Concept Exploration — A Tool for Creating and
Exploring Conceptual Hierarchies

Gerd Stumme

Technische Hochschule Darmstadt, Fachbereich Mathematik
Schlofigartenstr. 7,) 64289 Darmstadt, stumme@mathematik.th-darmstadt.de

© Springer-Verlag Berlin Heidelberg 1997

Abstract. Concept exploration is a knowledge acquisition tool for inter-
actively exploring the hierarchical structure of finitely generated lattices.
Applications comprise the support of knowledge engineers by construct-
ing a type lattice for conceptual graphs, and the exploration of large
formal contexts in formal concept analysis.

1 Introduction

Lattices are a popular mathematical structure for modeling conceptual hierar-
chies. The existence of greatest common subconcepts and least common super-
concepts provides additional algebraic structure to models based on ordered sets,
and makes them more suitable for computation. Exploration tools, as developed
in formal concept analysis,' benefit from this algebraic structure (cf.[12]). The
best known and most often used of these tools is attribute exploration ([4],[2], [6]),
which uses only infima (greatest common subconcepts) for the computation. Tt
determines 1n interaction with the user the implicational logic of attributes
of a given formal context, or, more algebraically spoken, the A-subsemilattice of
a finite lattice generated by some subset.

When, in addition, suprema (least common superconcepts) are considered,
the problem turns out to determine the sublattice of a given lattice (of concepts)
generated by some subset. This is the aim of concept exploration. Tf a priori the
lattice 1s known to be distributive, then the exploration can benefit from the
much stronger algebraic structure induced by the distributive law. The corre-
sponding exploration tool is called distributive concept exploration ([13], [15]).

Already in the first publication on formal concept analysis, [17], the basic
conception of concept exploration 1s mentioned. Tts scheme is demonstrated by
examplesin [18] and [19]. U. Klotz and A. Mann further elaborated the method in
[7]. Unfortunately, their work is, with more than hundred pages, very extensive,
so that the results became too complicated for an efficient implementation. This
gave the impulse to develop a more transparent tool using existing algorithms
which have been proven successful.

Concept exploration i1s designed to explore a lattice I, that is generated by
a subset B C L. The algorithm generates questions about the lattice (i.e., the

' An introduction into formal concept analysis can for instance be found in [6], [17],
or [20].

conceptual hierarchy) of the kind “Ts ¢; a subconcept, of ¢2?” that are answered
by a (human) user, usually an expert. of the field of interest. There are (at least)
two interesting applications for such a knowledge acquisition tool.

Firstly in formal concept analysis: Suppose we have a formal context K which
is too large (e. g., infinite) to be completely given. The aim is to determine the
structure of the concept lattice, or at least a part of it. Therefore one might
consider formal concepts of the concept lattice one 1s particularly interested in.
They are called basic concepts (thus the letter B). Concept exploration inter-
actively computes the sublattice I, of the concept lattice of K generated by B.
Information on the context K i1s acquired from the user.

Secondly for conceptual graphs: The type hierarchy for conceptual graphs is
assumed to be a lattice ([10]). This lattice needs to be constructed for modeling
a situation by conceptual graphs. Concept exploration can support this creative
process: B 18 now the set of “basic types”, i.e., the set of types a knowledge
engineer assumes necessary for his purpose. Concept exploration supports him
in generating the type lattice I..

2 Concept Exploration

Let I be a lattice generated by a finite subset B C .. The exploration follows
the generation process of the lattice. First it computes the set B(') .= B*
consisting of all infima of the elements of B. Then it computes B(?) := BV

the set of all suprema of B". The next step provides B() := BAVA

, and so
on. B¥) is considered as a weak sublattice of . in which, for k odd (even), all
infima (suprema) are defined, and suprema (infima) are only defined for subsets
of B#=1 C BX) _Tf the lattice is finite, then B¥) = BE+) = T, for some k € IN.
Otherwise the exploration would not. terminate (which is possible for all B with
card(B) > 3, because the free lattice over the set. B is then infinite) and has to
be interrupted at some moment; but the exploration can approach I, as much
as desired. The resulting partial lattice may then be completed by other tools,
as described for instance in [17].

For the step from B%) to B*+1) where k is even, concept exploration uses
N-exploration, a modification of the algorithm of attribute exploration with back-
ground implications ([11]). For odd k, the situation is dual to the former, and
\/-exploration, a modification of obhject exploration is applied. Object exploration
can be understood as an attribute exploration of the dual lattice, i.e., with ob-
jects and attributes interchanging their roles ([12]). The idea to use attribute and
object exploration alternatively for concept exploration is due to P. Burmeister.

The intermediate results of concept exploration are the weak sublattices B*)
as defined above. They are stored as formal contexts (G, M, T), where G and M
contain lattice terms over B. For odd (even) k, G contains exactly one term
for every element in B) (B(k*”) denoting it, and M contains exactly one
term for every element in B:—1) (B(k)) denoting 1t. The relation I reflects the
hierarchical order: (s,1) € T : <= s" < t" for s € G and t € M. The weak
partial lattice B*) is isomorphic to the weak partial lattice B(G, M, T) in which

infima are defined on 4((F) (which is the whole lattice for odd k), and suprema
are defined on p(M) (which is the whole lattice for even k). The represenation
of partial lattices by concept lattices is described in detail in [16]. Tn the sequel,
we identify the lattice terms with the corresponding elements of .. For I, being
finite, the final result of the exploration is the context (I, ., <).

The first step in concept exploration is a A-exploration starting with a con-
text having the basic concepts as attributes (M = B = B), and having
no objects (G := B=1 =). The relation T is empty as well. More general,
for odd k, the kth exploration step, a A-exploration, will transform the con-
text (B*=2) BE=1) <Y into (B*), BE=1) <), The next exploration step, a \/-
exploration, then transforms it into the context (B(k), B(M’”,S), and so on.
This yields a first sketch of the algorithm of concept exploration:

(0) Start with k := 0 and (G, M, T):= (BU") B <) = (0, B, D).
(1) Increase k. Determine (B*) B(F=1) <) by A-exploration.

If B#) = B:=1) then STOP.
(1) Increase k. Determine (B~1) RB() <) by \/-exploration.

If B#) = B(:=1) then STOP, else go to Step (I).

Since the situation is perfectly symmetric, we only describe Step (T) in detail.
Let k& be odd in the sequel.

Step (T) extends the set G = B%=2) to B) by lattice terms, one for each
element in B(*) \ B=2)_ For elements in B(k*”\ B*=2) they can just be copied
from M to (5. For every copied element z, the relation T is extended by

(1) (g €T {2} C{y}, where X' :={g € G |Vm € X:(g,m) € T}.

This “copying” is only omitted for k = 1, because the first. A-exploration is also
used for determining the ordering on B which is not known at the beginning.

For determining the elements in B*) which are not included in B*—1),
Step (T) is concluded by a A-exploration.

2.1 Discovering New Concepts by A-Exploration

The elements in (& correspond to infima of elements in M = B*=1) gince the
lattice equality # = A({2}’) holds for every element z in . For 2 € B*~1) this
is obvious, since z is also an element of M. For z € B®*) \ B®E=1D the intent 2’
is just constructed such that this equality holds.

Since Y C2/ <= 2€V «— VyeViz<y < 2z < AY holds for
every lattice element # in (¢ and every subset Y of M| we can also identify every
subset ¥ C M = B* =1 with the infimum A Y of its elements. At the beginning
of the A-exploration, there may be subsets ¥ C M such that AY # A(Y") in
L. The aim of A-exploration is to add new objects to ¢ in order to change the
derivation operator ' such that AY = A(Y") holds in I for all Y C M. As
we will see below, 1t is not necessary to test all subsets Y, but we can restrict
ourselves to pseudo-intenis, which are defined next.

The following definitions and results are cited from [11], where the original
algorithm of attribute exploration of B. Ganter ([4],[6],[5]) was modified to
accept additional knowledge in form of background implications.

Tet K := (G, M, T) be a formal context. We assume in the following that M
1s finite.

Definition. An implication X — Y of K is a pair of subsets X and Y of M|
such that every object having all attributes in X also has all attributes in Y.

Tet £ be a set of implications of K (called background implications). The clo-
sure operator on the set M of attributes induced by the background implications
is denoted by P — P := PUPX U P U ... with

QF=QuUJ{YCcM|XCQ X =VeL})

A subset P of M is called an L-pseudo-intent of K if P = P # P" and if, for
every L-pseudo-intent. Q with QQ C P, the inclusion Q” C P holds.

Theorem 1. The set By := {P — P”|P is a L-pseudo-intent} of implications
18 an arredundant set of implications such that every tmplication of K can be
deduced from LU Bg.

The set of all intents and L-pseudo-intents of a finite context (G, M, T) is a
closure system on M with the closure operator A — A* := AU A° U A°°U. ..
where A° := AU Y CM|X =Y e B, X C A}.

In our application, the set £ will store information about the hierarchical
structure that is computed in previous exploration steps. Intents will correspond
to already existing elements, i.e., elements in B*) while pseudo-intents corre-
spond to potentially new elements which may be added to B%*) in order to obtain

BU+1) depending whether A P = A(P") (which is equivalent to P — P”) holds
or not. which will be asked from the user.

/\-Exploration uses Ganter’s Next-Closure-algorithm (cf. [4]) to compute all
intents and all L-pseudo-intents in a lectical order. For the sake of simplicity we
assume that M := {1 ... n}.

Definition. For X, Y C M and i € M we define?
X<, V= (feY\Xand XNn{i+1,...n}=YN{i+1,.. .0}
The lectical order on B(M) is defined by
X<VYi<— A: X<,V .
For X C M and i € M let
Xai=(Xn{i+1,....nHn{ih)* .

? In contrast to [11], in this definition the ordering on M is reversed, since this matches
better the generation process of concept exploration.

Theorem 2. The lecticly first intent or L-pseudo-intent is §. For a given subset
Y C M the lecticly next intent or L-pseudo-intent is the set Y @ i, where i
is the minimal element in M\Y withY <; Y & i. The lecticly last intent or
L-pseudo-intent is M.

Attribute exploration and A-exploration are based on the fact that, during
the computation, the list of already computed intents and L-pseudo-intents is
stable under adding new objects which respect the previously computed impli-
cations (and the background implications).

Additionally to the contexts, A-exploration produces a list £ of implications.
In concept exploration, these implications will be used as background implica-
tions for later A-explorations. (For the \/-explorations, a similar list £’ will be
kept.) At the beginning of the first A-exploration, £ is empty. The following is
the algorithm described in [11] adapted? to concept exploration.

Algorithm 1. Set n :=card(B*~1)) P .=

(a) Ask the user: “Which of the concepts < Here all elements in P"\ P are listed™>
are superconcepts of A P?" The answer is a set Q C P”\ P.

(b) Add the implication P — @ to £.*

(c) If there is no g € G with ¢’ = P U (@ then add the lattice term A P to (7, and
extend T as follows: (AP, m)eTl: <= mePUQ forme M.

(d) Set V := P.

(e) Determine the next intent or £-pseudo-intent P following Y by applying Theo-

rem 2:
o j:— 1
e While Y £; Y @& increase i.
e P =Y d®i

(f) f P = M then STOP.
(g) If P = P" then go to Step (e), else go to step (a).

The algorithm for \/-exploration is exactly the same, only G and M have to
be interchanged, “superconcepts” has to be replaced by “subconcepts”, “infi-
mum” by “supremum”, A by \/, and £ by £’. The implications P — P"” in L'
correspond to equalities \/ P = \/(P").

* In Step (), one element (the lattice term A P) is added to G having ezactly the
attributes in PUQ. In other applications of attribute exploration, there may be more
than one object necessary in order to restrict the conclusion of the implication to
PUQ.

4 Fven if Q is empty! This will be needed in the over-next exploration, where P may
again be a L£-pseudo-intent (instead of an intent) in the extended context. (See Steps
(4) and (8) in Algorithm 2.)

2.2 Concept Exploration

Now we are ready to present the algorithm of concept exploration. Step (8) and
its dual, Step (4), are described below, as well as Steps (9) and (5).

Algorithm 2. Set k=1, (G,M,T):= (0,B,0), £L:= L = 0.

(1) Determine (B B(") <) by Algorithm 1.

(2) Increase k.

(3) Copy B¥=1\ B¥=2) from (i to M. Extend I as described dually at ().

(4) Change every implication X — Y in £’ to X — X" (where X" is computed in

the modified context). For every # € B =1\ B=2) (2 ¢ BU') for k = 2) add

the implication {z} — {2} to L.

(5) Determine (B¥~1) B() <) by the dual of Algorithm 1 (for k > 2 starting
at Step (e) with ¥V := B*=3) and answering “All" automatically while P C
B(k72))_

If M is not changed (i.e., all questions are answered by “All") then STOP.

(6) Increase k.

(7) Copy B¥=1\ B =2) from M to (. Extend I as described at (1)

(8) Change every implication X — V in £ to X — X" (where X" is computed
in the modified context). For every z € BE=1) \ B =2) add the implication
{e} = {x} to L.

(9) Determine (B) B =1) <) by Algorithm 1, starting at Step (e) with ¥V :=
B =3) and answering “All" automatically while P C B*~2).

If G is not changed (i.e., all questions are answered by “All") then STOP.

(10) Go to step (2).

Tn this algorithm, Steps (1) and (6) (9) correspond to Step (T) in the first sketch,
Steps (2) (5) to Step (IT). Tn Step (8) (and dually in Step (4)), the previously
computed implications are adapted to the newly generated attributes. More
precisely, the conclusions of the implications are extended by the appropriate
attributes from B~ \ B =2 (The premises remain subsets of B*~?)) The
implications {z} — {z}" with & € B#=1\ B¥¢=2) are added because {z}” is
simply the order filter generated by z, which can be determined automatically.
Otherwise, these implications had to he confirmed by the user in the next A-
exploration.

The numbering of the newly generated elements (which is relevant for the
variable 7 of \// A-exploration) is just done in the way the elements are generated.
This provides the optimization in Step (9) (and dually in Step (5) for k > 2): All
intents and £-pseudo-intents being subsets of B*~3) remain unchanged from the
previous A-exploration, and need not be determined again. Since all elements
of B(=2) are also represented as objects in the current context, all equalities
AP = A(P") with P C B2 hold. For completing the set £ of implications,
we can thus provide the answer “All” automatically while P C B¥~2),

For an implementation, it might be useful to sort the list of objects in the
context (B B <) after Step (1) such that the basic concepts come first (and

in the same ordering as in B(O)). Then the ith object and the ith attribute will
always be the same lattice term in the sequel.

There are three possibilities to simplify the exploration dialogue for the user.
Firstly, the lattice terms in P\ P can be listed in a linear extension of the
hierarchical order. When the user chooses a term # for the set 2, then all elements
in the order filter {z € B¥) | 2 > ¢} will be chosen automatically as well.

Secondly, the lattice terms may be simplified automatically. For instance, the
subterm A) may be omitted in any A-term. This, and its dual, will be applied
in the following example.

Thirdly, the user has the option to introduce a name for every lattice term
added to the context. For instance, with MAN and woMAN being basic concepts,
the user may define HUMAN :=MANV WOMAN. This shortens the lattice terms
and supports the readability of the questions generated by the process. For the
creation of a type lattice for conceptual graphs, this option is essential.

3 Example

Let us demonstrate concept exploration by an example. ITmagine a knowledge en-
gineer who wants to model knowledge about ancient Greek musical instruments
by conceptual graphs. He uses concept exploration for supporting the creation
for an adequate type lattice. For instance, he might want to start with the fol-
lowing four basic types: CHORD INSTRUMENT, KYTHARA, WIND INSTRUMENT,
and AULOS. A kythara is a harp which, in Greek mythology, is the symbol of
Apollo, while an aulos 1s an oboe like instrument associated with Dionysus. The
newly generated types are named using the naming mechanism described at the
end of the previous section. The dialogue of the first A-exploration (i.e., Step
(1) of Algorithm 2) consists of eight, questions:

“Which of the concepts CHORD INSTRUMENT, KYTHARA, WIND INSTRUMENT,
and AULOS are superconcepts of /\(Z)?77 “None!” “Name for /\(Z)?77 “IN-
STRUMENT.”

The first L-pseudo-intent is the empty set. The infimum /\(D of the empty
set 1s always the largest element of the lattice, and can thus be understood as
the concept “everything” comprising all objects of the field of interest, which, in
this example, are INSTRUMENTS. [t is the first object added to G. The relation
I remains empty. The (trivial) implication INSTRUMENT — 0 is added to L,
because it will be needed in Step (8).

“Which of the concepts KYTHARA, WIND INSTRUMENT, and AULOS are su-
perconcepts of CHORD INSTRUMENT?” “None!”

The name CHORD INSTRUMENT is added to G, and the (trivial) implication
CHORD INSTRUMENT — @ to L.

“Which of the concepts CHORD INSTRUMENT, WIND INSTRUMENT, and AU-
1.0 are superconcepts of KYTHARA?” “CHORD INSTRUMENT!”

The name KYTHARA is added to (G. The first non-trivial implication, Kv-
THARA — CHORD INSTRUMENT, is added to L. In this way the extension of (G
and L continues . ..

“Which of the concepts CHORD INSTRUMENT, KYTHARA, and AULOS are
superconcepts of WIND INSTRUMENT?” “None!”

“Which of the concepts KYTHARA and AULOS are superconcepts of CHORD
INSTRUMENT A WIND INSTRUMENT?” “None!” “Name for CHORD INSTRU-
MENT A WIND INSTRUMENT?” “AROLS-HARP.”

An aeols-harp is a harp where the wibration of the chords is induced by
wind (either natural wind or generated by bellows).

“Ts the concept, AUT.OS a superconcept. of CHORD INSTRUMENT A KYTHARA A
WIND INSTRUMENT?” “Yes!” “Name for CHORD INSTRUMENT A KYTHARA A
WIND INSTRUMENT?” “NOTHING.”

There is no kythara being a wind instrument. We obtain the “absurd type”.

“Is the concept KYTHARA a superconcept of CHORD INSTRUMENT A WIND
INSTRUMENT A AULOS?” “Yes!”

We obtain again the concept NOTHING. Since there is no lattice term added
to (G, we are not asked to provide a name.

The result of the first. A-exploration is shown in Fig. 1. Ohserve that the diagram
has to be read as A-semilattice, since only all infima are defined, but no suprema.
Tn the following \/-exploration, for instance, the supremum of KYTHARA and
AROTS-HARP will not be identified with ¢cHORD INSTRUMENT, but with a real
subconcept of it, namely HARP.

instrument

g |z
gl |E
=2
(%] -
Elo| & chord instument| ("} D
Tis|5|@
S|SIE|S
cIREE
chord instument | >
kythara XX kythara
wind instrument X
aulos XX
instrument
aeolsharp X| X
nothing XIXPX[X

Fig. 1. The result of the first A-exploration

Tn Step (3), the names INSTRUMENT, AROLS-HARP, and NOTHING are copied
from (G to M, and T is extended such that it represents the ordering shown in
the line diagram in Fig. 1. The list £’ of implications is empty up to now, but in
Step (4), for every attribute m, the implication m — {2 | # < m} is added, for
example WIND INSTRUMENT — AULOS, AROLS-HARP, NOTHING. Then (Step (5))
the next exploration, the first \/-exploration, starts:

“Which of the concepts CHORD INSTRUMENT, KYTHARA, WIND TNSTRUMENT,
AULOS, INSTRUMENT, AREOLS-HARP and NOTHING are subconcepts of \/(Z)?”
“NoTHING!”

This justifies the choice of the name NOTHING in the former /\—emplomtion,
since \/(D 18 always the smallest element of a lattice.

“Which of the concepts CHORD INSTRUMENT, WIND INSTRUMENT, TNSTRU-
MENT, and AEOLS-HARP are subconcepts of KYTHARA V AULOS?” “None!”
“Name for KYTHARA V AULOS?” “ANCIENT (GREEK INSTRUMENT.”

Here and in the sequel, the concept NOTHING is omitted in the lattice terms,
since it 18 not relevant for the supremum.

“TIs the concept CHORD INSTRUMENT a subconcept of KYTHARA V AEOLS-
HARP?” “No!” “Name for KYTHARA V AEOLS-HARP?” “HARP.”

“Ts the concept, WIND INSTRUMENT a subconcept of AUT.OS V AROLS-HARP?”

“No!” “Name for AULOSV AEOLS-HARP?” “WIND INSTRUMENT WITH VI-
BRATING PART.”

“Which of the concepts CHORD INSTRUMENT, WIND INSTRUMENT, and TN-
STRUMENT are subconcepts of KYTHARA V AULOS V AROLS-HARP?” “Alll”

Here we decide to identify the concept KYTHARA V AULOS V AEOLS-HARP
with TNSTRUMENT.

The result of this \/-exploration is shown in Fig. 2. Tn the resulting weak partial
lattice, all suprema are defined. Tnfima are only defined for its A-subsemilattice

which is shown in Fig. 1.

| |8
5 [ol
E| |E
. g |5
0] c = S
e Q X .
S| |E g 3
g |2 |Ele |o| |s
=lelg| |ElE|=E| |8
HEEEEEEEEE
EHEEEEREE
chord instument || X
kythara XX X XX
wind instrument X X
aulos XXX X[X
instrument X
aeolsharp X X XX XX
nothing XIXIXIXIXIXIXIXIXIX

instrument

‘ancient Greek instrument‘

Fig. 2. The result of the first \/-exploration

Ne

Tn the next A-exploration, the names ANCIENT (FREEK CHORD INSTRUMENT,
ANCTENT (GREEK HARP, ANCIENT (3REEK WIND INSTRUMENT, and ANCIENT
GREEK WIND INSTRUMENT WITH VIBRATING PART are introduced. The follow-
ing \/-exploration provides only one new name, CHORD INSTRUMENT WITHOUT
Row. Finally, the bth exploration (which is a A-exploration again) runs through
without generating any question. Hence, the concept exploration is terminated.
The resulting lattice is shown in Fig. 3. Of course, all infima and suprema are
defined now.

instrument

ancient Greek instrument‘

wind instrument

ancient Gr. wind instrument‘

‘ancient Gr. chord instrument

harp) ‘Wind instr. w. vibrating part‘

ancient Greek harp|(") ancient Gr. wind instr. w. vibrating pan‘
kythara

Fig. 3. The result of the concept exploration

The “degree of exactitude”, 1.e., the decision whether or not to identify two
concepts, essentially depends on the purpose the exploration was done for. For
instance, a very pedantic user might only accept the two implications KYTHA-
RA — CHORD INSTRUMENT and AUTLOS — WIND INSTRUMENT, and deny all oth-
ers. Then every question generates a new concept. This process can be continued
ad infinitum, converging towards the (infinite) free lattice generated by two two-
element chains, as shown in Fig. 4. The ellipses in the diagram indicate which
of the elements of the free lattice were identified in the former exploration.

In general, the knowledge engineer can greatly benefit from the line diagram
of the lattice freely generated by the ordered set (B, <). Tn fact, the line diagram
of FL.(242) in Fig. 4 was used for the exploration of instruments. Unfortunately,
there are only very few free lattices over partially ordered sets which can be

“drawn” ([8]).

chord instrument f.,>/ \§,\ wind instrument

?
NP
'\\ //'
kythara \15\ / aulos
N

Fig. 4. The free lattice FT.(2 + 2).

4 Discussion

The main problem for any knowledge acquisition tool like concept exploration is
the fact, that, in principal, the exploration may not terminate, because there are
infinite lattices generated by only three elements. Hence any such exploration
tool must provide the possibility to stop the exploration at any point such that
the level of completeness gained so far is known. This was the crucial point for
the decision to choose a breath first exploration: After the kth exploration, it
is assured that all lattice elements denotable with a lattice term of complexity

11

less or equal than & are generated, and that their hierarchical relationships are
determined. A depth first exploration tool (like, e.g., distributive concept ex-
ploration) would risk, for arbitrary (e.g., non distributive) lattices, to explore
some of the basic concepts so extensively that it will not reach the other ones.
Unfortunately, this breath first approach forces the user to confirm all newly
generated elements one by one. One might ask to construct another tool that
allows to confirm or deny more than one element at a time. E.g., it might be
based on A. Day’s famous doubling method ([3]) for the computation of free
lattices over partial lattices. Since the method is not able to reach all (finite)
lattices, but only certain ones (the so-called bounded lattices), the right balance
between applying the doubling method and factorizing by suitable congruences
has to be kept. First experiments have shown that a too early factorization may
prevent further doubling (i.e., generating potentially new elements) resulting
in a break down of the exploration, while a too late factorization produces an
abundance of potential elements which are not really different.

An interesting question for any exploration tool is, whether the exploration
can be continued such that it will not terminate. In our algorithm, this is equiv-
alent to the question, whether, for the intermediate result B*) the free lattice
FL(B®¥)) is infinite or not. Tn [9], V. Slavik presents an effective algorithm for
testing 1ts finiteness. This free lattice is generated by concept exploration when
all further questions are answered with “None” (i.e., with @ := 0). On the other
hand, 1t is always possible to terminate the algorithm in the next exploration
step by answering “All” to all further questions.

Sometimes, the user does not want to start an exploration from the scratch,
but he already has some background knowledge. Tn [5], B. Ganter extends at-
tribute exploration to background knowledge formulated in predicate formulas.
In particular, this comprises background implications as used in our algorithm.
Hence his results can also be adapted to concept exploration. Since Ganter’s al-
gorithm can handle partial information, this also provides the possibility to use
counterexamples. A counterexrample (or separating pair) for A P # A(P") con-
sists of an attribute belonging to the intent of A(P”) and an object not, having
the attribute but belonging to the extent of A P. Unlike in distributive concept
exploration where counterexamples are used | the capability for treating par-
tial knowledge is necessary, because an object may belong to the supremum of
two concepts although it does not belong to any of the two concepts. (The dual
is true for attributes.) Hence, if complete knowledge is required, the user has to
be asked for every newly generated supremum, which objects additionally belong
to it. This makes the exploration unnecessarily complex.

Graphical support for the user showing the already computed hierarchy and
the next potential elements is very desirable. By drawing only the potential
elements of the next \//A-exploration one could avoid the problem discussed
at the end of the example, that most free lattices are not “drawable” (in the
sense of Fig. 4). Unfortunately, there aren’t any really satisfying fully automatic
drawing algorithms for lattices yet. As with many other lattice oriented tools,
concept exploration would certainly benefit from any progress in this field.

12

As for attribute exploration, concept exploration is designed to be an interac-
tive tool, where a user acts as expert. In order to obtain a completely auntomatic
tool, concept exploration may be combined with a subsumption algorithm (i.e.,
an (automatic) algorithm able to answer this type of questions) as it was done
for the description logic ALC with attribute exploration ([1]) and distributive
concept exploration ([14]), or resort, to an online semantic dictionary.

References

1. F. Baader: Computing a minimal representation of the subsumption lattice of all
conjunctions of concepts defined in a terminology. Tn: G. Fllis, R. A. T.evinson,
A. Fall, V. Dahl (eds.): Proceedings of the International KRUSFE Symposium:
Knowledge Retrieval, Use and Storage for Ffficiency. Santa Cruz, CA, USA, Au-
gust 11 13, 1995, 168 178

2. P. Burmeister: Conlmp A program for formal concept analysis. Technische
Hochschule Darmstadt, 1987 (T.atest version 1996 for MS DOS)

3. A. Day: Doubling constructions in lattice theory. Can. J. Math. 44(2), 1992, 252
269

4. B. Ganter: Algorithmen zur Begriffsanalyse. In: B. Ganter, R. Wille, K. E. Wolff
(eds.): Beitrdge zur Begriffsanalyse. B.1.-Wissenschaftsverlag, Mannheim, Wien,
Zurich 1987, 241 254

5. B. Ganter: Attribute exploration with background knowledge. Proceedings of the
conference on Order and Decision-Making. Ottawa, Canada, August 5 9, 1996

6. B. Ganter, R. Wille: Formal Concept. Analysis: Mathematical Foundations. Sprin-
ger, Heidelberg 1997 (Translation of: Formale Begriffsanalyse: Mathematische
Grundlagen. Springer, Heidelberg 1996)

7. U. Klotz, A. Mann: Begriffexploration. Diplomarbeit, TH Darmstadt 1988

8. I. Rival, R. Wille: Tattices freely generated by partially ordered sets: which can be
"drawn”? J. Reine Angew. Math. 310, 1979, 55 80

9. V. Slavik: T.attices with finite W-covers. (To appear)

10. J. F. Sowa: Conceptual structures: Information processing in mind and machine.
Adison-Wesley, Reading 1984

11. G. Stumme: Attribute exploration with background implications and exceptions.
In: H.-H. Bock, W. Polasek (eds.): Data analysis and information systems. Statis-
tical and conceptual approaches. Studies in classification, data analysis, and knowl-
edge organization 7, Springer, Heidelberg 1996, 457 469

12. G. Stumme: Exploration tools in formal concept analysis. In: Ordinal and symbolic
data analysis. Studies in classification, data analysis, and knowledge organization
8, Springer, Heidelberg 1996, 31 44

13. G. Stumme: Knowledge acquisition by distributive concept exploration. In:
G. Ellis, R. A. T.evinson, W. Rich, J. F. Sowa (eds.): Supplementary proceedings
of the third international conference on conceptual structures, Santa Cruz, CA,
USA, August 14 18, 1995, 98 111

14. G. Stumme: The concept classification of a terminology extended by conjunction
and disjunction. Tn: N. Foo, R. Goebel (eds.): PRICAT’96: Topics in artificial in-
telligence. LNAT 1114, Springer, Heidelberg 1996, 121 131

15. G. Stumme: Distributive concept, exploration a knowledge acquisition tool in
formal concept analysis. Mathematics in artificial intelligence (submitted)

13

16.

17.

18.

19.

20.

G. Stumme: Free distributive completions of partial complete lattices. Order (sub-
mitted)

R. Wille: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. Tn: T. Rival (ed.): Ordered sets. Reidel, Dordrecht Boston 1982, 445 470

R. Wille: Bedeutungen von Begriffsverbanden. In: B. Ganter, R. Wille, K. E. Wolff
(eds.): Beitrdge zur Begriffsanalyse. B.1. Wissenschaftsverlag, Mannheim 1987,
161 211

R. Wille: Knowledge acquisition by methods of formal concept analysis. In:
F. Miday (ed.): Data analysis, learning symbolic and numeric knowledge. Nova
Science Publisher, New York, Budapest 1989, 365 380

R. Wille: Conceptual structures of multicontexts. In: P. W. Eklund, G. Ellis,
G. Mann (eds.): Conceptual structures: Knowledge representation as interlingua.
TI.NAT 1115, Springer, Heidelberg 1996, 23 39

