentation, the
task for theories formalizing aspects of knowledge is thus to provide means for
rational communication.

The observation that this understanding conflicts with the widely accepted
view of mathematics as a means for mechanistic problem solving was certainly
one of the main reasons for the change of orientation of FCA towards computer
science, where human(—computer) interaction is considered as a research topic on
its own (although large parts of computer science also follow a rather mechanistic
view).

10



In their discussion, Davis, Shrobe, and Szolovits emphasize two questions:
“How well does [a knowledge representation] function as a medium of commu-
nication? [...] What kinds of things are easily said in the language and what
kinds of things are so difficult as to be pragmatically impossible?” In FCA,
the representation one starts with is quite simple: formal contexts are sets of
object—attribute pairs (or sets of object—attribute—value triples in the case of
many-valued contexts). This representation allows for an easy representation
of discrete structures, while continuous structures (e.g., time, space) are repre-
sentable with limitations only. The advantage of this relatively simple represen-
tation as starting point is that it is understandable even by untrained users, while
the resulting concept lattices allow to gain deep and surprising insights into the
knowledge implicitly contained in the data. Experiences in different applications
(e.g., the use of FCA in the treatment of patients suffering from bulimia who
have no higher mathematical education [SpW89]) shows the acceptance of FCA
by untrained users, based on the visualization of the data by concept lattices.
This is why FCA has been shown to be useful for Knowledge Discovery, as we
will discuss in Section 5.2.

3.2 The ontological commitment of FCA

“In selecting any representation, we are [...] making a set of decisions about how
and what to see in the world. [...] We (and our reasoning machines) need guid-
ance in deciding what in the world to attend to and what to ignore” [DSS93].
Formal Concept Analysis formalizes the concepts concept, concept extension,
concept intension, and conceptual hierarchy. We discuss this ontological commit-
ment of FCA along three lines: a definition of concept given in a philosophical
lexicon, the international standard ISO 704, and a list of representation levels
for semantic networks provided by R. Brachman.

Concept. A concept is the most basic unit of thought, in contrast to
judgment and conclusion, which are forms of thought composed of con-
cepts. While a judgment makes an assertion about an issue, a concept
is a notional, i.e., abstract—mental, representation of its ‘whatness’; it
captures an object based on ‘what’ it is, without already making an asser-
tion about it. [...] For each concept one distinguishes its intension and
extension. The intension of a concept comprises all attributes thought
with it, the extension comprises all objects for which the concept can be
predicated. In general, the richer the intension of a concept is, the lesser
is its extension, and vice versa. [Bru76, p. 39f; translated by the author]

This lexicon entry reflects a predominant understanding of concepts as being the
most basic units of thought, based on which more complex entities of thought
— i.e., judgments and conclusions — can be built. This understanding has
grown during centuries from Greek philosophy to late Scholastic and has been
stated in modern terms in the 17th century in the Logic of Port Royal [ANS&5].
It is nowadays established in the standard [ISO704] (which is the international

11



Representation level

Concept level

Object level

Object 1 Object 2 Object 3

property A property A property A
property B property B property B
property C property C property C
property D property E property F

Fig. 4. Object level, concept level, and representation level according to ISO 704

version of the German standard [DIN2330]). The definition of formal concepts
as given in Section 2 follows closely this understanding. It explicitly formalizes
extension and intension of a concept, their mutual relationships, and the fact that
increasing intent implies decreasing extent and vice versa. The formalization of
concepts by FCA follows thus a long philosophical tradition.

The standard ISO 704 distinguishes three levels: object level, concept level,
and representation level (see Figure 4). There is no immediate relationship be-
tween objects and names. This relationship is rather provided by concepts. On
the concept level, the objects under discussion constitute the extension of the
concept, while their shared properties constitute the intension of the concept.
On the representation level, a concept is specified by a definition and is referred
to by a name.?

While other knowledge representation formalisms like Description Logics or
Conceptual Graphs mainly focus on the representation level, the focus of FCA is
on the concept level. In fact, the definition of formal concepts follows closely the
description of that level in [ISO704]: formal concepts consist of extension and
intension (only), while concept names and definitions are not within the (core)
notions of FCA. Thus FCA should not be considered as competing with the
other mechanisms, but rather as a complement. There is recent work following
this view, for instance in combining FCA with Description Logics (e. g., [Ba95],
[St96b], [Pr97], [PS99]) or with Conceptual Graphs (e.g., [Wi97], [PW99], see
also [MSW99]) leading to the development of Contextual Logic (see Section 5.1).

3 After a discussion of the three levels, ISO 704 provides an overview over naming and
definition principles, and provides quality criteria for them.

12



The third line for discussing the ontological commitment of FCA is along the
list of five representation levels of semantic networks provided by R. Brachman
in [Bra79]:*

— Implementational Level: The primitives are nodes and links where links are
merely pointers and nodes are simply destinations for links. On this level
there are only data structures out of which to build logical forms.

— Logical Level: The primitives are logical predicates, operators, and proposi-
tions together with a structured index over those primitives. On this level
logical adequacy is responsible for meaningfully factoring knowledge.

— Epistemological Level: The primitives are conceptual units, conceptual sub-
pieces, inheritance and structuring relations. On this level conceptual units
are determined in their inherent structure and their interrelationships.

— Conceptual Level: The primitives are word-senses and case relations, object-
and action-types. On this level small sets of language-independent conceptual
elements and relationships are fixed from which all expressible concepts can
be constructed.

— Linguistic Level: The primitives are arbitrary concepts, words, and expres-
sions. On this level the primitives are language-dependent, and are expected
to change in meaning as the network grows.

Brachman argues that “any network notation could be analyzed in terms of any
of the levels, since they do not have any absolute, independent existence. [...]
However, each network scheme does propose an explicit set of primitives as part
of the language [...].” This set of primitives can be used to classify a network
according to the levels.

Here we focus on concept lattices, the core structures of Formal Concept
Analysis, which are located on the epistemological level: formal concepts are
considered as “formal objects, with predetermined internal organization that
is more sophisticated than sets of cases” [Bra79]. Formal concepts bring to-
gether extensional and intensional views on ‘concepts’, and represent explicitly
inheritance by referring to the set semantics of the intents (or extents) of the
formal concepts. On the formal side, these are made explicit by the following
four relations: an object has an attribute ((g,m) € I in terms of Section 2), an
object belongs to a concept (g € A, for a concept (A4, B)), an attribute abstracts
from a concept (m € B), and a concept is a subconcept of another concept
((A1, B1) < (A2, B)) [LuWol].

Concept lattice constructions also belong to the epistemological level. As
Formal Concept Analysis is founded on lattice theory, lattice constructions and
lattice decompositions can be activated for establishing more complex concept
hierarchies out of simpler ones, and, vice versa, for reducing complex concept hi-
erarchies to simpler ones. Constructions like direct products and tensor products
of concept lattices and decompositions like subdirect and atlas decompositions

4 The purpose of Brachman’s paper was to show that those days’ semantic networks
covered all but the epistemological level; and that his KL-ONE formalism filled the

gap.
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have been successfully applied in data analysis. It is interesting to note that most
concept lattice constructions and decompositions have as counterpart a context
construction (which is situated on Brachman’s logical level, see [GW99a]).

A more detailed discussion of FCA with respect to Brachman’s representa-
tion levels is provided in [MSW99] and — especially focussing on Conceptual
Knowledge Discovery — in [HSWWO00].

3.3 Formal contexts and concepts as surrogates

“Reasoning is a process that goes on internally [of a person or program], while
most things it wishes to reason about exist only externally. [...] This unavoidable
dichotomy is a fundamental rationale and role for a representation: it functions
as a surrogate inside the reasoner” [DSS93]. The authors emphasize that (human
or machine) reasoning cannot deal directly with objects in the world, but only
with an internal substitute: the knowledge representation.

The basic surrogates in FCA are formal contexts and concept lattices. The
notion of formal contexts follows the understanding that one can analyze and
argue only in restricted contexts, which are always subject to pre-knowledge
and social conventions [Wi97]. In applications, the transition from reality to the
formal model (and back) is made explicit by the use of formal contexts; such that
this interface between reality and model is always open to argumentation. Also
formal concepts, being surrogates, only consider selected aspects of concepts,
excluding for instance fuzzyness, prototypical concepts, modification over time,
and so forth. In order to overcome some of the restrictions, there have been
developed extensions of the formalism, for instance allowing for fuzzy concepts
[P097] or more expressive intensional descriptions of concepts [Pr97,PS99].

3.4 FCA as fragmentary theory of intelligent reasoning

“The initial conception of a representation is typically motivated by some insight
indicating how people reason intelligently, or by some belief about what it means
to reason intelligently at all” [DSS93]. The authors consider five fields which
have provided notions of what constitutes intelligent reasoning: mathematical
logic (e.g., Prolog), psychology (e.g., frames), biology (e.g., neural networks),
statistics (e. g., bayesian networks), and economics (e. g., rational agents).

As other knowledge representation formalisms, FCA is opposed to the logistic
belief that reasoning intelligently necessarily means reasoning in the fashion de-
fined by first-order logic. The roots of FCA are best described in a philosophical
view (which is close to what Davis et al describe as “psychological view”). It em-
phasizes on inter-subjective communication and argumentation, as discussed in
Section 3.1. Thus — in contrast to other formalisms — FCA as such (i. e., with-
out its extension to CKP, especially to Contextual Logic) refers the reasoning to
the human user who is able to involve common sense, social conventions, views,
and purposes. One of the foremost aims of FCA has always been to support
human thinking, communication, and argumentation rather than mechanizing
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it. In [Wi87,Wi99,Willa], Wille discusses the diversity in which intelligent rea-
soning supported by FCA takes place through sets of real-world applications.
FCA in its basic form focuses on reasoning with concepts; its extension to Con-
textual Logic also provides a theory for reasoning about and with judgments
and conclusions, including thus the triad concept—judgment—conclusion of clas-
sical philosophical logic (see Section 5.1). Reasoning with concepts comprises for
instance implicational theories [Ga87,Wd95,STBPLO01a], clauses [GW99D], and
hypothesis generation [GKO00].

3.5 Efficient computation within FCA

Davis, Shrobe, and Szolovits stress the importance of having a description of a
useful way to organize information which allows for suggesting reasoning mech-
anisms and for facilitating their execution. Even though automatic reasoning
is less in the heart of FCA as it is in most other knowledge representation
formalisms, the question how to organize information is also important for sup-
porting human reasoning.

In FCA, information is organized in lattices. Lattices provide a clear structure
for knowledge representation, which most fundamentally comprises a partial or-
der. Unlike other partial orders (e. g., trees), they allow for multiple inheritance,
which often supports a more structured representation and facilitates retrieval
of the stored information. Additionally, knowledge representation in lattices is
equivalent to apparently unrelated representations such as implications and clo-
sure operators. This allows to transfer knowledge into multiple formats each of
which is best fit to the actual task. Last but not least, (concept) lattices are
equipped with an algebraic structure (stemming from the existence of unique
greatest common sub- and least common super-concepts, similar to greatest
common divisors and least common multiples for natural numbers) which allows
for computation within the lattice structure. As mentioned in Section 3.2, most
concept lattice constructions and decompositions have as counterpart a context
construction. As formal contexts are only ‘logarithmic in size’ compared to the
concept lattice, they can be seen as a medium of efficient computation.

One can thus exploit the wealth of results of lattice theory for efficient com-
putation. For instance, properties of closure systems are used for computing
the concept lattice (e.g., [Ga87], [STBPL02], see also Section 6.1) and valid
implications (e.g., [Ga87]); and lattice constructions are used for the efficient
visualization by nested line diagrams (e. g., [Wi84], [St96a], see also Section 8.1).
Results from lattice theory have also been exploited for data mining tasks, for
instance for conceptual clustering (e.g., [StrW93,MG95] and [STBPLO02], see
also Section 6.1), and for association rule mining (e.g., [STBPLOla], see also
Section 7.2). There is still a huge open scientific potential in bringing together
structural-mathematical aspects (here especially from FCA) and procedural-
computational aspects from computer science.
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Having discussed the attractiveness of FCA as a knowledge representation method
for computer science, we will study in the next section why and how mathematics-
based FCA researchers got attracted by computer science.

4 Off to New Shores

As concepts are the most basic units of thought, it is not surprising that they
became important building blocks in Artificial Intelligence (AI) research. Their
appearance is prevailing in Knowledge Representation (e.g., in semantic net-
works, conceptual graphs, description logics), but they also appear for instance
in Machine Learning (e. g., in conceptual clustering, concept learning). All these
approaches focus on other aspects of concepts, leading to different formalizations.

Formal Concept Analysis arose independently of the formalisms mentioned
above. Integrating several ideas from quite different domains (e. g., [Bi40,BM70]
[Hn74,DIN2330]), FCA was introduced in 1979 by R. Wille as a mathematical
theory, in order to “restructure lattice theory”, following Hentig’s restructuring
program (see Section 3.1). A consequence of the aim of restructuring lattice the-
ory was that research in the early time of FCA (1980ies and early 1990ies) mainly
fell into three categories: i) lattice theory (e.g., lattice constructions and decom-
positions [Wi83]), i¢) qualitative data analysis (e. g., a generalized measurement
theory [GSW86]), and ii) applications (e. g., the analysis of surveys [Ko89]). Of
course, algorithms for computing concept lattices also were an important topic
(see for instance [Ga87]).

Until the beginning of the 1990ies, the development in AT and in FCA went on
almost independently. By then, the mutual perception increased. For instance,
FCA researchers got in contact with the knowledge acquisition community, and
AT researchers integrated FCA in their approaches (e. g., [CR93]). As discussed in
the previous section, FCA became attractive as an Al knowledge representation,
and (as we will see below), mathematicians working on FCA got interested in
AT research topics. This convergence led to the aim to establish Conceptual
Knowledge Processing as an extension of FCA (see next section). In 1993, the
ERNSTSCHRODERCENTER FOR CONCEPTUAL KNOWLEDGE PROCESSING® was
founded in Darmstadt to support and accompany this development. Just a year
later, NAVICON GmbHS® was founded, a spin-off of Darmstadt University of
Technology offering consulting based on FCA methods and tools.

The convergence of FCA with computer science research increased signif-
icantly by the series of International Conferences on Conceptual Structures
(ICCS), where FCA became a topic in 1995 [LeW95,5t95]. This conference se-
ries especially stimulated the development of Contextual Logic [Wi96] (see Sec-
tion 5.1). From 1998 on, the use of FCA for Knowledge Discovery was discussed
[SWW98], and FCA was applied for improving the efficiency of data mining
algorithms (see Section 7). Today, FCA is not only considered within AI, but
also in other computer science domains, as for instance in software engineering

® www.mathematik.tu-darmstadt.de/ags/esz/

6 www.navicon.de
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(e.g., [Sn96]) or database theory (e. g., [SS98]). FCA papers are nowadays almost
exclusively presented at computer science conferences and in computer science
journals. The foundation of the Research Center for Conceptual Knowledge Pro-
cessing (FZBW)7 at Darmstadt University of Technology in November 2000 also
witnesses the continuous interest in this research topic.

One reason for the change of orientation of FCA (and CKP) towards com-
puter science is certainly that, in the eyes of the mathematical community, lattice
theory is an almost closed research area, where almost all important problems
have been solved. Further open problems, for instance the development of good
lattice drawing algorithms, are not considered as genuine mathematical problems
by the majority of the mathematicians.

A more important reason for the change of orientation is the fact, that com-
puter science is — perhaps because it is still a young discipline — in general
much more open-minded to discussions such as Hentig’s restructuring program
than mathematics is. The relationship and the interaction between user and
computer is a research domain in computer science for its own sake, and, more
important still, expectations and possible consequences of computer science are
discussed in public.

What are future directions of Formal Concept Analysis? We conclude this
section by relating Conceptual Knowledge Processing with the growing research
area of Ontology Engineering (see for instance [Ma02]). We believe that nowa-
days FCA and (parts of) Al are closer together as they sometimes seem to be.
This holds especially for the consideration of the importance of the principle of
knowledge representation as a medium of human expression. Partly the remain-
ing difference is due only to the different language they (still) speak. In fact, the
importance of this principle has increasingly been discussed in the AI community
in the past few years.

Interestingly, Ontology Engineering (independently) follows a trend which
also served as basis for FCA. The point is that, according to J. Habermas, on-
tology, stemming from the tradition of Greek metaphysics, is constrained to a
specific relationship to the world, namely the cognitive relationship to the ex-
isting world. It does not consider the subjective nor the social world. A concept
corresponding to ‘ontology’, which includes the relationship to the subjective
and social world, as well as to the existing world, was absent in philosophy. This
observation was encountered in different ways. Habermas developed his Theory
of Communicative Action [Ha81] in order to provide such a concept (see Sec-
tion 3.1). Habermas’ theory had strong influence on the way FCA was developed.
Computer scientists, on the other hand, extended the definition of the concept
‘ontology’ — and adapted it in a straightforward manner directly to their own
purposes (which led to many controversies with philosophers). Most popular in
computer science is nowadays the definition of T. Gruber, who considers ontolo-
gies as “formal, explicit specification of a shared conceptualization” [Gr94]. A
‘conceptualization’ refers to an abstract model of some phenomenon in the world
by identifying the relevant concept of that phenomenon. ‘Explicit’ means that

7 www.fzbw.tu-darmstadt.de
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the types of concepts used and the constraints on their use are explicitly defined.
‘Formal’ refers to the fact that the ontology should be machine understandable
(which excludes for instance natural language). ‘Shared’ reflects the notion that
an ontology captures consensual knowledge, that is, it is not private to some
individual, but accepted by a group.

In practice, the two approaches are not far from each other. Both FCA and
Ontology Engineering emphasize the importance of an inter-subjective agree-
ment about the conceptualization, and both claim the need of a formal spec-
ification of the model. The main difference is that, in terms of ISO 704 (see
Section 3.2), FCA works mainly on the concept level, while Ontology Engineer-
ing works mainly on the representation level. I.e., FCA considers extensional
and intensional aspects as equal, while Ontology Engineering emphasizes on the
intensional part. As already argued in Section 3.2, these views should be under-
stood as complementary rather than competitive. We suggest thus to integrate
Formal Concept Analysis and Ontology Engineering in one unified framework.
Establishing this framework and working on its details are interesting topics for
future research.

5 Conceptual Knowledge Discovery and Processing

In this section, we present Conceptual Knowledge Processing (CKP) which arose
as an extension of FCA taking into account more explicitly Davis et al’s fourth
and fifth principles; and argue why it is a reasonable choice for a framework
unifying FCA and Ontology Engineering.

5.1 Conceptual Knowledge Processing

Conceptual Knowledge Processing (CKP) has as its overall aim supporting hu-
man communication and argumentation to establish inter-subjectively assured
knowledge. As a computer science theory, the task of CKP is thus to provide
concept—based methods and tools for acquiring, representing, and reasoning with
knowledge, and for making it available for communication purposes. We analyze
how FCA (with its recent extensions) fulfills this task and how it can be comple-
mented by Ontology Engineering in the aim of supporting Conceptual Knowl-
edge Processing. We consider the following four categories of knowledge pro-
cessing: knowledge acquisition, knowledge representation, knowledge inference,
and knowledge communication [LuW91].8 We will focus on technical aspects;
a reflection of the philosophical foundations of CKP can be found in [Wi9%4]
and [Wi99].

8 These categories have been addressed in variations by many authors, for instance
by A.M. Kleinhans [KI189] as knowledge acquisition, knowledge storage, knowledge
manipulation, and knowledge distribution; or in a more fine-grained categorization
by G. Probst, S. Raub, and K. Romhardt in [PRR99].
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Knowledge Acquisition. Knowledge Acquisition techniques (in the broader
sense) can roughly be categorized in two classes: those which aim at acquiring
knowledge from humans (i. e., knowledge acquisition in the narrower sense), and
those which acquire knowledge out of some data (e. g., documents) in which the
knowledge is encoded. As we will argue below, we do not see the two classes
far from each other. The latter class is subject of the research domains Machine
Learning and (more recently) Knowledge Discovery. This article has a certain
focus on the second class, and therefore devotes the entire next subsection to it.
There we analyze the roles of Conceptual Knowledge Discovery and of Ontology
Learning.

As for the techniques for knowledge acquisition from humans, the most promi-
nent representative within FCA is B. Ganter’s Attribute Exploration [Ga87] (see
also [GW99al]). It addresses the problem of a context where the object set is not
completely known a priori, or too large to be completely listed. In an interac-
tive, iterative approach, the user has either to accept a suggested implication
between the attributes (i.e., she excludes potential objects) or to provide a
counter-example (i. e., she provides a (typical) object) until the concept lattice
is completely determined. Concept Exploration extends this approach to situ-
ations where both the object set and the attribute set of the context are not
completely known a priori or too large [KM88,5t97]. An overview over interac-
tive knowledge acquisition techniques based on FCA can be found in [St96c].
Also more informal knowledge acquisition settings within FCA aim at the spec-
ification of the formal context. In a typical data analysis scenario, the first step
is to establish a formal context in cooperation with the user(s). Based on the
insights gained by the resulting concept lattice, the context can be refined and
modified in subsequent feedback loops.

Ontology Engineering in its turn has its roots in the Knowledge Acquisition
community. From there, it brings along methodologies for knowledge acquisi-
tion, as for instance CommonKADS [Sc+00], which is currently instantiated for
ontologies in the OTK ontology development framework [SSSS01]. Recent knowl-
edge acquisition approaches within Ontology Engineering can be classified in two
groups: ontology learning and instance learning (information extraction). The
first deals with learning the ontology itself (i. e., the intensional aspect), and the
second with learning the assignment of instances to the concepts and relations
(i. e., the extensional aspect). The first group, ontology learning, uses techniques
from natural language processing and data mining (e.g., clustering and associ-
ation rules) to support the interactive process of building the ontology [M&02].
Ontology learning follows the paradigm of balanced cooperative modeling [M093]
which we will discuss in the Section 5.2. Ontology learning comprises the task
of merging ontologies from different sources. In Section 6.2, we discuss a FCA-
based technique for this task. A comprehensive overview over ontology learning
is given in [M&02]. The second group, instance learning, includes techniques for
annotation and authoring. Annotation, now one of the major techniques for cre-
ating meta-data in the world-wide web, aims at attaching ontology instantiations
to web pages [HSMO1]. Authoring supports this attachment on-line during the
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construction of a web page [HS02]. These approaches use for instance Informa-
tion Extraction and Document Management techniques, as well as inference and
crawler mechanisms.

Like FCA, Ontology Engineering emphasizes on the importance of agree-
ing among the domain experts on a shared understanding of the domain. One
difference is that most of the Ontology Engineering approaches base the interac-
tive knowledge acquisition process on heuristics which allow for more flexibility
than FCA approaches. In general one can conclude that Ontology Engineering
provides more comprehensive support for the more informal aspects of knowl-
edge acquisition and complements thus well with the more structure-oriented
techniques of FCA which come along with stronger semantics.

Knowledge Representation. Knowledge representation with FCA has al-
ready been the overall theme of Section 3. Here we focus on its relationship to
Ontology Engineering.

The choice of the formalism for representing an ontology directly influences
the methods and tools to be applied; there is no language—neutral Ontology
Engineering. Ontologies are described in different formalisms (e. g., description
logics, conceptual graphs, frame logic), depending on the task to be solved (and
on the history of the researcher working on it). As argued in Section 3.2, these
formalisms complement well with FCA, and first steps have been made to set
up links between the underlying theories. These links have to be strengthened
and are to be exploited for establishing a comprehensive Conceptual Knowledge
Processing environment. From the FCA perspective, this means to extend the
scope from strongly structured to semi—structured and even unstructured data,
allowing to tackle more complex tasks as, for instance, in the Semantic Web.

Knowledge Inference. The second important thread in CKP today is, beside
Conceptual Knowledge Discovery, the development of Contextual Logic [Wi96]
[Wi00]. Contextual Logic aims at restructuring mathematical logic, following
Hentig’s restructuring program, in order to overcome deficiencies of predicate
logic for knowledge representation [Pr00]. It is based on the elementary doctrines
of concepts, judgments, and conclusions as discussed in classical philosophical
logic. In this framework, FCA is considered as a theory for concepts, while Con-
ceptual Graphs are building blocks for a theory for judgments and conclusions.
Due to space restrictions, Contextual Logic will not be presented in detail in this
article. The interested reader is referred to [Wi96,Wi97,Pr98,Pr00,Wi00].

Davis et al suggest to analyze two sets of inferences for a given knowledge
representation: the set of inferences the representation sanctions, and the set
of inferences it recommends. As known from other mathematics—based logics,
Contextual Logic currently provides a sound and complete set of inferences, i. e.,
a set of inferences the representation sanctions. The choice of the inferences to
be applied is left to the user; she is supported in this task by graphical user
interfaces [EGSWO00].
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Ontology Engineering tools in general make use of sanctioned inferences,
too, for instance for checking the consistency of the ontology, and for deriving
knowledge which is not explicitly encoded. As there is no language-neutral rep-
resentation of an ontology, each Ontology Engineering tool has to provide an
implementation of an inference mechanism applicable to the language it uses.
Additionally to the set of sanctioned inferences, Ontology Engineering tools of-
ten make extensive use of heuristics (as for instance in the merging tools listed
in Section 6.2), which can be seen as implementations of sets of recommended
inferences. A tighter interweaving of heuristics—based approaches with FCA and
Contextual Logic is an interesting topic for future research.

Knowledge Communication. For Formal Concept Analysis, the importance
of knowledge communication has already been discussed in Section 3.1. This as-
pect has been the driving force for the development of several tools, e. g., Conlmp
[Bu87,Bu00], GALOIS [CR93], the management system TOSCANA for Concep-
tual Information Systems [VW95] with various extentions (e.g., [SW97,SW98]
[MSW99,S5t00,EGSW00,HS01,To01], see also Section 8.1 and 8.2) and the anal-
ysis tool CERNATO?.

Ontologies also have as primary focus the support of human (and human—
computer) communication. They are applied for instance for community building
[Sta+00], for knowledge management [ABHKS98,SMS00,SSSS01,ASSS00], and
in the Semantic Web [BHLO1]. The Semantic Web aims at providing automated
Web services based on formal knowledge representations. In this scenario, ontolo-
gies are used for instance in semantics—based portals [SMSSS01,StaM01,JKN01]
and for the communication of (software) agents [Hd01].

Systems like WAVE for web navigation [KN95], the expert system MCRDR
[RC97], the RFCA system for browsing rental advertisements on the WWW
[CE01] or the Conceptual Email Manager (which is discussed in Section 8.3) are
first prototypes integrating both FCA and ontologies. The next step will be to
establish interfaces between the two research and software projects ‘Tockit —
Framework for Conceptual Knowledge Processing’!® and ‘KAON — Karlsruhe
Ontology and Semantic Web Tool Suite’'! in order to obtain a large, stable
platform for future developments.

5.2 Conceptual Knowledge Discovery

The aim of Knowledge Discovery in Databases (KDD) is to support human an-
alysts in the overall process of discovering valid, implicit, potentially useful and
ultimately understandable information in databases. The volume “Advances in
Knowledge Discovery and Data Mining” [FPSU96] emphasizes that this iter-
ative and interactive process between a human and a database may strongly

9 http://www.navicon.de/deutsch /sit_f.htm

10 http://tockit.sourceforge.net/
" http://kaon.semanticweb.org/
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involve background knowledge of the analyzing domain expert.!? In particu-
lar, R. S. Brachman and T. Anand [BA96] argue in favor of a more human-
centered approach to knowledge discovery (“data archeology”, [BST+93]) re-
ferring to the constitutive character of human interpretation for the discovery
of knowledge and stressing the complex, interactive process of KDD as being
led by human thought. Following Brachman and Anand, Conceptual Knowledge
Discovery (CKDD) pursues a human-centered approach to KDD based on a
comprehensive notion of knowledge as a part of human thought and argumen-
tation [SWWOI8 HSWWO0O0]. This view leads to a modified definition of what
knowledge discovery is: we understand (conceptual) knowledge discovery as “in-
formation discovery combined with knowledge creation where the combination
is given by turning discovered information into created knowledge” [Wi0lb]. A
more detailed discussion of this understanding along a list of requirements for
knowledge discovery environments provided in [BA96] can be found in [SWW98].

In most applications, classical data analysis and decision support facilities
(for instance Online Analytical Processing (OLAP) or statistical packages) are
already present when data mining tools are added to the knowledge discov-
ery support environment. For supporting the analyst in the overall process of
human-centered knowledge discovery, both decision support and data mining
tools should provide a homogeneous environment. In particular, this shows the
need of a unified knowledge representation. In Section 3, we argued for formal
contexts and concept lattices as such a unified knowledge representation. In Sec-
tions 6 and 7, we will discuss some applications. Further CKDD applications are
presented in [St98], [St99c], [HSWWO00], and [Du+01].

The human—centered approach of CKDD indicates the need to distribute
the work between data mining algorithms on the one hand and the user on the
other hand. The same observation has been made for the combination of ma-
chine learning and knowledge acquisition by K. Morik and led to the approach of
balanced cooperation [Mo093]. Ontology Learning, the knowledge discovery part
of Ontology Engineering, adopted this paradigm: A. Méadche considers the pro-
cess of Ontology Learning as a semi-automatic process with human intervention,
since completely automatic knowledge acquisition is an unrealistic vision (today)
[M&02, p.52]. The approach allows the integration of a multitude of disciplines
(e. g., machine learning, natural language processing, human—computer interac-
tion) in order to facilitate the semi-automatic construction of ontologies.

Instance learning, as discussed in the previous subsection, is today more based
on user-centered, interactive techniques (that is why we discussed it under the
heading ‘knowledge acquisition’ above, and not here). However, we expect that
instance learning will make a more extensive use of data mining techniques in
the near future, converging hence also to the paradigm of balanced cooperation.

As discussed above, we want to integrate Ontology Engineering into Concep-
tual Knowledge Processing. For Conceptual Knowledge Discovery, this means

12 Following [FPSU96], we understand KDD as the overall discovering process; while

data mining is considered as one step of KDD, namely the application of algorithms
for extracting patterns from the data.
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that Ontology Learning, Instance Learning, and FCA-based knowledge discov-
ery should be brought together. Our vision for future research is to interweave
these approaches, and to apply them for concept-based knowledge discovery.
This is especially promising in the upcoming Semantic Web, where first steps
towards Semantic Web Mining have been done [SHBO1].

In the next three sections, we present three lines of research which exemplarily
demonstrate the extension of FCA to Conceptual Knowledge Processing and its
change of orientation towards computer science. The aim is to show how this
change of orientation inspired research within the whole bandwidth from theory
to applications. The topics are

— the use of FCA as a conceptual clustering technique and its application for
supporting the merging of ontologies,

— the efficient computation of association rules, and the structuring and re-
duction of the results,

— and the visualization and the management of conceptual hierarchies/ontolo-
gies, and its application in an email management system.

6 Conceptual Clustering and Ontology Merging

Cluster Analysis comprises a set of unsupervised machine learning techniques
which split sets of objects into clusters (subsets) such that objects within a clus-
ter are as similar as possible while objects from different clusters are as different
as possible. Conceptual Clustering techniques additionally aim at determining
not only clusters — i. e., concept extensions — but to provide at the same time in-
tensional descriptions of these extensions [Mi80,WMJ00]. This aim fits well with
the understanding of concepts as given in Section 4. Thus it is natural to consider
FCA as a framework for conceptual clustering (see also [StrW93,CR93,MG95]).
In this section, we discuss one particular way of conceptual clustering with FCA,
namely iceberg concept lattices. Iceberg concept lattices and the algorithm Ti-
TANIC for their computation are described in detail [STBPL02].

We apply iceberg concept lattices in Ontology Engineering. We use them
to support the ontology engineer in merging ontologies. This structure-oriented
method, called FCA-MERGE, is described in detail in [SMO1].

6.1 Computing Iceberg Concept Lattices with Titanic

Compared to ‘usual’ clustering, conceptual clustering techniques pay their added
value (the intensional description) with increased computation time. In FCA,
there exist basically three ways to overcome this problem: local focusing (e.g.,
[CRI3]), vertical reduction by conceptual scaling (see Section 2), and horizontal
reduction. All three ways reduce not only the computation time, but also the
amount of information presented to the user.
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Fig. 5. Iceberg concept lattice for customers clustered by their year of birth.

Iceberg concept lattices are a horizontal approach to reduce the amount of
information (and the computation time) of a concept lattice. They have first
been mentioned as ‘frequent concept lattices’ in [St99b], and are discussed in
detail in [STBPL02], where also an efficient algorithm for their computation is
presented, the TITANIC algorithm. Iceberg concept lattices show only the top-
most part of a concept lattice. In Figure 5, for instance, the customers of a
warehouse in Zurich, Switzerland, are clustered according to their year of birth.
The minimum support threshold is set to 0.3, i. e., all concepts whose extents do
not comprise at least 30 % of all customers, are pruned. Instead of the objects
names, the diagram displays the support of the concepts, i.e., its relative size
compared to the total number of objects.

Iceberg concept lattices have different uses in KDD: as conceptual clustering
tool, as a visualization method — especially for very large databases —, as a
condensed representation of frequent itemsets, as a base of association rules, and
as a visualization technique for association rules. In comparison to other con-
ceptual clustering approaches, iceberg concept lattices have structural properties
which can be stated explicitly: they do not depend on diverse parameters (except
the minimum support threshold) whose semantics are often difficult to interpret,
nor on the order in which the input is presented to the algorithm, nor on any
particularities of the implementation. Another distinction to other hierarchical
clustering results is that they allow for multiple hierarchies (and not only for
trees), so that all potentially interesting specialization paths are contained in
the resulting hierarchy.

The TrTANIC algorithm addresses the problem of computing (iceberg) con-
cept lattices from a data mining viewpoint by using a level-wise approach
[AS94,MT97]. This allows to decrease significantly the computation time com-
pared to the reference algorithm Next-Closure [Ga87]. TITANIC can be applied
to a broad class of problems: Computing arbitrary closure systems when the
closure operator comes along with a so-called weight function. Weight functions
appear naturally in a variety of applications, including association rule mining,
functional dependencies in databases, conceptual clustering, transformation of
class hierarchies in object-oriented languages, configuration space analysis in
software re-engineering, and ontology engineering.
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6.2 FCA-Merge: Bottom-Up Merging of Ontologies

Ontologies have been established for knowledge sharing and are widely used
as a means for conceptually structuring domains of interest. With the growing
usage of ontologies, the problem of overlapping knowledge in a common domain
occurs more often and becomes critical. Domain-specific ontologies are modeled
by multiple authors in multiple settings. These ontologies lay the foundation for
building new domain-specific ontologies in similar domains by assembling and
extending multiple ontologies from repositories.

The process of ontology merging takes as input two (or more) source ontolo-
gies and returns a merged ontology based on the given source ontologies. Manual
ontology merging using conventional editing tools without support is difficult,
labor intensive and error prone. Therefore, several systems and frameworks for
supporting the knowledge engineer in the ontology merging task have recently
been proposed [Ho98,Ch00,NM00,MFRWO00]. The approaches rely on syntactic
and semantic matching heuristics which are derived from the behavior of ontol-
ogy engineers when confronted with the task of merging ontologies, i.e., human
behavior is simulated. Although some of them locally use different kinds of log-
ics for comparisons, these approaches do not offer a structural description of the
global merging process.

In [SMO1], the method FCA-MERGE for merging ontologies following a
bottom-up approach and offering a global structural description of the merging
process is presented. For the source ontologies, it extracts instances from a given
set of domain-specific text documents by applying natural language processing
techniques. Based on the extracted instances we use the TITANIC algorithm to
derive a concept lattice. The concept lattice provides a conceptual clustering of
the concepts of the source ontologies. It is explored and interactively transformed
to the merged ontology by the ontology engineer.

Certainly, high quality results of the merging process will always need a hu-
man involved who is able to make judgments based on background knowledge,
social conventions, and purposes. Thus, all merging approaches aim at support-
ing the knowledge engineer, and not at replacing him. Our approach differs from
the related work stated above in that it provides, for one part of the merging pro-
cess, an algorithm with a well-defined description of the output in terms of the
input. If the knowledge engineer commits to this description, he is guaranteed
to obtain the expected results. FCA—MERGE may of course also be included in
any heuristic-based approach as a — reliable — building block.

7 Computation and Reduction of Association Rules

One of the core tasks of Knowledge Discovery in Databases (KDD) is the mining
of association rules (conditional implications). Association rules are statements
of the type ‘67 % of the customers buying cereals and sugar also buy milk (where
7% of all customers buy all three items)’. The task of mining association rules is
to determine all rules whose confidences (67 % in the example) and supports (7 %
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in the example) are above user-defined thresholds. Since the problem was stated
[AIS93], various approaches have been proposed for an increased efficiency of rule
discovery in very large databases [AS94,BA98 BMUT97, PBTL99b,PBTL99a].

Frequent patterns are those subsets of the attribute set (set of items) whose
support is above a certain threshold. They are the result of the (computationally
expensive) first step of the typical two-step approach for mining association rules.
In the next subsection, we discuss a new algorithm for this first step, called
PascAL. It is described in more detail in [BTPSLO0O].

In Subsection 7.2, we discuss how to reduce the number of extracted associ-
ation rules without losing any information, based on mathematical properties of
closure systems. This is described in more detail in [STBPL01a].

7.1 Mining Frequent Patterns with Counting Inference

The problem of mining frequent patterns arose first as a sub-problem of mining
association rules, but it then turned out to be present in a variety of prob-
lems [HPYO00]: mining sequential patterns [AS95], episodes [Ma97], association
rules [AS94], correlations [BMS97,SBM98], multi-dimensional patterns [KHC97]
[LSW97], maximal patterns [BA98,ZPOL97,LK98|, closed patterns [BPTSLOO]
[PBTL99a,PBTLI9b,PHMO00]. Since the complexity of this problem is exponen-
tial in the size of the binary database input relation and since the relation has
to be scanned several times during the process, efficient algorithms for mining
frequent patterns are required.

Three approaches have been proposed in the literature for mining frequent
patterns: All of them traverse iteratively the set of all patterns in a levelwise
manner. The first approach follows the classical Apriori [AS94] algorithm (e. g.,
[BMUT97,PCY95,SON95,To96]). The second combines this idea with extract-
ing maximal frequent patterns (e.g., [BA98]), while the third approach (e.g.,
[PBTL99a]), combines it with structural information provided by FCA theory.
While all of the algorithms of the first two approaches have to determine the
supports of all frequent patterns and of some infrequent ones in the database, the
third approach allows to derive a portion of them from already known supports.

Our PASCAL algorithm is an effective and simple optimization of the Apriori
algorithm. It belongs to the third category discussed above, and is a cousin of
TiTtaNIC. It applies FCA results to solve the data mining task of computing
all frequent patterns (and not only the closed ones as TITANIC does). PASCAL
is based on pattern counting inference that relies on key patterns (or minimal
generators). A key pattern is a minimal pattern of an equivalence class gathering
all patterns that have the same objects. Our optimization is based on the fact
that key patterns form an order ideal in the powerset of the attribute set, which
is a necessary condition for applicability of the Apriori pruning strategy. The
pattern counting inference allows to determine the supports of the key patterns
in the database only. The supports of all other frequent patterns are derived
from the frequent key patterns without accessing the database. This allows to
reduce, at each database pass, the number of patterns considered, and, even more
important, to reduce the number of passes in total. As shown by experiments, the
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efficiency gain compared to Apriori is up to one order of magnitude on correlated
data.

7.2 Intelligent Structuring and Reducing Association Rules by
Formal Concept Analysis

Following Davis et al’s first principle, fully taking advantage of discovered asso-
ciation rules means providing capabilities to handle them. The problem is espe-
cially critical when collected data is highly correlated or dense, like in statistical
databases [BMUT97]. For instance, when applied to a census dataset of 10,000
objects — each of which is characterized by values of 73 attributes — experi-
ments result in more then 2,000,000 rules with support and confidence greater
than or equal 90%. Thus the question arises: How can long lists of association
rules be reduced in size?

Approaches addressing the described issue provide users with mechanisms for
filtering rules, for instance by user defined templates [BP97, KMRTV94], Boolean
[NLP98,SVA97] or SQL-like [MPC96] operators or by introducing further mea-
sures of “usefulness” [BA99]; or they attempt to minimize the number of ex-
tracted rules a priori by using information about taxonomies [HF95 HMWG98]
[SA95] or by applying statistical measures like Pearson’s correlation or the y2-
test [BMS97]. All these approaches have in common that they lose some infor-
mation.

Our approach described in [STBPLOla], on the other hand, allows us to
significantly reduce the number of rules without losing any information. We
extract only a subset of all association rules, called basis, from which all other
rules can be derived. This approach is orthogonal to the ones mentioned above
and can be combined with them. We use two complementary bases, extending
results of Duquenne and Guigues ([DG86], cf. also [GW99a]) and Luxenburger
[Lu91,Lu93]. The former have studied bases for association rules with 100 %
confidence, and the latter association rules with less than 100 % confidence. We
adopt their results to association rules (where also the support is considered)
and provide algorithms for computing the new bases.

The Duguenne-Guigues basis for exact association rules consists of rules
where the premise is a so-called frequent pseudo-intent, and the conclusion a
related frequent concept intent. The Luzenburger basis for approximate associa-
tion rules contains only rules where premise and conclusion are frequent concept
intents of concepts being neighbors in the concept lattice. To give an impression,
the Luxenburger basis for the MUSHROOMS database'® with a minimum support
of 70 % and a minimum confidence of 95 % is shown in Figure 6. We have proven
that these bases are minimal with respect to a certain set of inference rules.

In [BPTSLO00], we have presented another pair of bases, which provide rules
with minimal antecedents and maximal consequents. Compared to the results
discussed here, they have the disadvantage of a higher total number of rules. For
the approximate rules, M. Zaki has presented similar results in [Za00]. However,

13 ftp://ftp.ics.uci.edu/ cmerz/mldb.tar.Z
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he does not provide inference rules for support and confidence derivation, does
not discuss minimality of his results, and does not provide algorithms for the
computation of the bases.

For the computation of the bases, we follow an approach in two steps. In the
first step, we compute all frequent patterns, and determine all concept intents
among them, using the PASCAL algorithm described in the previous subsection.
In the second step, we derive the bases for the association rules. Experiments
show that, by exploiting the lattice structure, we are able to reduce the number
of rules by up to 2.5 orders of magnitude without loosing any information; and
to significantly speed up the computation, especially for strongly correlated data
or when the minimum support is low.

8 Visualization and Management of Conceptual
Hierarchies

An important problem in the application of FCA is the size of the concept lat-
tices. In the worst case, their size is exponential in the size of the formal context.
Hence methods for managing large conceptual hierarchies and for visualizing
(parts of) them are needed.

One solution for visualizing a part of the hierarchy has already been discussed
in Section 6.1. Another popular approach to overcome this problem — which is
orthogonal to iceberg concept lattices — is conceptual scaling combined with
nested line diagrams as described in Section 2. Local scaling is a technique for
further reducing the complexity of those nested line diagrams. It will be discussed
in the next subsection. Details of the construction are given in [St96b].
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In very large applications, conceptual scaling alone is not sufficient to support
the user in navigating through the hierarchy, since the total number of conceptual
scales becomes too large. The need for navigation support on this meta-level
arises. In Subsection 8.2, we discuss the use of a hierarchy on the set of conceptual
scales to support this navigation. More details are given in [St99a].

Both local scaling and a hierarchy on the conceptual scales are used in the
Conceptual Email Manager CEM. The purpose of this email manager is to im-
prove the retrieval facilities of standard email management systems by exploiting
the fact that concept lattices allow for multiple hierarchies. CEM is discussed in
Subsection 8.3, and described in detail in [CS00].

8.1 Local Scaling in Conceptual Data Systems

Nested line diagrams may become unnecessarily large, if the second scale does
not differentiate all of the concepts of the first scale. For instance, in Figure 3,
one may wonder if the concepts of the outer scale labeled by ‘Europe’ and ‘Asia
Pacific’ really need to be enlarged. Intuitively, one may just collapse them. Local
scaling, as discussed below, reduces the complexity of the nested line diagram,
and provides at the same time a clear semantic.

It is a known result that the concept lattice of the derived context of a set of
conceptual scales can be embedded (as a join-semi-lattice) in the direct product
of their concept lattices. This embedding was used to generate the nested line
diagram in Figure 3. The basic idea of local scaling is to find a construction
smaller than the direct product such that the concept lattice of the derived
context can still be embedded into it (again as a join-semi-lattice).

Local scaling is inspired by so-called local direct products [Ge88], a general-
ization of A. Day’s doubling construction for solving the word problem in free
lattices [Da92]. In [St96a], the detailed construction of local scaling is described.
Its semantics is provided, and the correctness is proved. The main condition for
obtaining unambiguous diagrams turns out to be that the set of concepts of the
outer scale to be enlarged must be convex. For the diagram in Figure 3, this
means that the two concepts labeled by ‘Europe’ and ‘Asia Pacific’ have to be
enlarged, as they are positioned between two concepts which have to be enlarged
as well. Hence in this case we cannot reduce the visualization by local scaling.

Based on local scaling, one can provide different techniques for interactively
exploring the data: By iteratively enlarging relevant concepts, one can simulate
a ‘conceptual magnifying glass’, and one can support ‘parallel zooming’ into
concepts of the outer scale. Local scaling is implemented in the Conceptual
Email Manager discussed below (see Figure 7).

8.2 Hierarchies of Conceptual Scales

In large applications, the number of conceptual scales may be so large that
navigation support is needed on this meta-level, too. By introducing new higher
level attributes and a taxonomy on these new attributes, one can derive new,
hierarchically ordered higher level scales. We obtain a cascading hierarchy of

29



N
sl
Direction

Email Received
- Email Sent
B Conference Related m

B Conferences with papers
& Conferences with papers 2000
B ICCS 2000

(Conferences with papers
7 o [KRUSE 97
145}~

ICCS Paper with Cole
~ ICCS Paper with Mineau
B/ Conferences with Papers 37
ICCS 97
KRUSE 97
& Conference Organisation
Program Committee
B Email with Colaborators
& Email with Cole
ICCS Paper with Cole
& Email with Mineau
- ICCS Paper with Mineau
Email with Admin Staff

m}mm]lmﬂlllll111111xxsz[[[[um.,;,,,,,,,,,,,,,

Fig. 7. Screenshot of the Conceptual Email Manager. Here it uses local scaling to
combine the two scales ‘Conference Related’ and ‘Conferences with papers’.

conceptual scales with increasing granularity. Higher level scales (which can be
derived automatically from the taxonomy) provide information about the data on
a more general level. They allow to observe global ‘cross-scale’ relationships that
cannot be recognized easily otherwise. Hence higher level scales are an interesting
technique for knowledge discovery while they allow at the same time a drill-down
to the original data as known from Online-Analytical Processing (OLAP; cf. also
to [St00]). The technique of local scaling can be used for visualizing conceptual
hierarchies located on different levels. Its adaption to hierarchies of scales, called
nested scaling, significantly reduces the complexity of the visualization.

The construction of higher level scales can also be used to support navigation
in ontologies. Therefore, a hierarchy of conceptual scales has to be derived from
the ontology. Instead of a bottom-up approach as discussed above, one can here
apply a top-down approach. Using the subconcept-superconcept-relation of the
ontology, one obtains automatically a conceptual scale for each concept of the
ontology by choosing as attributes of the scale its immediate subconcepts in the
ontology.

In [St99a], hierarchies of concepts have been applied for enhancing the navi-
gation support for information retrieval in the library of the Center of Interdis-
ciplinary Research of Darmstadt University of Technology (see [RW00]). They
are also implemented in the Conceptual Email Manager which is discussed next.

8.3 CEM — A Conceptual Email Manager

The way standard email management systems store mails is directly derived
from the tree structure of filing cabinets and file management systems. This
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has the advantage that trees have a simple structure which can easily be ex-
plained to novice users. The disadvantage is that at the moment of storing an
email the user already has to foresee the way she is going to retrieve the mail
later. The tree structure forces her to decide at that moment which criteria
to consider as primary and which as secondary. For instance, when storing an
email regarding the organization of a conference, one has to decide whether
to organize one’s directories like mineau/iccs2000/program commitee or like
conferences/iccs/iccs2000/organisation/mineau. This problem arises es-
pecially if a user communicates with overlapping communities on different top-
ics.

In [CSO00], we introduce the Conceptual Email Manager CEM. It uses a formal
context, as its structure for storing email rather than a tree. The objects are all
emails stored by the system, and the attributes are catchwords like ‘conferences’,
‘mineau’, and ‘organisation’. This allows the user to retrieve emails via a concept
lattice following different paths. For the example above this means that one need
not decide which of the two paths to use for storing. For retrieving the mail later,
one can consider any combination of the catchwords in the two paths. This is
made possible by using the richly structured concept lattice as search space. The
Conceptual Email Manager uses a hierarchy on the conceptual scales as discussed
above, and uses local scaling for visualizing the search space. Figure 7 shows a
screen-shot of the Conceptual Email Manager. The use of the Conceptual Email
Manager for Conceptual Knowledge Discovery is discussed in [CS00].

Our approach is related to the use of wvirtual folders in the program View
Mail (VM) [Jo99], which are collections of email documents retrieved in re-
sponse to a query. It is also related to the library information system imple-
mented in the Center of Interdisciplinary Studies at Darmstadt University of
Technology [RW00] based on the management system TOSCANA for Concep-
tual Information Systems [VW95]. The retrieval components of both our system
and the library system provide basically the same functionality. The difference
lies in the enhanced support for the user maintaining and updating the email col-
lection: while in the library system maintenance is allowed only to the librarian
and/or a knowledge engineer, in an email management system storing emails is
an essential and often used feature which requires some semi-automatic support
for a (relatively) untrained user.

9 QOutlook

In this article, we have discussed the turn of FCA towards computer science.
We have analyzed why FCA is considered as a knowledge representation method
within computer science, and how and why mathematics—based FCA researchers
became attracted by computer science. We presented Conceptual Knowledge
Processing and Conceptual Knowledge Discovery as steps in that development,
and argued for a future integration with Ontology Engineering. The turn of ori-
entation of FCA has provided interesting results, as the discussed research topics
and applications show. We strongly believe that there remains a huge scientific
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potential in the exploitation of bringing together mathematical-structural re-
sults (especially from FCA) and procedural aspects, which will further enhance
the state of the art in computer science.
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