CEM — A Conceptual Email Manager

Richard Cole!, Gerd Stumme?

1 School of Information Technology, Griffith University, Gold Coast Campus,
PMB 50, Gold Coast Mail Centre QLD 9726, Australia; r.coleQgu.edu.au
2 Technische Universitit Darmstadt, Fachbereich Mathematik,
Schlo3gartenstr. 7, D-64289 Darmstadt, Germany;
stumme@mathematik.tu-darmstadt.de

Abstract. CEM is an email management system which stores its email
in a concept lattice rather than in the usual tree structure. By using
such a conceptual multi-hierarchy, the system provides more flexibility in
retrieving stored emails. The paper presents the underlying mathematical
structures, discusses requirements for their maintenance and presents
their implementation.

1 DMotivation

The way standard email management systems store mails is directly derived
from the tree structure of file management systems. This has the advantage that
trees have a simple structure which can easily be explained to novice users. The
disadvantage is that at the moment of storing an email the user already has
to foresee the way she is going to retrieve the mail later. The tree structure
forces her to decide at that moment which criteria to consider as primary and
which as secondary. For instance, when storing an email regarding the organi-
zation of a conference, one has to decide whether to organize one’s directories like
mineau/iccs2000/program commitee or like conferences/iccs/iccs2000/
organisation/mineau. This problem arises especially if a user cooperates with
overlapping communities on different topics.

In this paper, we present the Conceptual Email Manager CEM. Tt uses a
formal context as its structure for storing email rather than a tree. This allows
the user to retrieve emails via a concept lattice following different paths. For the
example above this means that one need not decide which of the two paths to
use for storing. For retrieving the mail later, one can consider any combination
of the catchwords' in the two paths.

Concept lattices are defined in the mathematical theory of Formal Concept
Analysis [12]. A concept lattice is derived from a binary relation which assigns
attributes to objects. In our application, the objects will be all emails stored by
the system, and the attributes will be catchwords like ‘conferences’, ‘mineau’,
and ‘organisation’. We assume the reader to be familiar with the basic notions of

! By catchwords we mean small natural language phrases under which the user may
meaningfully classify documents.

Formal Concept Analysis, and refer otherwise to [3] and to proceedings of past
ICCS conferences.

There are related approaches to the above stated problem. For instance
the concept of a wirtual folder was introduced in a program called View Mail
(VM) [6]. A virtual folder is simply a collection of email documents retrieved
in response to a query. The virtual folder concept has more recently been pop-
ularized by a number of open source projects, e.g. [8]. Our system differs from
those projects in both the understanding of the underlying structure via formal
concept analysis, and the implementation.

Our approach is also related to the library information system implemented
in the Center of Interdisciplinary Studies at Darmstadt University of Technol-
ogy [7]. That system is based on the management system TOSCANA for Con-
ceptual Information Systems [11]. The retrieval component of both our system
and the library system provide basically the same functionality. The difference
lies in the support for the user maintaining and updating the email collection.
This is due to the fact that, while in the library system maintenance is allowed
only to the librarian and/or a knowledge engineer, in an email management sys-
tem storing emails is an essential and often used feature which requires some
semi-automatic support for an untrained user.

In the next section, we will describe the mathematical structures of the Con-
ceptual Email Manager. Requirements for their maintenance are discussed in
Section 3. Issues related to an implementation of the requirements are discussed
in Section 4. The paper is concluded by an outlook on future work.

In this paper we endeavor to precisely define the behavior of a natural user
interface for managing emails based on Formal Concept Analysis. Although de-
signing the interface to exhibit simple and rational behavior to the user, the
exact semantics with respect to the underlying program structures the reader
will find are rather detailed.

2 Structures Underlying CEM

We assume that the reader is familiar with the following two basic notions of
Formal Concept Analysis: formal context and concept lattice. Definitions and
examples can be found in [3] or in previous ICCS proceedings.

In this section, we describe the system on a structural level; we abstract from
implementation details. They will be discussed in Section 3. Basically, we can
distinguish three fundamental structures:

1. A formal context which assigns to each email a set of catchwords;

2. a hierarchy on the set of catchwords in order to define an information order-
ing over the catchwords;

3. and a mechanism for creating conceptual scales which are used within a
graphical interface for the retrieval of emails.

These three structures are discussed in detail in the remainder of this section.

2.1 Assigning catchwords to emails

In the conceptual email manager, we use a formal context (G, M,I) for storing
the emails and for assigning catchwords to them. The set G contains all emails
stored in the system, the set M contains all catchwords. For the moment we con-
sider M to be unstructured. (In the next subsection however, we will introduce
a hierarchy on it.)

The relation I indicates which emails are assigned to which catchwords. In
the example given in the introduction, the user might want to assign all the
catchwords ‘mineau’, ‘iccs2000°, ‘program_commitee’, ‘conferences’; ‘iccs’, and
‘organisation’ to the new email. The incidence relation is generated in a semi-
automatic process: (i) an automatic string-search algorithm may recognize words
within sections of an email and suggest relations between the email and some
attributes, (ii) the user may accept the suggestion or modify it, and (iii) she also
may attach user defined attributes to the email. In Section 3, we will discuss how
the user is supported in this assignment process. At the moment, we suppose
that the relation is already given.

Instead of a tree of disjoint folders and sub-folders, we consider the concept
lattice B(G, M, I) as navigation space. The formal concepts replace the folders.
In particular, this means that emails can appear in different concepts. The most
general concept contains all emails. The deeper the user gets in the hierarchy,
the more specific are the concepts, i.e., the smaller is the number of emails they
contain. Even so the user may, using general catchwords only, still obtain a great
search depth from the conjunctions present in the concept lattice.

2.2 A hierarchy on the catchwords

In order to support the semi-automatic assignment of catchwords to the emails,
we additionally provide the set M of catchwords with a partial order <. For
this subsumption hierarchy, we assume that the following compatibility condition
holds:

Vge G, mmeM: (gm)el,m<n = (g.n) €l #)

(i. e., the assignment of catchwords to emails respects the hierarchy on the catch-
words). Hence for assigning catchwords to emails, it is sufficient to assign the
most specific catchwords only. All more general catchwords will be added auto-
matically by the system. The maintenance of the hierarchy will be discussed in
the two following sections.

As an example, the user may want to say that ‘iccs’ is a more specific catch-
word than ‘conferences’, and that ‘iccs2000’ is more specific than ‘ices’ (i.e.,
‘ices2000°<‘ices’<‘conferences’). Emails regarding the production of this paper
are then assigned by the authors to the catchword ‘iccs2000’ only (and maybe
additionally to catchwords like ‘cole’ or ‘stumme’, and to ‘papers’). When the
authors want to retrieve these emails, they do not need to remember that they
stored them under ‘iccs2000°. They will also find them under the more general
catchword ‘conferences’. If this catchword provides a list of emails that is too

File Lattice
S33A6 -
B Email Direction 2345 |\ | ppget | Blank I Mavigation | Wiew Email I
Email Received 1183
Email Sent 1175
E Conference Related 2ee
B Conferences with papers 145
B Conferences with papers 2000 23
B ICCS 2000 23
ICCE Paper with Cole 11
ICCS Paper with Mineau 12
B Conferences with Papers 37 126
ICCE 87 ila}
KRUSE 97 4
B Conference Organisation 115
Program Committee 110
& Email with Colaborators 411
I Email with Cale 136
ICCS Paper with Cole 11
B Email with Mineau 227 |
ICCS Paper with Mineau 12
I
£

Fig. 1. Part of a catchword hierarchy

long, then they can either refine the search by taking a sub-term like ‘iccs’ or al-
ternatively by adding another catchword, for instance ‘cole’. The next subsection
describes the structures which support the user in this kind of navigation.

While we note that it is not required by the theory that a particular structure
be imposed on the hierarchy it is likely that the user will impose some structural
notions on (M, <). One appealing and natural notion is to split the hierarchy
into three parts: One part related to contents of the emails, e. g., if an email is
related to a conference or not, if it is used for its organization, etc. A second
part related to the sender or receiver of the email. And a third part describing
aspects of the mailing process (whether it is an inbound or an outbound mail
etc.). An example of a hierarchy is given in Figure 1. (The right window of the
screenshot is explained in Section 4.)

Even when the hierarchy imposed on the catchwords by the user is a tree, the
resulting concept lattice — which we use as the search space — is by no means
a forest. Consider for example the concept generated by the conjunction of the
two catchwords ‘ICCS 2000’ and ‘conference organization’. It will have at least
two incomparable super-concepts, namely the one generated by the catchword
‘ICCS 2000’ and the one generated by the catchword ‘conference organization’.
In general, all we know is that the resulting concept lattice is embedded as a
join-semilattice in the lattice of all order ideals of (M, <) (i.e., all subsets X of
M s.t.z € X and z <y imply y € X). 2

2 The use of this structure in the framework of knowledge discovery in databases is
analyzed in more detail under the name of power scale in [5]. Refer also to the
theorem of Birkhoff (stated for instance in [3, Theorem 39]).

2.3 Conceptual scales for navigating through the set of emails

Conceptual scaling has been introduced in order to deal with many-valued at-
tributes. Often attributes are not one-valued, as for instance with the catchwords
given above, but instead allow a range of values. This is modeled by a many-
valued contexrt. A many-valued context is roughly equivalent to a relation of a
relational database with one field being a primary key. As one-valued contexts
are special cases of many-valued contexts, conceptual scaling can also be applied
to one-valued contexts in order to reduce the complexity of the visualization.

In this paper, we only deal with one-valued formal contexts. Readers who
are interested in the exact definition of many-valued contexts and the use of
conceptual scaling in this more general case are referred to [3]. Applied to one-
valued contexts, conceptual scales are used to determine the concept lattice
which arises from one vertical ‘slice’ of a large context:

Definition 1. A conceptual scale for a subset B C M of attributes is a (one-
valued) formal context Sg := (Gp, B,3) with Gg C PB(B). The scale is called
consistent with respect to K := (G, M,I) if {g}'NB € Gp for each g € G. For a
consistent scale S g, the context Sp(K) := (G, B, IN(G x B)) is called its realized
scale.

Conceptual scales are used to group together related attributes. They are de-
termined as required by the user, and the realized scales are derived from them
when a diagram is requested by the user.

The Conceptual Email Manager stores all scales which the user has defined in
previous sessions. To each scale, she can assign a unique name. This is modeled
by a mapping.

Definition 2. Let S be a set, whose elements are called scale names. The map-
ping
a:S = P(M)

defines for each scale name s € S a scale S := S, (y)-

For instance, the user may introduce a new scale which classifies the emails
according to being related to a conference by adding a new element ‘Confer-
ence’ to S and by defining a(Conference) := {CKP ‘96, AA 55, KLI ‘98, Wissen ‘99,
ICCS 2000}.

Observe that S and M need not be disjoint. This allows for instance the
following construction which deduces conceptual scales directly from the sub-
sumption hierarchy: Let S := {m € M | In € M:n < m}, and define, for
s€S, a(s) :={me Mm < s} (with z < y if and only if < y and there is
no z s.t. £ < z < y). This means that all catchwords m € M which are neither
minimal nor maximal in the hierarchy are at the same time considered as the
name of scale S, and as catchword of another scale S,, (where m < n). In this
paper, we will call scales constructed this way default scales.

This last construction has first been presented in [10] for defining a hierarchy
of conceptual scales for the library information system [7]. In [10], however, only

this special construction was considered. It turns out that, in general, a more
flexible construction is desirable. In the library information system, for instance,
one is also interested in scales for the minimal elements in (M, <). Each such scale
S, has as attributes the upper covers of m (i.e., all n € M with m < n). This
construction is made possible by using the function a which we have introduced
in this paper.

3 Requirements of the Conceptual Email Manager

In this section, we discuss requirements of a conceptual email manager based
on the paradigm of Formal Concept Analysis. In the following section we shall
explain how our implementation responds to these requirements.

The requirements may be divided along the same lines as the underlying
mathematical structures defined in Section 2. Briefly stated the requirements
are:

1. to assist the user in building, browsing and modifying the catchword
hierarchy;

2. to help the user modify the scale function «;

3. to allow the user to manage the assignment of catchwords to email
documents; and

4. to assist the user in searching the conceptual space of emails for both
individual emails, and also conceptual groupings of emails.

In addition to the requirements stated above, a good email system needs to be
able to send, receive and display emails by processing the various email formats
and interacting with the current popular email protocols. Since these require-
ments are already well understood and implemented by existing email programs
they will not be discussed further in detail in this paper.

Browsing and Modifying the Catchword Hierarchy. The catchword hier-
archy is a partially ordered set (M, <) where each element of M is a catchword.
Listed below are requirements related to browsing and modifying of the catch-
word hierarchy.

1. The program should display graphically the structure of the partial order
(M, <). The ordering relation must be clearly evident to the user.

2. It must be possible, via a series of graphical manipulations initiated by the
user and implemented in the program to add and to delete elements and to
alter the ordering relation. It should be possible to create any partial order
within a reasonable size limit.

Modifying the Scale Function. The user must be able to modify the scale
function «a, explained in Section 2. Therefore the tool should provide a suitable
visualization of the function. The program must allow an overlap between the
set S of scale names, and the set M of catchwords.

Managing the Assignment of Catchwords to Emails. The program should
store the formal context (G, M, I) and ensure that the compatability condition
(1) is always satisfied. It is inevitable that the program will have sometimes to
modify the formal context, after a change is made to the catchword hierarchy,
in order to satisfy the compatability condition. This modification can be made
either automatically, or via an interactive process where the user is asked whether
the changes should be made.

The program must support two mechanisms for the association of catchwords
to emails. Firstly there should be a mechanism as described in Section 2.1 by
which emails are semi-automatically associated with catchwords based on the
email content. Secondly the user should be able to view and modify the associ-
ation of catchwords with emails.

Navigating the Conceptual Space. The program should assist the naviga-
tion of the conceptual space of the emails by drawing line diagrams of concept
lattices arising from conceptual scales [3]. These line diagrams should extend to
locally nested line diagrams [9,10]. The program must allow the retrieval and
viewing of emails that form the extension of concepts displayed in these line
diagrams.

4 TImplementation

This section divides the description of the implementation of our conceptual
email manager, CEM, into a structure similar to that presented in Section 3.

4.1 Catchword Hierarchy

Browsing the Hierarchy. The user is presented with a view of the hierarchy,
(M, <) as a tree widget,® shown in Figure 1. The tree widget has the advantage
that most computer users are familiar with its operation, and that it provides
a compact representation (in the sense of space used on the screen) of a tree
structure.

The catchword hierarchy, being a partially ordered set, has a more general
structure than that of a tree. No limitation is placed by the program on the
structure of the partial order in general. Following is a definition of the tree
derived from the catchword hierarchy with the purpose of defining the contents
and structure of the tree widget.

Let (M, <) be a partially ordered set and denote the set of all sequences of
elements from M by M* (including the empty sequence €). Then the labeled
tree derived from the catchword hierarchy is comprised by (T, C, label) where
T := {(m1,...,my) € M* | m;y < mip1, my, € max(M)} U {e}, w1 C wo
iff wy is a suffix of wy, and label: T \ {¢} — M is the function defined by
label(my,...,my) 1= my,.

% A widget is a graphical user interface component with a well defined behaviour
usually mimicking some physical object.

a p insert

remove
a b
—

-

y

7 77

Fig. 2. Insert and removal ordering operation

Each tree node is identified by a path from a catchword to the top of the
catchword hierarchy. Although the tree representation has the disadvantages
that elements from the partial order occur multiple times in the tree and that
the tree can become large, the saving of space and the regular structure are our
reasons to prefer it to other order representations. If the user keeps the number
of elements with multiple parents in the partial order to a small number then
the tree is manageable.

Modifying the hierarchy (M, <). The program provides four operations
for modifying the hierarchy: insert catchword, remove catchword, insert
ordering and remove ordering. More complex operations provided to the user,
for example moving an item in the taxonomy, are resolved internally to sequences
of these four operations. In this section we denote the order filter (also called
the up-set) of m as + m := {z € M | m < z}, the order ideal (also called
the down-set) of m as | m := {z € M | x < m}, the lower cover of m as
<m:={x € M | x < m}, and the upper cover of m as ;= {z € M |z = m}.

The operation insert catchword simply adds a new catchword to M, and
leaves the < relation unchanged. This means that the new catchword is incom-
parable to all other catchwords. The remove catchword operation takes a single
parameter a € M, and simply removes a from M and ((} a) x {a})U({a} x (1 a))
from the ordering relation.

The operation insert ordering takes two parameters a,b € M and inserts
into the relation <, the set (} b) X (1 a). The operation has been drawn in the
left diagram in Figure 2 which serves as a form of Venn-Diagram for the up-sets
and down-sets of a and b before and after the insert operation. The shading gives
an indication of corresponding regions.

The insertion of the ordering b < a into < will require the insertion of the
set {g € G | (g,b) € I} x (ta\1d) into I. The portion of M whose image under
the relation I will require an update is the upper shaded part in the rightmost
diagram in Figure 2.

The operation remove ordering takes two parameters a,b € M where a is
an upper cover of b. The remove ordering operation removes from < the set
((0) \ (d(=a \{b}))) x ((ta) \ (=5 \{a})). The right diagram in Figure 2 may
be used to visualize the remove operation. Similarly to the insert operation, the
removal of the ordering b < a from < will require a re-computation of the image
in I under the elements from {a} x ((ta) \ 1(>» \{a})). This region has been
shaded in the upper right of Figure 2.

Catchword Name ICanEI’EﬂEE Related

Catchward Gueryl

B .4 Conference Related
H./ Conference Crganisation
-/ Program Committee
E./ Conferences with papers
E% Conferences with papers 2000
E% ICCS 2000
% ICCS Paper with Cole
W ICCS Paper with Mineau
E% Conferences with Papers 97
W ICCs 97
¥ KRUSE 97

QK | Cancel |

Fig. 3. Dialog for editing a(Emails with Cole)

4.2 Modifying the Scale Function

The set S of scale names, as explained in Section 2, is not necessarily disjoint
from M, thus the tree representation of M already presents a view of a portion
of S. In order to reduce the complexity of the graphical user interface, we make
S equal to M. That is: all catchwords are scale names, and all scale names are
catchwords. Such an assumption is made possible by the definition, given in
Section 2, of the default scale for a catchword. A result of this definition is that
catchwords with no lower covers will map, under the scale function, a, to the
empty set.

The function a maps each catchword m to a set of catchwords. The program
displays this set of catchwords, when requested by the user, using a dialog (see
Figure 3). The dialog box contains a set of catchwords available for membership
in a(m). In Figure 3 this set of candidates has been restricted to the down-set
of m. An icon (either a green tick or a red cross) is used to indicate membership
(or not) in the set of catchwords given by a(m). By clicking on the icon the user
can change the definition of a(m).

By displaying only the down-set of m in the dialog box, the program restricts
the definition of a to a(m) C (] m). This restriction has an effect on the “remove
ordering operation” defined on (M, <). When the ordering of a < b is removed
the image of the function « for attributes in 1 a is automatically checked and if
necessary modified.

The program has an intended mode of operation for expert users in which
the restriction on the definition of a(m) C |m is lifted. In this mode the user
has all catchwords available for inclusion in a(m), and he may choose the set S
of scale names to be different from the set M of catchwords.

When the function « is changed by the user then the set {S; | s € S} of
scales is changed automatically. This update occurs regardless of the mode of
operation. The new/modified scales can then be used directly for navigating in
the concept space as described in Section 4.4.

4.3 Associating Emails with Catchwords

Each member of (M, <) is associated with a query term, which in this application
is a set of section/word pairs. For our purposes a section of an email is either
a header field, e.g. the “From:” field, or the section “body” which is composed
of the parts? of the email directly encoding text. More formally stated: Let H
be the set of sections found in the email documents, W the set of words found
in the email documents, then the function query: M — PB(H x W) attaches to
each attribute a set of section/word pairs.

Let G be a set of email documents. Five relations, @, R, RT, R~, and I
are defined for managing the different ways in which email documents may be
associated with catchwords. Q C G x (H x W) is a relation between documents
and section/word pairs. The relation member (g, (h,w)) € @ indicates that
document g has word w in section h. @ is stored via an inverted file index
and is only updated when new email is presented to the system. The relation
R C G x M is derived from the relation @ and the function query via: (g,m) € R
iff (g, (h,w)) € @Q for some (h,w) € query(m). The relation R is only used as an
intermediate step and is calculated from @ as required by the program.

The relations RT™ and R~ store user judgments saying whether or not an
email should have a catchword m. These judgments will “over-rule” the relation
R. We impose the constraint

(PRY)NR7) =0 (#)

on the two relations Rt and R, saying that a user is not allowed to contradict
himself. I.e., he is not allowed, for m > n, to assign (g,m) to R~ and (g,n) to
Rt.

The relation I respecting the compatibility condition (1) is derived from the
relations R, Rt and R~ using the following operator: For any relation J C
G x M, we define J* := {(g,m) € G x M | 3In € M:(g,n) € J, n < m}. We
obtain I as the incidence relation for the formal context (G, M, I) mentioned in
Section 2 by I := ((R\ R™)U R*)%.

These five relations are required to accommodate the different ways in which
an email may be associated with catchwords. () and R associate emails with
catchwords via an automatic process based on content and queries attached to
catchwords, Rt and R~ associate email based on user input, and I combines
these two sources with the hierarchy defined over the catchwords. By separating
the relations for automatic associations of catchwords to emails from the relations
for user defined associations, the program maintains a pure keyword index into
the email collection. Relations R and I are derived from @, Rt, and R~, and
so need not be stored. Storing I however greatly reduces the time complexity of
the program.

When a batch of new emails, Gy, is presented to the program, the relation
Q is updated automatically by inserting new pairs, @)y, into the relation. The

4 The MIME extension to the email format allows an email document to have multiple
parts. These multiple parts are sometimes referred to as attachments.

Eile Laftice
BT IR
|~ Email Receieved B A= I BElank I Navigation | View Email I
- Email Sent 1174 = = = |
B Confetence Related 273 B Fram ISubject ﬁ-
B Conferences with papers 144 a4 = Jauspitzi@husc.harvard.edu swap
| B Conferences with papers 2000 zz R leuchneri@lakernet Re: KRUSE "33 (invitation to P |
| B 1cCs 2000 22 e levinson@cse.ucsc.eduy Re: ICCS96 Call for Papers
|- 12C3 Paper with Cole 10 = a CFP ICCS97 .
L ICCE Paper with Mineau 1 . . - 3 - Z
Bl Conferences with Papers 97 125« = -
ICCS 97 il A A
- KRUSE 37 40 I CALL FOR PAPERS
B Conference Organisation 186 &)
L Program Committee 186« I
B Email with Colahorators 410 x FIFTH INTERNATIONAL CONMFERENCE ON CONCEPTUAL STRUCTE
| B Email with Cole 187+ x
ICCS Paperwith Cole 10 = August4 - 8, 1997
B Email with Mineau 226 - x University of Washington
L ICCE Paper with Mineau ik C Seatte WA LU.SA
— Email with Admin Staf 123 = =
IMPORTANT DATES
e s e o il
= i =
A

Fig. 4. Interface for viewing email and associating email with catchwords

modification of @ into QU@ will cause an insertion of pairs Ry into R according
to query(m) and then subsequently an insertion of new pairs I into I. The
definitions are:

ngGbX(HXW)

Ry = {(g,m) | 3(h,w) € query(m) and (g, (h,w)) € Qp}
Iy = {(g,m) | 3m1 < mwith (g,m1) € Ry}

The user can modify the association of emails with catchwords in two ways.
Firstly by changing the relations BT and R~ and secondly by making modifi-
cations to the query function. In order to explain the user interface for making
modifications to RT and R~ we introduce the following notation. For an email
g € G, we define the restriction of any relation J C G x M to this email by
Jy = J N ({g} x M). For the purpose of brevity of expression we shall say m
belongs to J, if (g, m) € J,.

The user is able to view individual emails as shown in Figure 4. In this mode
icons are attached to catchwords in the tree widget displayed to the left of the
email. These icons indicate to the user how each of the catchwords is related to
the displayed email by R, R~, and RT. The user is able to change the relations
R~ and RT by interacting with the icons.

L. If m is not in R}, (R)*, or Ry then no icon is displayed.

2. If misin Rﬁ then a yellow tick (shown as white in Fig. 4) is displayed.
3. It misin R then a red cross is displayed.

4. If misin (R;)'JF then a green (shown as black in Fig. 4) tick is displayed.

All combinations of these icons which do not include at the same time a red
cross and a green tick are possible.

The user can then determine that the displayed email has a catchword in I if
there is either a green tick or a yellow tick in the absence of a red cross. The pro-
gram provides two basic operations, associate attribute and disassociate
attribute from which more complex operations for use in the user interface
may be constructed. The associate attribute operation takes two parame-
ters, an email document, and a catchword m. The operation inserts the pair
(g,m) into R*, and removes, for all n > m, (g, s) from R~. Similarly the opera-
tion disassociate attribute takes two parameters, an email and a catchword.
The operation inserts (g,m) in R~ and removes, for all n < m, (g,n) from R¥.
The construction of the two operators guarantees that the constraint (#) is
always satisfied.

The user is also able to influence the way that R is derived from @ by
modifying the query function. The user is able to modify a(m) using the Scale
Query field in the dialog box shown in Figure 3. After any such modification to
the query function the relations R and I are modified accordingly.

New emails presented to the system for automated indexing cause a modi-
fication to the inverted file index consisting only of new entries. The insertion
of new email documents into an inverted file index is an efficient operation. The
complexity of inserting each document is O(1). When the user makes a modi-
fication to either RT or R~ of a removal or insertion of (g,m) this will cause
all catchwords in the order filter of m, or order ideal, resp., to be updated in I.
The expense of such an update depends on how I is stored but is likely to be
O(log(n)) where n is the average number of documents per attribute.

It is useful for the system to maintain the relation R* for special catchwords
dependent on observation by the program of the users behavior. Two examples of
such catchwords are “read emails” for emails that the user has displayed at some
time, and “unseen emails” for emails that the user has not yet been notified of.

4.4 Navigating the Conceptual Email Space

To assist the user in navigating the conceptual space of emails, the program
draws simple line diagrams and (locally) nested line diagrams. A simple line
diagram is used to visualize a single scale, while nested line diagrams are used
to visualize combinations of scales. The concept lattices, from which the nested
line diagrams are drawn, are computed from the contexts given by S,). The
contexts are calculated using the algorithm reported in [1], and the concept
lattices are calculated from these contexts via Ganter’s algorithm [3].

The user may navigate the conceptual space of emails documents for different
purposes:

1. to find collections of emails thematically linked;

2. to review the precision and recall of queries attached to catchwords by com-
paring them with catchwords based on user judgments (for the purpose of
refining them for improving the query function); and

3. to review patterns of communication between different groups.

Eile Latlice

EEXIYXY
&l Email Direction 25 [ooy | Blank | Mavigation | View Email
Emmail Received 1189

Email Sent 1178

B[Conference Related 22z
B Conferences with papers 145

B Conferences with papers 2000 23

B ICCS 2000 23

ICCS Paper with Cole 1

ICCS Paper with Mineau 12z
B Conferences with Papers 97 126
IcC5 97 86
KRUSE 97 41
B Conference Organisation 115
Program Committee 110
B Email with Colabarators 411
B Email with Cole 138
ICCS Paper with Cole 11
B Email with Mineau 227
ICCS Paper with Mineau 1z
Email with Admin Staff 126

Fig. 5. Concept Lattice derived from the Scale for “Conference Related”.

Of these purposes the first is the most useful to common users of the program. A
simple scenario in which the user has this first purpose is presented here. Imagine
a researcher who was in the Program Committee (PC) of ICCS’97 and was at
that time co-authoring with other members of the PC for the same conference.
For the organization of a conference in the year 2000, she wants to retrieve
some facts about the organization of ICCS’97. But she only remembers that she
exchanged this information with one of the people she was co-authoring with
for ICCS’97, and that it was only one tiny part of a mail covering all kinds of
topics.

The researcher may begin her search by requesting a line diagram for the
scale named “Conference Related”. This scale is shown in Figure 5. It shows that
from her 2344 emails in total, there are 222 emails related to conferences, 145
of which are related to conferences with papers submitted and 110 of which are
related to both conference organisation and program committees. The researcher
decides that the email she is looking for is likely to be under the catchword
“Conferences with Papers”. As there are too many emails in its extent to be
read through, she may for instance want to expand the concept. By choosing the
scale Sconferences 1997, she obtains Figure 6.

Now the researcher can for instance check the 19 mails related to “ICCS’97”
and “Conference Organization/Program Committee”. If she still doesn’t find
the email she is looking for there, then she has to check either the 86 papers
related to “ICCS’97” or even all 115 emails under the catchword “Conference
Organization”. Before doing this, however, she might want to differentiate these
concepts further, e. g. by zooming into them with the scale “Members of ICCS 97
Program Committee”. If this scale doesn’t exist yet, then she can create it on

Eile Latlice

B

£l Email Direction 2345 T pocey | Blank | Navigation I View Email
Emmail Received 1189
Email Sent 1178
B Conference Related 22z
B Conferences with papers 145
B Conferences with papers 2000 23
B ICCS 2000 23
ICCS Paper with Cole 1
ICCS Paper with Mineau 12z
B | Conferences with Papers 97 126
ICCs 97 86
KRUSE 97 41
B Conference Organisation 115
Program Committee 110
B Email with Colabarators 411
B Email with Cole 138
ICCS Paper with Cole 11
B Email with Mineau 227
ICCS Paper with Mineau 1z
Ernail with Admin Staff 128 rogram Commitee

Fig. 6. Concept Lattice derived from the Scales for “Conference Related” and “Con-
ferences with Papers”.

the fly using the widget for modifying the scale function (and eventually store
it for further use).

Note that with a classical, tree-structured search hierarchy (where one usually
has the names of the correspondents on the highest level), one would be forced
to scan all branches starting with the names of the co-authors before one can
tell the system constraints like “Conference Related”.

5 Outlook

Having completed a prototype implementation of CEM (available on request
from the first author, the next step is to evaluate its operation in daily use and
to measure is scalability with respect to large data sets and distributed collec-
tions of email. We also consider allowing the user to impose more structure on
M including conjunctive implications and negation, following the mathematical
foundation presented in [4], as well as a more expressive language for the query
function which allows for instance disjunctive queries.

Although CEM has been in this paper applied to email documents it has a
more general use as a document management system. The next step therefore is
to extend the current architecture to allow the user to associate catchwords with
files accessible remotely via the internet and also locally with the users private
collection. This next step has the challenge of dealing with a large number of
protocols and file formats. The emergence of standards such as XML and RDF
gives some hope for a general and unified method for processing of this myriad
of data formats. Looking further ahead one can consider how a conceptual file

management system might be used in a group environment or at an enterprise
level where several users contribute to the structure of the hierarchy and the
association of catchwords with files.

References

1.

2.

10.

11.

12.

R. Cole, P. Eklund: Scalability in formal concept analysis: a case study using
medical texts. Computational Intelligence Vol. 15, Number 1, 1999, 11-27

A. Fall: Dynamic taxonomical encoding using sparce terms. Proc. ICCS ’96. LNAI
1115, Springer, Heidelberg 1996, 278-292.

B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations. Springer,
Heidelberg 1999 (Translation of: Formale Begriffsanalyse: Mathematische Grund-
lagen. Springer, Heidelberg 1996)

. B. Ganter, R. Wille: Contextual Attribute Logic Proc. ICCS ’99. LNAI 1115,

Springer, Heidelberg 1999, 377-388.

J. Hereth: Formale Begriffsanalyse im Data Warehousing. Diploma thesis, TU
Darmstadt 2000

K. Jones: View Mail Users Manual. hitp://www.wonderworks.com/vm. 1999

T. Rock, R. Wille: Ein TOSCANA-System zur Literatursuche. In: G. Stumme and
R. Wille (eds.): Begriffliche Wissensverarbeitung: Methoden und Anwendungen.
Springer, Berlin-Heidelberg 2000, 239-253

W. Schuller: http://gmail.linuzpower.org/. 1999

G. Stumme: Local Scaling in Conceptual Data Systems. Proc. ICCS ’96. LNAI
1115, Springer, Heidelberg 1996, 308-320.

G. Stumme: Hierarchies of Conceptual Scales. Proc. Workshop on Knowledge Ac-
quisition, Modeling and Management. Banff, 16.-22. Oktober 1999, Vol. 2, 5.5.1-18
F. Vogt, R. Wille: TOSCANA — A graphical tool for analyzing and exploring
data. In: R. Tamassia, I. G. Tollis (eds.): Graph Drawing ’94, LNCS 894, Springer,
Heidelberg 1995, 226-233

R. Wille: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht—Boston 1982, 445-470

