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t. Formal Con
ept Analysis is an unsupervised learning te
h-nique for 
on
eptual 
lustering. We introdu
e the notion of i
eberg 
on-
ept latti
es and show their use in Knowledge Dis
overy in Databases(KDD). I
eberg latti
es are designed for analyzing very large databases.In parti
ular they serve as a 
ondensed representation of frequent pat-terns as known from asso
iation rule mining.In order to show the interplay between Formal Con
ept Analysis andasso
iation rule mining, we dis
uss the algorithm Titani
. We show thati
eberg 
on
ept latti
es are a starting point for 
omputing 
ondensed setsof asso
iation rules without loss of information, and are a visualizationmethod for the resulting rules.1 Introdu
tionKnowledge dis
overy in databases (KDD) is de�ned as the non-trivial extra
tionof valid, impli
it, potentially useful and ultimately understandable informationin large databases [17℄. For several years, a wide range of appli
ations in variousdomains have bene�ted from KDD te
hniques and many work has been 
on-du
ted on this topi
. The problem of mining frequent patterns arose �rst as asub-problem of mining asso
iation rules [1℄, but it then turned out to be presentin a variety of problems [18℄: mining sequential patterns [3℄, episodes [26℄, asso
i-ation rules [2℄, 
orrelations [10, 37℄, multi-dimensional patterns [21, 22℄, maximalpatterns [8, 53, 23℄, 
losed patterns [47, 31{33℄. Sin
e the 
omplexity of this prob-lem is exponential in the size of the binary database input relation and sin
e thisrelation has to be s
anned several times during the pro
ess, eÆ
ient algorithmsfor mining frequent patterns are required.The task of mining frequent patterns 
an be des
ribed as follows: Given a setG of obje
ts, a setM of attributes (or items), a binary relation I � G�M (where(g;m) 2 I is read as \obje
t g has attribute m"), and a threshold minsupp 2[0; 1℄, determine all subsets X ofM (also 
alled patterns here) where the supportsupp(X) := 
ard(X0)
ard(G) (with X 0 := fg 2 G j 8m 2 X : (g;m) 2 Ig) is above thethreshold minsupp.The set of these frequent patterns itself is usually not 
onsidered as a �nalresult of the mining pro
ess, but rather an intermediate step. Its most prominent



use are 
ertainly asso
iation rules. The task of mining asso
iation rules is to de-termine all pairsX ! Y of subsets ofM su
h that supp(X ! Y ) := supp(X[Y )is above the threshold minsupp, and the 
on�den
e 
onf(X ! Y ) := supp(X[Y )supp(X)is above a given threshold min
onf 2 [0; 1℄. Asso
iation rules are for instan
e usedin warehouse basket analysis, where the warehouse management is interested inlearning about produ
ts frequently bought together.Sin
e determining the frequent patterns is the 
omputationally most expen-sive part, most resear
h has fo
used on this aspe
t. Most algorithms follow theway of the well-known Apriori algorithm [2℄. It is traversing iteratively the setof all patterns in a levelwise manner. During ea
h iteration one level is 
onsid-ered: a subset of 
andidate patterns is 
reated by joining the frequent patternsdis
overed during the previous iteration, the supports of all 
andidate patternsare 
ounted, and the infrequent ones are dis
arded. A variety of modi�
ationsof this algorithm arose [11, 29, 34, 48℄ in order to improve di�erent eÆ
ien
y as-pe
ts. However, all of these algorithms have to determine the supports of allfrequent patterns and of some infrequent ones in the database.Other algorithms are based on the extra
tion of maximal frequent patterns,from whi
h all supersets are infrequent and all subsets are frequent. They 
om-bine a levelwise bottom-up traversal with a top-down traversal in order to qui
kly�nd the maximal frequent patterns. Then, all frequent patterns are derived fromthese ones and one last database s
an is 
arried on to 
ount their support. Themost prominent algorithm using this approa
h is Max-Miner [8℄. Experimen-tal results have shown that this approa
h is parti
ularly eÆ
ient for extra
tingmaximal frequent patterns, but when applied to extra
ting all frequent patterns,performan
es drasti
ally de
rease be
ause of the 
ost of the last s
an whi
h re-quires roughly an in
lusion test between ea
h frequent pattern and ea
h obje
tof the database. As for the �rst approa
h, algorithms based on this approa
hhave to extra
t the supports of all frequent patterns from the database.While all te
hniques mentioned so far 
ount the support of all frequent pat-terns, this is by no means ne
essary. In the next se
tion, we will show that theknowledge of some supports is suÆ
ient for deriving all other supports. Thisway, we are able to de
rease 
omputation time. An additional result is the vi-sualization of representative frequent patterns in i
eberg 
on
ept latti
es, whi
his dis
ussed in Se
tion 3. In Se
tion 4, we sket
h the prin
iple of one of the al-gorithms, 
alled Titani
. Last but not least, i
eberg 
on
ept latti
es allow todrasti
ally redu
e the number of rules that are to be presented to the user, with-out any information loss. This is the topi
 of Se
tion 5. The paper summarizesjoint work with Lot� Lakhal, Yves Bastide, Ni
olas Pasquier, and Ra�k Taouilas presented in [5, 6, 42, 43℄.2 Mining Frequent Patterns with Formal Con
eptAnalysisConsider two patterns X and Y su
h that both des
ribe exa
tly the same set ofobje
ts, i. e., X 0 = Y 0. So if we know the support of one of them, we do not need



to 
ount the support of the other one in the database. In fa
t, we 
an introdu
ean equivalen
e relation � on the powerset P(M) of M by X�Y () X 0 = Y 0.If we knew the relation from the beginning, it would be suÆ
ient to 
ount thesupport of one pattern of ea
h 
lass only | all other supports 
an then bederived.Of 
ourse one does not know � in advan
e, but one 
an determine it alongthe 
omputation. It turns out that one usually has to 
ount the support of morethan one pattern of ea
h 
lass, but normally not of all of them. The per
entageof patterns to be 
onsidered depends on how 
orrelated the data are: The more
orrelated the data are, the fewer 
ounts have to be performed.This observation was independently made by three resear
h groups around1997/98, inspired by the theory of Formal Con
ept Analysis: L. Lakhal and hisdatabase group in Clermont{Ferrand, M. Zaki in Troy, NY, and the author inDarmstadt. The �rst algorithm based on this idea was Close [31℄, followed byA-Close [32℄, ChARM [55℄, Pas
al [6℄, Closet [33℄, and Titani
 [41, 42℄, ea
hhaving its own way to exploit the equivalen
e relation whi
h is hidden in thedata. In Se
tion 4, we will sket
h the Titani
 algorithm as an example.All these algorithms make use of the theory of Formal Con
ept Analysis(FCA). Introdu
ed in the early 1980ies as a formalization of the 
on
ept of`
on
ept' [51℄, FCA has over the years grown to a powerful theory for dataanalysis, information retrieval, and knowledge dis
overy [45℄. In Arti�
ial Intel-ligen
e (AI), FCA is used as a knowledge representation me
hanism [46℄ and as
on
eptual 
lustering method [38, 12, 27℄. In database theory, FCA has been ex-tensively used for 
lass hierar
hy design and management [28, 52, 14, 50, 36, 16℄.Its usefulness for the analysis of data stored in relational databases has beendemonstrated with the 
ommer
ially used management system TOSCANA forCon
eptual Information Systems [49℄.FCA has been applied in a wide range of domains, in
luding medi
ine, psy-
hology, so
ial s
ien
es, linguisti
s, information s
ien
es, ma
hine and 
ivil en-gineering et
. (
f. [45℄). Over all, FCA has been used in more than 200 proje
ts,both on the s
ienti�
 and the 
ommer
ial level. For instan
e, FCA has been ap-plied for analyzing data of 
hildren with diabetes [35℄, for developing qualitativetheories in musi
 estheti
s [25℄, for managing emails [13℄, for database marketing[19℄, and for an IT se
urity management system [9℄.FCA formalizes a 
on
ept of `
on
ept' as established in the internationalstandard ISO 704: a 
on
ept is 
onsidered as a unit of thought 
onstituted oftwo parts: its extension and its intension [51, 15℄. This understanding of `
on
ept'is �rst mentioned expli
itly in the Logi
 of Port Royal [4℄. To allow a formaldes
ription of extensions and intensions, FCA starts with the same type of dataas asso
iation rule mining: a (formal) 
ontext K := (G;M; I) 
onsists of a setG of obje
ts [German: Gegenst�ande℄, a set M of attributes [Merkmale℄, and abinary relation I � G�M . As above, we de�ne, for A � G,A0 := fm 2M j 8g 2 A: (g;m) 2 Ig ;



and for B �M , we de�ne duallyB0 := fg 2 G j 8m 2 B: (g;m) 2 Ig :Now, a formal 
on
ept is a pair (A;B) with A � G, B � M , A0 = Band B0 = A. A is 
alled extent and B is 
alled intent of the 
on
ept. Theset B(K ) of all 
on
epts of a formal 
ontext K together with the partial order(A1; B1) � (A2; B2) :, A1 � A2 (whi
h is equivalent to B1 � B2) is 
alled
on
ept latti
e of K .It turns out that ea
h 
on
ept intent (here also 
alled 
losed pattern) isexa
tly the largest pattern of the equivalen
e 
lass of � it belongs to. For anypattern X � M , the 
on
ept intent of its equivalen
e 
lass is the set X 00. The
on
ept intents 
an hen
e be 
onsidered as `normal forms' of the (frequent)patterns. In parti
ular, the 
on
ept latti
e 
ontains all information to derive thesupport of all (frequent) patterns.3 I
eberg Con
ept Latti
esWhile it is not really informative to study the set of all frequent patterns, the sit-uation 
hanges when we 
onsider the 
losed patterns among them only. The 
on-
epts they belong to are 
alled frequent 
on
epts, and the set of all frequent 
on-
epts is 
alled i
eberg 
on
ept latti
e of the 
ontext K for the threshold minsupp.We illustrate this by a small example. Figure 1 shows the i
eberg 
on
ept lat-ti
e of the Mushroom database from the UCI KDD Ar
hive [7℄ for a minimumsupport of 85%.The Mushroom database 
onsists of 8,416 obje
ts (mushrooms) and 22(nominally valued) attributes. We obtain a formal 
ontext by 
reating one (Boo-lean) attribute for ea
h of the 80 possible values of the 22 database attributes.The resulting formal 
ontext has thus 8,416 obje
ts and 80 attributes. For aminimum support of 85%, this dataset has 16 frequent patterns, namely all 24possible 
ombinations of the attributes `veil type: partial', `veil 
olor: white', `gillatta
hment: free', and `ring number: one'. Only seven of them are 
losed. Theseven frequent 
on
epts are shown in Figure 1.In the diagram, ea
h node stands for formal 
on
ept. The intent of ea
h
on
ept (i. e., ea
h frequent 
losed pattern) 
onsists of the attributes labeled ator above the 
on
ept. The number shows its support. One 
an 
learly see that allmushrooms in the database have the attribute `veil type: partial'. Furthermorethe diagram tells us that the three next-frequent attributes are: `veil 
olor: white'(with 97.62% support), `gill atta
hment: free' (97.43%), and `ring number: one'(92.30%). There is no other attribute having a support higher than 85%. Buteven the 
ombination of all these four 
on
epts is frequent (with respe
t to ourthreshold of 85%): 89.92% of all mushrooms in our database have one ring, awhite partial veil, and free gills. This 
on
ept with a quite 
omplex des
ription
ontains more obje
ts than the 
on
ept des
ribed by the �fth-most attribute,whi
h has a support below our threshold of 85%, sin
e it is not displayed in thediagram.



veil type: partial

ring number: one veil color: white

gill attachment: free100 %

92.30 % 97.62 %

97.43 %

97.34 %90.02 %

89.92 %Fig. 1. I
eberg 
on
ept latti
e of the mushroom database with minsupp = 85%In the diagram, we 
an dete
t the impli
ationfring number: one, veil 
olor: whiteg) fgill atta
hment: freeg .It is indi
ated by the fa
t that there is no 
on
ept having `ring number: one'and `veil 
olor: white' (and `veil type: partial') in its intent, but not `gill atta
h-ment: free'. This impli
ation has a support of 89.92% and is globally valid inthe database (i. e., it has a 
on�den
e of 100%).If we want to see more details, we have to de
rease the minimum support.Figure 2 shows the Mushroom i
eberg 
on
ept latti
e for a minimum supportof 70%. Its 12 
on
epts represent all information about the 32 frequent patternsfor this threshold. One observes that, of 
ourse, its top-most part is just thei
eberg latti
e for minsupp = 85%. Additionally, we obtain �ve new 
on
epts,having the possible 
ombinations of the next-frequent attribute `gill spa
ing:
lose' (having support 81.08%) with the previous four attributes. The fa
t thatthe 
ombination fveil type: partial, gill atta
hment: free, gill spa
ing: 
loseg isnot realized as a 
on
ept intent indi
ates another impli
ation:fgill atta
hment: free, gill spa
ing: 
loseg ) fveil 
olor: whiteg (*)This impli
ation has 78.52% support (the support of the most general 
on-
ept having all three attributes in its intent) and | being an impli
ation |100% 
on�den
e.By further de
reasing the minimum support, we dis
over more and moredetails. Figure 3 shows the Mushrooms i
eberg 
on
ept latti
e for a minimumsupport of 55%. It shows four more partial 
opies of the 85% i
eberg latti
e,and three new, single 
on
epts.The Mushrooms example shows that i
eberg 
on
ept latti
es are suitable es-pe
ially for strongly 
orrelated data. In Table 1, the size of the i
eberg 
on
eptlatti
e (i. e., the number of all frequent 
losed patterns) is 
ompared with thenumber of all frequent patterns. It shows for instan
e, that, for the minimum



veil type: partial
ring number: one

veil color: white

gill attachment: free

gill spacing: close

100 %

92.30 % 97.62 %97.43 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

78.52 %

74.52 %Fig. 2. I
eberg 
on
ept latti
e of the mushroom database with minsupp = 70%Table 1. Number of frequent 
losed itemsets and frequent itemsets for the Mushroomsexample minsupp # frequent 
losed itemsets # frequent itemsets85% 7 1670% 12 3255% 32 1160% 32.086 280support of 55%, only 32 frequent 
losed itemsets are needed to provide all infor-mation about the support of all 116 frequent itemsets one obtains for the samethreshold.4 Computing the I
eberg Con
ept Latti
e with Titani
For illustrating the prin
iples underlying the algorithms for mining frequent(
losed) patterns using FCA, we sket
h one representative 
alled Titani
. Fora more detailed dis
ussion of the algorithm, we refer to [42℄.Titani
 is 
ounting the support of so-
alled key patterns (and of some 
an-didates for key patterns) only: A key pattern (or minimal generator) is everyminimal pattern in an equivalen
e 
lass of �. Titani
 makes use of the fa
tthat the set of all key patterns has the same property as the set of all frequentpatterns: it is an order ideal in the powerset of M . This means that ea
h subsetof a key pattern is a key pattern, and no superset of a non-key pattern is a keypattern. Thus we 
an reuse the pruning approa
h of Apriori for 
omputing thesupports of all frequent key patterns. On
e we have 
omputed them, we have
omputed the support of at least one pattern in ea
h equivalen
e 
lass of �,



veil type: partial
ring number: one

veil color: white

stalk surface below ring: smoothstalk surface above ring: smooth

gill attachment: free

gill size: broad

gill spacing: close

stalk shape: tapering

stalk color below ring: white

stalk color above ring: white

no bruises

100 %

92.30 % 97.62 %

60.31 %

55.09 %

63.17 %

57.94 %

97.43 %69.87 %

62.17 % 67.59 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

57.79 %

55.13 %

56.37 %

58.03 %60.88 %

55.66 %

67.30 %

59.89 %

78.52 %

74.52 %

59.89 %

55.70 % 57.51 %57.32 %

57.22 %Fig. 3. I
eberg 
on
ept latti
e of the mushroom database with minsupp = 55%and we know the relation � 
ompletely. Hen
e we 
an dedu
e the support of allfrequent patterns without a

essing the database any more.Figure 4 shows the prin
iple of Titani
. Its basi
 idea is as the original Apri-ori algorithm: At the ith iteration, we 
onsider only patterns with 
ardinality i(
alled i{patterns for short), starting with i = 1 (step 1). In step 2, the supportof all 
andidates is 
ounted. For i = 1, the 
andidates are all 1{patterns, laterthey are all i{patterns whi
h are potential key patterns.On
e we know the support of all i{
andidates, we have enough informationto 
ompute for all (i�1){key patterns their 
losure, i. e., the 
on
ept intent oftheir equivalen
e 
lass. This is done in step 3, using the equation X 00 = X[fx 2M nX j supp(X) = supp(X [ fxg).In step 4, all patterns whi
h are either not frequent or non-key are pruned.For the latter we use a 
hara
terization of key patterns saying that a pattern isa key pattern i� its support is di�erent from the support of all its immediatesubsets. In strongly 
orrelated data, this additional 
ondition helps pruning asigni�
ant number of patterns.



End

i ¬ 1

Ci ¬ {patterns with cardinality 1}

Determine support for all C Î Ci

Determine closure for all C Î Ci - 1

Prune non-key patterns fromCi

i ¬ i + 1

Ci ¬ Generate_Candidates(Ci - 1 )

Ci empty?
no

yes

count in database

X‘‘ = X È { xÎ M \ X | supp(X) = supp(X È {x}) }

à la Apriori

iff supp < minsupp or

$ x ÎX: supp(X) = supp(X \ {x})

à la Apriori

1

5

4

3

2

At the end, all supports are known:

• by count for the candidates

• by  calculation for all other patterns:

supp(X) = min { supp(K) | K Í X , K key pattern}Fig. 4. The Titani
 algorithmAt the end of ea
h iteration, the 
andidates for the next iteration are gen-erated in step 5. The generation pro
edure is basi
ally the same as for Apriori:An (i+1){pattern is a 
andidate i� all its i{subpatterns are key patterns. Aslong as new 
andidates are generated, the next iteration starts. Otherwise thealgorithm terminates.It is important to note that | espe
ially in strongly 
orrelated data |the number of frequent key patterns is small 
ompared to the number of allfrequent patterns. Even more important, the 
ardinality of the largest frequentkey pattern is normally smaller than the one of the largest frequent pattern. Thismeans that the algorithm has to perform fewer iterations, and thus fewer s
ansof the database. This is espe
ially important when the database is too large formain memory, as ea
h disk a

ess signi�
antly in
reases 
omputation time. Atheoreti
al and experimental analysis of this behavior is given in [42℄, furtherexperimental results are provided in [6℄.5 Bases of Asso
iation RulesOne problem in mining asso
iation rules is the large number of rules whi
h areusually returned. But in fa
t not all rules are ne
essary to present the infor-



ring number: one

veil type: partial
gill attachment: free

gill spacing: close

97.0%

99.9% 99.6%

97.2%

97.4%

99.9%

99.7%

97.5%

veil color: white
97.6%

Fig. 5. Visualization of the Luxenburger basis for minsupp = 70% and min
onf= 95%mation. Similar to the representation of all frequent patterns by the frequent
losed patterns, one 
an represent all valid asso
iation rules by 
ertain subsets,so-
alled bases. In [5℄, [56℄, and [43℄, di�erent bases for asso
iation rules are in-trodu
ed. The 
omputation of the bases does not require all frequent patterns,but only the 
losed ones.Here we will only show by an example (taken from [43℄), how these baseslook like. We have already dis
ussed how impli
ations (i. e., asso
iation ruleswith 100% 
on�den
e) 
an be read from the line diagram. The Luxenburgerbasis for approximate asso
iation rules (i. e., asso
iation rules with less than100% 
on�den
e) 
an also be visualized dire
tly in the line diagram of an i
e-berg 
on
ept latti
e. It makes use of results of [24℄ and 
ontains only those rulesB1 ! B2 where B1 and B2 are frequent 
on
ept intents and where the 
on
ept(B01; B1) is an immediate sub
on
ept of (B02; B2). Hen
e there 
orresponds toea
h approximate rule in the Luxenburger base exa
tly one edge in the line dia-gram. Figure 5 visualizes all rules in the Luxenburger basis for minsupp=70%and min
onf= 95%. For instan
e, the rightmost arrow stands for the asso
ia-tion rule fveil 
olor: white, gill spa
ing: 
loseg ! fgill atta
hment: freeg, whi
hholds with a 
on�den
e of 99.6%. Its support is the support of the 
on
ept thearrow is pointing to: 78.52%, as shown in Figure 2. Edges without label indi
atethat the 
on�den
e of the rule is below the minimum 
on�den
e threshold. Thevisualization te
hnique is des
ribed in more detail in [43℄. In 
omparison withother visualization te
hniques for asso
iation rules (as for instan
e implementedin the IBM Intelligent Miner), the visualization of the Luxenburger basis withinthe i
eberg 
on
ept latti
e bene�ts of the smaller number of rules to be repre-



sented (without loss of information!), and of the presen
e of a `reading dire
tion'provided by the 
on
ept hierar
hy.6 Con
lusionWe have shown that results of Formal Con
ept Analysis in
rease on one handthe performan
e of data mining algorithms, and improve on the other handthe visualization of the results. There remains still a huge potential for furtherexploitation of FCA for data mining and knowledge dis
overy.Referen
es1. R. Agrawal, T. Imielinski, A. Swami. Mining asso
iation rules between sets ofitems in large databases. Pro
. SIGMOD Conf., 1993, 207{2162. R. Agrawal and R. Srikant. Fast algorithms for mining asso
iation rules. Pro
.VLDB Conf., 1994, 478{499 (Expanded version in IBM Report RJ9839)3. R. Agrawal and R. Srikant. Mining sequential patterns. In Pro
. of the 11th Int'lConf. on Data Engineering (ICDE), pages 3{14, Mar. 1995.4. A. Arnauld, P. Ni
ole: La logique ou l'art de penser | 
ontenant, outre les r�egles
ommunes, plusieurs observations nouvelles, propres �a former le jugement. Ch.Saveux, Paris 16685. Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, L. Lakhal: Mining Minimal Non-Redundant Asso
iation Rules Using Frequent Closed Itemsets. In: J. Lloyd, V.Dahl, U. Furba
h, M. Kerber, K.{K. Lau, C. Palamidessi, L.M. Pereira, Y. Sagiv,P. J. Stu
key (eds.): Computational Logi
 | CL. Pro
. 1st Intl. Conf. on CL (6thIntl. Conf. on Database Systems). LNAI 1861, Springer, Heidelberg 2000, 972{9866. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, L. Lakhal: Mining Frequent Pat-terns with Counting Inferen
e. SIGKDD Explorations 2(2), Spe
ial Issue on S
al-able Algorithms, 2000, 71{807. S. D. Bay. The UCI KDD Ar
hive [http://kdd.i
s.u
i.edu℄. Irvine, CA: Universityof California, Department of Information and Computer S
ien
e.8. R. J. Bayardo: EÆ
iently Mining Long Patterns from Databases. Pro
. SIGMOD'98, 1998, 85{939. K. Be
ker, G. Stumme, R. Wille, U. Wille, M. Zi
kwol�: Con
eptual InformationSystems Dis
ussed Through an IT-Se
urity Tool. In: R. Dieng, O. Corby (eds.):Knowledge Engineering and Knowledge Management. Methods, Models, and Tools.Pro
. EKAW '00. LNAI 1937, Springer, Heidelberg 2000, 352{36510. S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing as-so
iation rules to 
orrelation. In Pro
. ACM SIGMOD Int'l Conf. on Managementof Data, pages 265{276, May 1997.11. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynami
 itemset 
ounting andimpli
ation rules for market basket data. In Pro
. ACM SIGMOD Int'l Conf. onManagement of Data, pages 255{264, May 1997.12. C. Carpineto, G. Romano: GALOIS: An Order-Theoreti
 Approa
h to Con
eptualClustering. Ma
hine Learning. Pro
. ICML 1993, Morgan Kaufmann Prublishers1993, 33{4013. R. Cole, G. Stumme: CEM { A Con
eptual Email Manager. In: B. Ganter, G.W. Mineau (eds.): Con
eptual Stru
tures: Logi
al, Linguisti
, and ComputationalIssues. Pro
. ICCS '00. LNAI 1867, Springer, Heidelberg 2000, 438{452



14. H. Di
ky, C. Dony, M. Hu
hard, T Libourel: On automati
 
lass insertion withoverloading. OOPSLA 1996, 251{26715. B. Ganter, R. Wille: Formal Con
ept Analysis: Mathemati
al Foundations.Springer, Heidelberg 199916. R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Ar�, T. Chau: Design of 
lasshierar
hies based on 
on
ept (Galois) latti
es. TAPOS 4(2), 1998, 117{13417. J. Han and M. Kamber. Data Mining: Con
epts and Te
hniques. Morgan Kauf-mann, Sept. 2000.18. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without 
andidate generation.In Pro
. ACM SIGMOD Int'l Conf. on Management of Data, pages 1{12, May2000.19. J. Hereth, G. Stumme, U. Wille, R. Wille: Con
eptual KnowledgeDis
overy and Data Analysis. In: B. Ganter, G. Mineau (eds.):Con
eptual Stru
tures: Logi
al, Linguisti
, and Computational Stru
-tures. Pro
. ICCS 2000. LNAI 1867, Springer, Heidelberg 2000, 421{43720. Y. Huhtala, J. K�arkk�ainen, P. Porkka, H. Toivonen: TANE: an eÆ
ient algorithmfor dis
overing fun
tional and approximate dependen
ies. The Computer Journal42(2), 1999, 100{11121. M. Kamber, J. Han, and Y. Chiang. Metarule-guided mining of multi-dimensionalasso
iation rules using data 
ubes. In Pro
. of the 3rd KDD Int'l Conf., Aug. 1997.22. B. Lent, A. Swami, and J. Widom. Clustering asso
iation rules. In Pro
. of the13th Int'l Conf. on Data Engineering (ICDE), pages 220{231, Mar. 1997.23. D. Lin and Z. M. Kedem. Pin
er-Sear
h: A new algorithm for dis
overing the maxi-mum frequent set. In Pro
. of the 6th Int'l Conf.on Extending Database Te
hnology(EDBT), pages 105{119, Mar. 1998.24. M. Luxenburger: Impli
ations partielles dans un 
ontexte. Math�emati-ques, Informatique et S
ien
es Humaines 29(113), 1991, 35{5525. K. Ma
kensen, U. Wille: Qualitative Text Analysis Supported by Con
eptual DataSystems. Quality and Quantity: Internatinal Journal of Methodology 2(33), 1999,135{15626. H. Mannila, H. Toivonen, and A. I. Verkamo. Dis
overy of frequent episodes inevent sequen
es. Data Mining and Knowledge Dis
overy, 1(3):259{289, Sept. 1997.27. G. Mineau, G., R. Godin: Automati
 Stru
turing of Knowledge Bases by Con-
eptual Clustering. IEEE Transa
tions on Knowledge and Data Engineering 7(5),1995, 824{82928. M. Missiko�, M. S
holl: An algorithm for insertion into a latti
e: appli
ation to type
lassi�
ation. Pro
. 3rd Intl. Conf. FODO 1989. LNCS 367, Springer, Heidelberg1989, 64{8229. J. S. Park, M. S. Chen, and P. S. Yu. An eÆ
ient hash based algorithm for miningasso
iation rules. In Pro
. ACM SIGMOD Int'l Conf. on Management of Data,pages 175{186, May 1995.30. N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Pruning Closed Itemset Latti
esfor Asso
iation Rules. 14i�emes Journ�ees Bases de Donn�ees Avan
�ees (BDA'98),Hammamet, Tunisia, 26{30 O
tober 199831. N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: EÆ
ient mining of asso
iation rulesusing 
losed itemset latti
es. Journal of Information Systems, 24(1), 1999, 25{4632. N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Dis
overing frequent 
losed itemsetsfor asso
iation rules. Pro
. ICDT '99. LNCS 1540. Springer, Heidelberg 1999, 398{416



33. J. Pei, J. Han, R. Mao: CLOSET: An EÆ
ient Algorithm for Mining FrequentClosed Itemsets. ACM SIGMOD Workshop on Resear
h Issues in Data Miningand Knowledge Dis
overy 2000, 21{3034. A. Savasere, E. Omie
inski, and S. Navathe. An eÆ
ient algorithm for miningasso
iation rules in large databases. In Pro
. of the 21th Int'l Conf. on Very LargeData Bases (VLDB), pages 432{444, Sept. 1995.35. P. S
hei
h, M. Skorsky, F. Vogt, C. Wa
hter, R. Wille: Con
eptual Data Systems.In: O. Opitz, B. Lausen, R. Klar (eds.): Information and Classi�
ation. Springer,Berlin-Heidelberg 1993, 72{8436. I. S
hmitt, G. Saake: Merging inheritan
e hierar
hies for database integration.Pro
. 3rd IFCIS Intl. Conf. on Cooperative Information Systems, New York City,Nework, USA, August 20-22, 1998, 122{13137. C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Generalizingasso
iation rules to dependen
e rules. Data Mining and Knowledge Dis
overy,2(1), Jan. 1998.38. S. Strahringer, R. Wille: Con
eptual 
lustering via 
onvex-ordinal stru
tures. In: O.Opitz, B. Lausen, R. Klar (eds.): Information and Classi�
ation. Springer, Berlin-Heidelberg 1993, 85{9839. G. Stumme:Con
eptual Knowledge Dis
overy with Frequent Con
ept Latti
es. FB4-Preprint 2043, TU Darmstadt 199940. G. Stumme, R. Taouil, Y. Bastide, L. Lakhal: Con
eptual Clustering with I
ebergCon
ept Latti
es. Pro
. GI{Fa
hgruppentre�en Mas
hinelles Lernen '01. Univer-sit�at Dortmund 763, Oktober 200141. G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal: Fast 
omputation of 
on-
ept latti
es using data mining te
hniques. Pro
. 7th Intl. Workshop on KnowledgeRepresentation Meets Databases, Berlin, 21{22. August 2000. CEUR-WorkshopPro
eeding. http://sunsite.informatik.rwth-aa
hen.de/Publi
ations/CEUR-WS/42. G. Stumme, R. Taouil, Y. Bastide, N. Pasqier, L. Lakhal: Computing I
ebergCon
ept Latti
es with Titani
. J. on Knowledge and Data Engineering 42(2),2002, 189{22243. G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal: Intelligent Stru
turingand Redu
ing of Asso
iation Rules with Formal Con
ept Analysis. In: F. Baader.G. Brewker, T. Eiter (eds.): KI 2001: Advan
es in Arti�
ial Intelligen
e. Pro
. KI2001. LNAI 2174, Springer, Heidelberg 2001, 335{35044. G. Stumme, R. Wille, U. Wille: Con
eptual Knowledge Dis
overy in DatabasesUsing Formal Con
ept Analysis Methods. In: J. M. _Zytkow, M. Quafofou (eds.):Prin
iples of Data Mining and Knowledge Dis
overy. Pro
. 2nd European Sympo-sium on PKDD '98, LNAI 1510, Springer, Heidelberg 1998, 450{45845. G. Stumme, R. Wille (eds.): Begri�i
he Wissensverarbeitung { Methoden und An-wendungen. Springer, Heidelberg 200046. G. Stumme: Formal Con
ept Analysis on its Way from Mathemati
s to Com-puter S
ien
e. Pro
. 10th Intl. Conf. on Con
eptual Stru
tures (ICCS 2002). LNCS,Springer, Heidelberg 200247. R. Taouil, N. Pasquier, Y. Bastide, L. Lakhal: Mining Bases for Asso
iation RulesUsing Closed Sets. Pro
. 16th Intl. Conf. ICDE 2000, San Diego, CA, US, February2000, 30748. H. Toivonen. Sampling large databases for asso
iation rules. In Pro
. of the 22ndInt'l Conf. on Very Large Data Bases (VLDB), pages 134{145, Sept. 1996.49. F. Vogt, R. Wille: TOSCANA { A graphi
al tool for analyzing and exploring data.LNCS 894, Springer, Heidelberg 1995, 226{233



50. K. Waiyamai, R. Taouil, L. Lakhal: Towards an obje
t database approa
h formanaging 
on
ept latti
es. Pro
. 16th Intl. Conf. on Con
eptual Modeling, LNCS1331, Springer, Heidelberg 1997, 299{31251. R. Wille: Restru
turing latti
e theory: an approa
h based on hierar
hies of 
on-
epts. In: I. Rival (ed.). Ordered sets. Reidel, Dordre
ht{Boston 1982, 445{47052. A. Yahia, L. Lakhal, J. P. Bordat, R. Ci

hetti: iO2: An algorithmi
 method forbuilding inheritan
e graphs in obje
t database design. Pro
. 15th Intl. Conf. onCon
eptual Modeling. LNCS 1157, Springer, Heidelberg 1996, 422{43753. M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast dis-
overy of asso
iation rules. In Pro
. of the 3rd Int'l Conf. on Knowledge Dis
overyin Databases (KDD), pages 283{286, Aug. 1997.54. M. J. Zaki, M. Ogihara: Theoreti
al Foundations of Asso
iation Rules, 3rd SIG-MOD'98 Workshop on Resear
h Issues in Data Mining and Knowledge Dis
overy(DMKD), Seattle, WA, June 1998, 7:1{7:855. M. J. Zaki, C.{J. Hsiao: ChARM: An eÆ
ient algorithm for 
losed asso
iation rulemining. Te
hni
al Report 99{10, Computer S
ien
e Dept., Rensselaer Polyte
hni
Institute, O
tober 199956. M. J. Zaki: Generating non-redundant asso
iation rules. Pro
. KDD 2000. 34{43


