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Abstract. Formal Concept Analysis is an unsupervised learning tech-
nique for conceptual clustering. We introduce the notion of iceberg con-
cept lattices and show their use in Knowledge Discovery in Databases
(KDD). Iceberg lattices are designed for analyzing very large databases.
In particular they serve as a condensed representation of frequent pat-
terns as known from association rule mining.

In order to show the interplay between Formal Concept Analysis and
association rule mining, we discuss the algorithm T1TANIC. We show that
iceberg concept lattices are a starting point for computing condensed sets
of association rules without loss of information, and are a visualization
method for the resulting rules.

1 Introduction

Knowledge discovery in databases (KDD) is defined as the non-trivial extraction
of valid, implicit, potentially useful and ultimately understandable information
in large databases [17]. For several years, a wide range of applications in various
domains have benefited from KDD techniques and many work has been con-
ducted on this topic. The problem of mining frequent patterns arose first as a
sub-problem of mining association rules [1], but it then turned out to be present
in a variety of problems [18]: mining sequential patterns [3], episodes [26], associ-
ation rules [2], correlations [10, 37], multi-dimensional patterns [21, 22], maximal
patterns [8,53, 23], closed patterns [47,31-33]. Since the complexity of this prob-
lem is exponential in the size of the binary database input relation and since this
relation has to be scanned several times during the process, efficient algorithms
for mining frequent patterns are required.

The task of mining frequent patterns can be described as follows: Given a set
G of objects, a set M of attributes (or items), a binary relation I C G'x M (where
(g,m) € I is read as “object g has attribute m”), and a threshold minsupp €
[0, 1], determine all subsets X of M (also called patterns here) where the support

supp(X) = Ccfil(()g)) (with X' := {g € G | Vm € X:(g9,m) € I}) is above the
threshold minsupp.
The set of these frequent patterns itself is usually not considered as a final

result of the mining process, but rather an intermediate step. Its most prominent




use are certainly association rules. The task of mining association rules is to de-
termine all pairs X — Y of subsets of M such that supp(X — V) := supp(XUY)

is above the threshold minsupp, and the confidence conf(X — Y) := %

is above a given threshold minconf € [0, 1]. Association rules are for instance used
in warehouse basket analysis, where the warehouse management is interested in
learning about products frequently bought together.

Since determining the frequent patterns is the computationally most expen-
sive part, most research has focused on this aspect. Most algorithms follow the
way of the well-known Apriori algorithm [2]. It is traversing iteratively the set
of all patterns in a levelwise manner. During each iteration one level is consid-
ered: a subset of candidate patterns is created by joining the frequent patterns
discovered during the previous iteration, the supports of all candidate patterns
are counted, and the infrequent ones are discarded. A variety of modifications
of this algorithm arose [11,29, 34, 48] in order to improve different efficiency as-
pects. However, all of these algorithms have to determine the supports of all
frequent patterns and of some infrequent ones in the database.

Other algorithms are based on the extraction of maximal frequent patterns,
from which all supersets are infrequent and all subsets are frequent. They com-
bine a levelwise bottom-up traversal with a top-down traversal in order to quickly
find the maximal frequent patterns. Then, all frequent patterns are derived from
these ones and one last database scan is carried on to count their support. The
most prominent algorithm using this approach is Max-Miner [8]. Experimen-
tal results have shown that this approach is particularly efficient for extracting
maximal frequent patterns, but when applied to extracting all frequent patterns,
performances drastically decrease because of the cost of the last scan which re-
quires roughly an inclusion test between each frequent pattern and each object
of the database. As for the first approach, algorithms based on this approach
have to extract the supports of all frequent patterns from the database.

While all techniques mentioned so far count the support of all frequent pat-
terns, this is by no means necessary. In the next section, we will show that the
knowledge of some supports is sufficient for deriving all other supports. This
way, we are able to decrease computation time. An additional result is the vi-
sualization of representative frequent patterns in iceberg concept lattices, which
is discussed in Section 3. In Section 4, we sketch the principle of one of the al-
gorithms, called T1TANIC. Last but not least, iceberg concept lattices allow to
drastically reduce the number of rules that are to be presented to the user, with-
out any information loss. This is the topic of Section 5. The paper summarizes
joint work with Lotfi Lakhal, Yves Bastide, Nicolas Pasquier, and Rafik Taouil
as presented in [5, 6,42, 43].

2 Mining Frequent Patterns with Formal Concept
Analysis

Consider two patterns X and Y such that both describe exactly the same set of
objects, i.e., X' = Y"'. So if we know the support of one of them, we do not need



to count the support of the other one in the database. In fact, we can introduce
an equivalence relation 6 on the powerset B(M) of M by XY <— X' =Y".
If we knew the relation from the beginning, it would be sufficient to count the
support of one pattern of each class only — all other supports can then be
derived.

Of course one does not know 6 in advance, but one can determine it along
the computation. It turns out that one usually has to count the support of more
than one pattern of each class, but normally not of all of them. The percentage
of patterns to be considered depends on how correlated the data are: The more
correlated the data are, the fewer counts have to be performed.

This observation was independently made by three research groups around
1997/98, inspired by the theory of Formal Concept Analysis: L. Lakhal and his
database group in Clermont—Ferrand, M. Zaki in Troy, NY, and the author in
Darmstadt. The first algorithm based on this idea was Close [31], followed by
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A-Close [32], ChARM [55], PascaL [6], Closet [33], and TI1TANIC [41,42], each

having its own way to exploit the equivalence relation which is hidden in the
data. In Section 4, we will sketch the TITANIC algorithm as an example.

All these algorithms make use of the theory of Formal Concept Analysis
(FCA). Introduced in the early 1980ies as a formalization of the concept of
‘concept’ [51], FCA has over the years grown to a powerful theory for data
analysis, information retrieval, and knowledge discovery [45]. In Artificial Intel-
ligence (AI), FCA is used as a knowledge representation mechanism [46] and as
conceptual clustering method [38,12,27]. In database theory, FCA has been ex-
tensively used for class hierarchy design and management [28,52, 14,50, 36, 16].
Its usefulness for the analysis of data stored in relational databases has been
demonstrated with the commercially used management system TOSCANA for

Conceptual Information Systems [49].

FCA has been applied in a wide range of domains, including medicine, psy-
chology, social sciences, linguistics, information sciences, machine and civil en-
gineering etc. (cf. [45]). Over all, FCA has been used in more than 200 projects,
both on the scientific and the commercial level. For instance, FCA has been ap-
plied for analyzing data of children with diabetes [35], for developing qualitative
theories in music esthetics [25], for managing emails [13], for database marketing
[19], and for an IT security management system [9].

FCA formalizes a concept of ‘concept’ as established in the international
standard ISO 704: a concept is considered as a unit of thought constituted of
two parts: its extension and its intension [51, 15]. This understanding of ‘concept’
is first mentioned explicitly in the Logic of Port Royal [4]. To allow a formal
description of extensions and intensions, FCA starts with the same type of data
as association rule mining: a (formal) context K := (G, M, I) consists of a set
G of objects [German: Gegensténde], a set M of attributes [Merkmale], and a
binary relation I C G x M. As above, we define, for A C G,

A':={me M |Vge A:(g,m) €I} ;



and for B C M, we define dually
B':={g€ G |Vme B:(g,m) € I} .

Now, a formal concept is a pair (A,B) with A C G, B C M, A' = B
and B' = A. A is called extent and B is called intent of the concept. The
set B(K) of all concepts of a formal context K together with the partial order
(A1,B1) < (As,Bs) :& Ay C As (which is equivalent to By D Bs) is called
concept lattice of K.

It turns out that each concept intent (here also called closed pattern) is
exactly the largest pattern of the equivalence class of 6 it belongs to. For any
pattern X C M, the concept intent of its equivalence class is the set X". The
concept intents can hence be considered as ‘normal forms’ of the (frequent)
patterns. In particular, the concept lattice contains all information to derive the
support of all (frequent) patterns.

3 Iceberg Concept Lattices

While it is not really informative to study the set of all frequent patterns, the sit-
uation changes when we consider the closed patterns among them only. The con-
cepts they belong to are called frequent concepts, and the set of all frequent con-
cepts is called iceberg concept lattice of the context K for the threshold minsupp.
We illustrate this by a small example. Figure 1 shows the iceberg concept lat-
tice of the MUsSHROOM database from the UCI KDD Archive [7] for a minimum
support of 85 %.

The MUSHROOM database consists of 8,416 objects (mushrooms) and 22
(nominally valued) attributes. We obtain a formal context by creating one (Boo-
lean) attribute for each of the 80 possible values of the 22 database attributes.
The resulting formal context has thus 8,416 objects and 80 attributes. For a
minimum support of 85 %, this dataset has 16 frequent patterns, namely all 2*
possible combinations of the attributes ‘veil type: partial’, ‘veil color: white’, ‘gill
attachment: free’, and ‘ring number: one’. Only seven of them are closed. The
seven frequent concepts are shown in Figure 1.

In the diagram, each node stands for formal concept. The intent of each
concept (i.e., each frequent closed pattern) consists of the attributes labeled at
or above the concept. The number shows its support. One can clearly see that all
mushrooms in the database have the attribute ‘veil type: partial’. Furthermore
the diagram tells us that the three next-frequent attributes are: ‘veil color: white’
(with 97.62 % support), ‘gill attachment: free’ (97.43 %), and ‘ring number: one’
(92.30 %). There is no other attribute having a support higher than 85 %. But
even the combination of all these four concepts is frequent (with respect to our
threshold of 85 %): 89.92% of all mushrooms in our database have one ring, a
white partial veil, and free gills. This concept with a quite complex description
contains more objects than the concept described by the fifth-most attribute,
which has a support below our threshold of 85 %, since it is not displayed in the
diagram.



veil type: partial

gill attachment: free
veil color: white

92.30 %

Fig. 1. Iceberg concept lattice of the mushroom database with minsupp = 85 %

In the diagram, we can detect the implication
{ring number: one, veil color: white}=- {gill attachment: free} .

It is indicated by the fact that there is no concept having ‘ring number: one’
and ‘veil color: white’ (and ‘veil type: partial’) in its intent, but not ‘gill attach-
ment: free’. This implication has a support of 89.92% and is globally valid in
the database (i.e., it has a confidence of 100 %).

If we want to see more details, we have to decrease the minimum support.
Figure 2 shows the MUSHROOM iceberg concept lattice for a minimum support
of 70 %. Tts 12 concepts represent all information about the 32 frequent patterns
for this threshold. One observes that, of course, its top-most part is just the
iceberg lattice for minsupp = 85 %. Additionally, we obtain five new concepts,
having the possible combinations of the next-frequent attribute ‘gill spacing:
close’ (having support 81.08 %) with the previous four attributes. The fact that
the combination {veil type: partial, gill attachment: free, gill spacing: close} is
not realized as a concept intent indicates another implication:

{gill attachment: free, gill spacing: close} = {veil color: white} (*

This implication has 78.52% support (the support of the most general con-
cept having all three attributes in its intent) and — being an implication —
100 % confidence.

By further decreasing the minimum support, we discover more and more
details. Figure 3 shows the MUSHROOMS iceberg concept lattice for a minimum
support of 55 %. It shows four more partial copies of the 85 % iceberg lattice,
and three new, single concepts.

The Mushrooms example shows that iceberg concept lattices are suitable es-
pecially for strongly correlated data. In Table 1, the size of the iceberg concept
lattice (i.e., the number of all frequent closed patterns) is compared with the
number of all frequent patterns. It shows for instance, that, for the minimum
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Fig. 2. Iceberg concept lattice of the mushroom database with minsupp = 70 %

Table 1. Number of frequent closed itemsets and frequent itemsets for the Mushrooms
example

minsupp”# frequent closed itemsets|# frequent itemsets

85 % 7 16
70 % 12 32
55 % 32 116

0% 32.086 2%

support of 55 %, only 32 frequent closed itemsets are needed to provide all infor-
mation about the support of all 116 frequent itemsets one obtains for the same
threshold.

4 Computing the Iceberg Concept Lattice with Titanic

For illustrating the principles underlying the algorithms for mining frequent
(closed) patterns using FCA, we sketch one representative called TiTaNicC. For
a more detailed discussion of the algorithm, we refer to [42].

TITANIC is counting the support of so-called key patterns (and of some can-
didates for key patterns) only: A key pattern (or minimal generator) is every
minimal pattern in an equivalence class of #. TITANIC makes use of the fact
that the set of all key patterns has the same property as the set of all frequent
patterns: it is an order ideal in the powerset of M. This means that each subset
of a key pattern is a key pattern, and no superset of a non-key pattern is a key
pattern. Thus we can reuse the pruning approach of Apriori for computing the
supports of all frequent key patterns. Once we have computed them, we have
computed the support of at least one pattern in each equivalence class of 6,



veil ly partial gill attachment: free

ring number: one

5
p—

Joos

AN
SR

\.«‘\\

>
~
@)
S
NS~

Fig. 3. Iceberg concept lattice of the mushroom database with minsupp = 55 %

and we know the relation 6 completely. Hence we can deduce the support of all
frequent patterns without accessing the database any more.

Figure 4 shows the principle of TITANIC. Its basic idea is as the original Apri-
ori algorithm: At the ith iteration, we consider only patterns with cardinality 4
(called i—patterns for short), starting with i = 1 (step 1). In step 2, the support
of all candidates is counted. For i = 1, the candidates are all 1-patterns, later
they are all i—patterns which are potential key patterns.

Once we know the support of all i—candidates, we have enough information
to compute for all (i—1)-key patterns their closure, i.e., the concept intent of
their equivalence class. This is done in step 3, using the equation X" = X U{x €
M\ X | supp(X) = supp(X U {z}).

In step 4, all patterns which are either not frequent or non-key are pruned.
For the latter we use a characterization of key patterns saying that a pattern is
a key pattern iff its support is different from the support of all its immediate
subsets. In strongly correlated data, this additional condition helps pruning a
significant number of patterns.
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yes * by count for the candidates
* by calculation for all other patterns:
End supp(X) = min { supp(K) | K < X, K key pattern}

Fig. 4. The TiTANIC algorithm

At the end of each iteration, the candidates for the next iteration are gen-
erated in step 5. The generation procedure is basically the same as for Apriori:
An (i4+1)-pattern is a candidate iff all its i—subpatterns are key patterns. As
long as new candidates are generated, the next iteration starts. Otherwise the
algorithm terminates.

It is important to note that — especially in strongly correlated data —
the number of frequent key patterns is small compared to the number of all
frequent patterns. Even more important, the cardinality of the largest frequent
key pattern is normally smaller than the one of the largest frequent pattern. This
means that the algorithm has to perform fewer iterations, and thus fewer scans
of the database. This is especially important when the database is too large for
main memory, as each disk access significantly increases computation time. A
theoretical and experimental analysis of this behavior is given in [42], further
experimental results are provided in [6].

5 Bases of Association Rules

One problem in mining association rules is the large number of rules which are
usually returned. But in fact not all rules are necessary to present the infor-
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Fig. 5. Visualization of the Luxenburger basis for minsupp = 70 % and minconf= 95 %
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mation. Similar to the representation of all frequent patterns by the frequent
closed patterns, one can represent all valid association rules by certain subsets,
so-called bases. In [5], [56], and [43], different bases for association rules are in-
troduced. The computation of the bases does not require all frequent patterns,
but only the closed ones.

Here we will only show by an example (taken from [43]), how these bases
look like. We have already discussed how implications (i.e., association rules
with 100 % confidence) can be read from the line diagram. The Luxenburger
basis for approximate association rules (i.e., association rules with less than
100 % confidence) can also be visualized directly in the line diagram of an ice-
berg concept lattice. It makes use of results of [24] and contains only those rules
By — B, where By and B, are frequent concept intents and where the concept
(B}, By) is an immediate subconcept of (B}, By). Hence there corresponds to
each approximate rule in the Luxenburger base exactly one edge in the line dia-
gram. Figure 5 visualizes all rules in the Luxenburger basis for minsupp = 70 %
and minconf=95%. For instance, the rightmost arrow stands for the associa-
tion rule {veil color: white, gill spacing: close} — {gill attachment: free}, which
holds with a confidence of 99.6 %. Its support is the support of the concept the
arrow is pointing to: 78.52 %, as shown in Figure 2. Edges without label indicate
that the confidence of the rule is below the minimum confidence threshold. The
visualization technique is described in more detail in [43]. In comparison with
other visualization techniques for association rules (as for instance implemented
in the IBM Intelligent Miner), the visualization of the Luxenburger basis within
the iceberg concept lattice benefits of the smaller number of rules to be repre-



sented (without loss of information!), and of the presence of a ‘reading direction’
provided by the concept hierarchy.

6

Conclusion

We have shown that results of Formal Concept Analysis increase on one hand
the performance of data mining algorithms, and improve on the other hand
the visualization of the results. There remains still a huge potential for further
exploitation of FCA for data mining and knowledge discovery.
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