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Abstract. While most data processing tools use numerical aspects of
the data, conceptual data systems focus on their conceptual structure.
This paper discusses how both approaches can be combined.

1 Introduction

Data tables are usually equipped with different types of structures. While most
data processing tools use their numerical structure, conceptual data systems
are designed for conceptually structuring data. They enrich data tables with
so-called conceptual scales reflecting different conceptual aspects of the data
([10], [7]). Conceptual scales provide graphical representations of the conceptual
landscape in the form of line diagrams. These “maps” can be explored with the
management system TOSCANA ([4], [11]). This navigation tool allows dynamic
browsing through and zoominginto the data. Conceptual data systems are based
on the mathematical theory of formal concept analysis. For an introduction to
formal concept analysis, the reader is referred to [1], [13], [14], and [15].

Many applications indicate the need for combining both computational and
conceptual structures for data analysis. This discussion can be seen in a broader
framework: the aim 1s to extend conceptual data systems to conceptual knowl-
edge systems which provide, beside knowledge representation and communica-
tion techniques, also techniques for knowledge acquisition and knowledge infer-
ence. This requires not only a conceptual and a computational component, but
also a logical one. First efforts have been made (cf. [5], [8]).

In this paper, we discuss how to aggregate computational and conceptual
aspects in conceptual data systems. A financial controlling system for private
households serves as a first example.

2 The Conceptual Aspect of the Controlling System

The basic, controlling example underlying this paper consists of a table of all
withdrawals from a private bank account during several months. A small part
of this table is shown in Fig. 1. As a reading example, the row numbered 20
contains information about a withdrawal of 641.26 DM for office chairs for the



no. value paid for objective health date

3 42.00 Konni ski-club s 03.01.1995
20 641.26  Konni, Florian  office chairs / 23.01.1995
27 68.57 Family health insurance  hi 02.02.1995
34 688.85 Tobias office table / 06.02.1995
37 25.00 Father gymn. club 3 08.02.1995
52 75.00 Konni gymn. club 3 24.02.1995
73 578.60 Mother Dr. Schmidt d 10.03.1995
77 45.02 Tobias Dr. Gram d 17.03.1995
80 77.34  Parents money due / 21.03.1995

Fig. 1. Withdrawals from a private bank account

sons Konni and Florian paid on January 23, 1995. In the following, we classify
these withdrawals with respect to the question “How much has been paid for
health for which family members?” To classify the withdrawals with respect
to health, we introduce the attribute values “sport” (s), “doctor” (d), “health
insurance” (hi), and “/” for withdrawals not assigned to health. The concept
lattice in Fig. 2 is our formalization of the conceptual structure of these values.
Concept lattices like this, which are used for scaling attribute values, represent
so-called conceptual scales.

heal th insurance

Fig. 2. Frequencies of withdrawals related to “health”.

This line diagram represents the classification of the concept “health” into
three subconcepts. The set of all withdrawals which are classified by an entry “s”
in the column “health” is understood as assigned to “sport”, and therefore also

to “health”. The withdrawals classified by “d” and “hi” are treated analogously.



All withdrawals which are not assigned to “health” are collected just below the
highest point.

In the following, we distinguish, for each formal concept ¢, between its extent
(i.e., the set of all objects (here withdrawals) belonging to ¢) and its contingent
(i.e., the set of all objects belonging to ¢ but not to any proper subconcept of ¢).
In the standard line diagram, the contingent of a formal concept ¢ is the set of
objects which is represented just below the point representing c. The line diagram
in Fig. 2 does not show the contingents explicitly, but only their cardinalities.
For instance, the contingent of the highest concept in Fig. 2 is the set of all 67
withdrawals indicated in the data table by “/” in column “health”.

The cardinality of a contingent S of a concept ¢ is also called the frequency of
S. In TOSCANA | the user can switch, for each concept, by mouse click between
the display of the frequency and the explicit list of objects.

The extent of the highest concept is always the set of all objects. The extent
of an arbitrary concept is exactly the union of all contingents of its subconcepts.
TOSCANA provides the possibility of displaying either contingents or extents.

As a reading example we mention that there are exactly eight withdrawals in
the given data table which are classified under “doctor”, formally described in the
column “health” by “d”. Finally we remark that there are no withdrawals which
are assigned to “health” but neither to “sport”, “doctor” or “health insurance”.

The line diagram in Fig. 2 is unsatisfactory insofar as we would like to see
not only the frequencies of withdrawals but the amount of money paid. Tn the
next section we shall discuss how this can be visualized.

3 The Computational Aspect of the Controlling System

For an efficient controlling of the household, the user needs an overview over
the distribution of the money, and not of the number of withdrawals. Hence,
for each contingent S, we display the sum over the corresponding entries in the
column “value” instead of the frequency of S. The result of this computation is
the left line diagram in Fig. 3. We can see for example that the withdrawals for
“sport” sum up to 383 DM and the withdrawals not concerning “health” sum
up to 41538 DM. The right line diagram shows, for each formal concept, the sum
over the values of all withdrawals in the extent (instead of the contingent) of
this concept, for instance the total amount of 45518 DM for all withdrawals in
the given data table and the amount of 3980 DM for “health”.

To visualize also the distribution of withdrawals over the family, we use the
scale “family” in Fig. 4. This diagram shows for instance that there are with-
drawals of 2445 DM for “Mother”, that 78 DM are classified under “Parents”,
but not under “Mother” or “Father” (this is the “money due” in the last row
of Fig. 1) and that 38213 DM appear for withdrawals classified under “Family”
which are not specified further.

Next, we combine the scales “family” and “health”. The resulting nested line
diagram is shown in Fig. 5. Now the withdrawals of each family member (and
more generally of each object concept of the family scale) are classified with



41538

heal th insurance

Fig. 4. Summing up book-values over contingents of the scale “family”.

respect to the health scale. For instance, 733 DM expended for Tobias split
into 45 DM for a doctor and 688 DM not concerning health, i.e., the amount
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Fig. 5. Summing up over contingents in the nested line diagram of the scales “health”
and “family”.

spent on his office table (see Fig. 1). This nested line diagram shows also that the
withdrawals for health insurance (which amount to 1930 DM) are all summarized
under the concept “Family” and are not specified further.

In the next section, we describe the formalization of conceptual and compu-
tational structures. This i1s the basis for generalizing the example in Sect. 5.

4 Conceptual and Computational Structures

In this section, we introduce the mathematical definition of conceptual data
systems, and discuss how it can be extended by means of utilizing 1ts algebraic
properties.

In formal concept analysis, data tables like the one in Fig. 1 are formalized as



sets, and T C {(g,m,w) | g6 G,meM, weW,,} is a relation where (g, m,wy) € T
and (g, m,ws) € T implies wy=wy. Thus, each m € M can be seen as a partial
function. For (g, m,w) € T we say that “object g has value w for attribute m”
and write m(g) = w. The set G of objects can be understood as a primary
key in a relational data base. For instance, in Fig. 1, the objects are withdrawal

numbers, the attributes are “value”, ..., “date”, and the attribute values are all

)

possible entries in the corresponding columns.

4.1 Conceptual Scales

The conceptual structure of the data is captured by conceptual scales. Formally, a
conceptual scale for an attribute m € M is a formal context S,,, :== (W, My, I)
where the objects are the possible attribute values in W,,,. Tt serves for “trans-
lating” the entries in the many-valued context to aspects the user is interested
in. All conceptual scales for a many-valued context are stored in a conceptual
scheme, together with line diagrams for their concept lattices.

An example is the scale Syeqth, which was used to generate the diagrams
in Figs. 2 and 3. Tts concept lattice is shown in Fig. 6. For technical reasons,
the set Wheatth = {s,d, hi, /} is replaced by corresponding parts of SQI.-queries
of the form health="..." . The sett Mycaitn contains the attributes “health”,
“sport” | “doctor”, and “health insurance” | and the relation Ieain indicates their
relationships to the SQT.-statements.

health insurance

Fig. 6. The scale “health”

In TOSCANA | the user can choose conceptual scales from a menu. Then
TOSCANA draws the corresponding (nested) line diagram on the screen. The
data base 1s queried by SQI.-statements that are composed out of the statements
in the scales. Finally, the results are displayed in the line diagram.



4.2 Relational Structures

In the controlling example, we use the fact that bankbook values are numbers,
for which addition is defined. Tn general, for each m € M| there may be functions
and relations on the set W,,.

Definition. A relational structure R := (W, R, F) consists of a set W, a set R
of relations R C W (F) on W, and a set F of functions f: W) — W, where
ar assigns to each relation and function its arity.

For instance, the data types implemented in the data base management system
(e.g., Integer, Real, Boolean, Currency, or Datetime) are relational structures.
Hence, for each attribute m € M, we can capture the algebraic structure
of its possible attribute values by a relational structure R, := (Wi, R, Fm),
just as we captured their hierarchical relationships by a conceptual scale S, 1=
(Wi, My, 1) Conceptional-relational schemes — as extensions of conceptual
schemes  may contain, beside a many-valued context and conceptual scales
(together with their line diagrams), relational structures for each attribute.

Here we should mention, that sometimes conceptual and relational aspects
overlap. Depending on the purpose, they should be covered by a relational struc-
ture or by a conceptual scale, or by both. Time, for instance, can be captured by
a linear order in a relational structure, or by some scale (e.g., an inter-ordinal
scale, if only certain time intervals are of interest).

Relational structures can be used for creating new scales. This logical scaling
was developed by S. Prediger (cf. [6]). Tn this paper, however, we discuss only how
relational structures may affect the data analysis process once the conceptual
scales are created.

5 Conceptual Scaling Supported by Computational
Structures

The controlling example and many other applications show that it is useful not
to analyze computational and conceptual aspects of the data independently, but
to combine them. Tn this section, we discuss how conceptual data systems can
be extended by a computational component. Since the operability required dif-
fers from application to application, the idea 1s to delegate application-specific
computations to an external system (e.g., hook-keeping system, CAD system,
control system, etc.). TOSCANA already provides an SQTL-interface to the rela-
tional database management system in which the many-valued context is stored,
so that we can use the numerical tools of the relational data bhase system (as,
for instance, in the controlling example).

In the process of going from the request of the user to the diagram shown on
the screen, we can distinguish two consecutive, intermediary subprocesses (cf.
Fig. 7). First, the chosen scale is imported from the conceptual scheme, and a set
of objects is assigned to each of its concepts (by default, its extent, or contingent).
Second, for each of these sets, some algebraic operations may be performed. Most
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Fig. 7. Interaction of conceptual and computational component in TOSCANA

of the implemented conceptual data systems only activate the first step. Our
controlling system 1s an example where the second step 1s also activated. In the



first step, we also can identify two actions where a computational component,
can influence the analysis or retrieval process: the import of scales from the
conceptual scheme, where parameters can be assigned to parametrized scales,
and the import of objects from the data base, which can be sorted out by filters.
Finally, we can imagine a further action, following the display of the line diagram,
which results in highlighting interesting concepts.

These four activities which make an interaction between conceptual and com-
putational component possible now shall be discussed in detail.

5.1 Adapting Conceptual Scales to the Data

In general, conceptual scales do not depend on the actual data stored in the data
base, as for instance the scales “health” and “family” in the controlling example.
Sometimes however, scales should adapt themselves automatically to the data.
Therefore we allow parameters in the definition of conceptual scales whose values
are determined only at runtime. The way of determining values may vary from
application to application. We shall discuss this by three examples.

The first example is implemented in a commercial application where the user
wants to analyze data for the last 23 workdays. (This is the maximal number
of workdays per month in Germany.) The result is displayed as a nominal scale.
When the scale is invoked, then the data base is queried for the last 23 different
#22
which are used for labeling all concepts of the nominal scale (except for the top

entries in the “date” column. The answers are stored in variables #0, .. .|
and bottom elements), and for retrieving the corresponding objects from the
data base.

The second example is similar to the previous example. Inter-ordinal scales
are typically used when a linear order (e. g., a price scale, a time scale) is divided
into intervals with respect to their meaning. The boundaries of the intervals are
usually fixed by a knowledge engineer. However, the range of possible attribute
values is not always known a priori. Hence, for a first glance at the data, it has
proved useful to query the data base for the minimal and the maximal value
and to split up this interval into intervals of equal length. Depending on the
application, 1t might also be useful to fix the boundaries on certain statistical
measures, as for instance average, median, quantiles. These “self-adapting scales”
reduce the effort needed to create the conceptual scheme, since they are re-usable.

Tt 1s planned to implement a user interface by means of which the user can
edit parameters at runtime. For instance, he could first invoke an inter-ordinal
scale with equidistant boundaries and then fine-tune it according to his needs.

This user interface leads to the third example, an application in control the-
ory: Process data of the incineration plant of Darmstadt were analyzed in order
to make the control system more efficient (cf. [2]). Every ten seconds, different
process parameters were measured and stored in the data base, for instance “ram
velocity” and “steam”. While “ram velocity” describes the feed amount of waste,
“steam” describes the steam mass flow produced by the combustion. The ram
velocity does not influence the steam volume directly, but only with a time delay
of about half an hour, in which the material passes through a drying process.



Hence the engineer had to compute a ‘shift” in the data base, assigning to each
time stamp not the actual “steam” value, but the value of half an hour later.
Instead of computing the shift in the actual process data base, it also can be
done by an inner join in the query generated by TOSCANA. When the ‘shift
time’ is kept variable, the user can change it via the interface during the runtime
of TOSCANA. That can be used, for instance, for determining the time delay of
two variables experimentally: The engineer examines the nested line diagram of
the corresponding scales for ordinal dependencies. By varying the shift time, he
tries to augment the dependencies, and to determine in this way the time delay.

The possibility of using parameters is also of interest for filters that control
the data flow from the data base to TOSCANA. They are discussed in the next
subsection.

5.2 Filtering the Objects of the Many-valued Context

In many applications, users are interested in analyzing only a specific subset of
objects of the many-valued context. Usually such a subset is determined con-
ceptually, being the extent (more rarely the contingent) of a concept of a suit-
able combination of conceptual scales. TOSCANA provides for the possibility of
“zooming” into that specific concept by mouse click. In the sequel of the analysis
only objects belonging to that concept are considered.

Conceptual scales are an answer to the problem that often users are not able
to formulate a precise criterion as to how to restrict the set of objects. Conceptual
scales provide different concepts to zoom in on, and the user can choose the one
that best fits his needs. A typical application is a retrieval system, where users
often have only a vague idea about what they are looking for. However, if a precise
criterion 1s at hand, one wants to apply it directly without making the detour
of using a conceptual scale. For instance, if one 1s interested in the withdrawals
from the bank account during the past quarter only, no explicit time scale is
needed.

For such applications, the conceptual scheme should be extended by filters.
In addition to conceptual scales, the user can choose filters from a menu. When
a filter is activated, then objects are only considered for display if they pass
the filter. A filter is realized as an SQI.-fragment that is added by AND to the
conditions provided by the chosen scales.

The remarks about parameters in the previous subsection apply to filters as
well. We give two typical examples for the use of parameters in filters. The first
example is a conceptual knowledge system about pipelines (cf. [9]). The system
was built in order to support an engineer by choosing suitable pipes, fittings, and
valves for the construction of a pipeline. The desired functionality of the pipeline
determines among other parameters pressure p and working temperature .
These parameters can for instance be imported from a CAD system, or are
entered by the engineer. A condition for the pipes used in the construction is
yi/it > p/ s, where yp1 is a value depending on the measures of the pipe, and
o, 1s the maximal strain allowed in the wall of the tube. yy/;7 is stored in the
data base, and o, depends on the temperature # and the material of the tube,



and can be read from a table. Hence the engineer can implement a filter sorting
out all components not satisfying the condition.

The second example is again the controlling system of Sects. 2 and 3. As
described above, we can construct a filter that only accepts withdrawals effected
in a certain period, e.g., the last quarter. The interface for editing parameters
introduced in Sect. 5.1 provides the possibility of examining the withdrawals of
any period required. When the user activates the filter, he is asked for start and
end date.

5.3 Focussing on Specific Aspects of the Objects

The controlling system is an example of focussing on different aspects of the
data. There we focus not only on withdrawal numbers, but also on the sum of
bankbook values. Now we discuss how this example fits into the formalization
described in Sect. 4.

Once the user has chosen one or more scales, TOSCANA determines for each
concept of the corresponding concept lattice a set S of objects  in most cases
its extent or its contingent. In Sect. 1 we mentioned that the user can choose for
each concept whether all names of the objects in S shall be displayed or only the
cardinality of S. A third standard aspect in TOSCANA is the display of relative
frequencies. The last two aspects are examples of algebraic operations.

The focussing in the example of Sects. 2 and 3 can be understood as being
composed of two actions: Firstly, instead of working on the set S, the sequence
(m(g) € Win)ges is chosen. Tn the controlling example, this projection assigns
to each withdrawal from S the corresponding book-value. Secondly, the sum
S(m(S)) = des m(g) is computed (and displayed). The latter is done in
the relational structure assigned to the corresponding attribute. In TOSCANA|
that 1s realized by a modification of the way the SQIL.-queries are generated: the
standard COUNT-command used for the computation of the frequency of S is
replaced by a SUM-command operating on the column “value”.

Another important feature 1s to sort the list of displayed objects according
to some attribute. This means that, for a specified attribute m € M, the objects
are ordered by a linear order which 1s given as binary relation in the relational
structure R,,,. We define g1 < g2 iff m(g1) < m(gs2). This ordering can be com-
bined with the above described projection. For instance, instead of displaying the
sum of book-values, the user might want to see the names of the corresponding
shops, but ordered by decreasing book-value.

Depending on the application, there may be other aspects to focus on. In
general, this focussing can be realized by manipulating the SQT.-queries. The
idea is to store them in the conceptual scheme, and to make them available for
the user in the same way that he already can switch between the display of the
objects and the display of their frequency: the focus can be chosen either globally
for the displayed scale(s) by a pull-down menu, or locally for each concept, by a
pop-up menu which appears by clicking on the concept.

In general, focussing is independent from determining the extents or contin-
gents. In practice, however, these two steps interact in order to increase per-



formance. For instance, if the user is interested only in frequencies, then the
concrete object names need not be retrieved from the data base.

5.4 Highlighting Interesting Concepts

Focussing also can be understood 1n a different setting. Tt also means drawing
the user’s attention to those concepts where the frequency of objects (or the sum
of book-values, etc.) is extraordinarily high (or low). The determination of these
concepts is based on the frequency distribution of the nested line diagram. This
distribution can be represented  without its conceptual order by a contingency
table with entry n;; in cell (¢, 7) where ¢ (j, resp.) is an object concept of the
first (second) scale.

As a refinement of Pearson’s Chi- Square calculations for contingency ta-
bles we recommend calculating for each cell (4, j) the expected frequency e;; ==
(n;n;)/n (“expected” means “expected under independence assumption”) where
n; ( nj, resp.) is the frequency of object concept i (4, resp.) and n is the total
number of all objects. To compare the distribution of the observed frequencies
n;; and the expected frequencies e;;, one should study the dependency double
matrir (n;;, €;5).

Pearson’s Chi-Square calculations reduce the dependency double matrix to
the famous y? := Z”((m? — e;;)*/eij). But the matrix also can be used as a
whole in order to highlight interesting places in a nested line diagram:

If the user wants to examine the dependency double matrix in detail, then he
may choose to display their entries at the corresponding concepts. Addition-
ally, one of the matrices of differences n,; — e;;, quotients (n;; — €;;)/ei;, or
quotients n;;/e;; may be displayed in the same way. The conceptual struc-
ture represented by the line diagram helps us to understand the dependency
double matrix.

If a less detailed view is required, then the calculation component can gener-
ate graphical marks which indicate those concepts where the matrix entries
are above or below a given threshold. A typical condition in applications 1s
"e;; >k and ng;/e;; > p” where k and p are parameters which can be chosen
on a suitable scale.

The Chi-Square formula is a very rough reduction of the information about
dependencies, but, clearly, the degree of reduction depends on the purpose of the
investigation. Tf one 18 interested not only in having an index showing whether
there is a dependency, but in understanding the dependencies between two many-
valued attributes with respect to chosen scales in detail, then one should carefully
study the distribution of observed and expected frequencies.

6 Outlook

The connections between conceptual scales and relational structures should be
studied extensively. Therefore, practical relevant examples containing both parts



should be considered. Some examples are: optimization problems (shortest paths,
flow problems, minimal covering, minimizing electrical circuits), similarities and
distances connected with conceptual structures, valuations of states of a sys-
tem, decision problems in conceptually complex situations, applications in logics
and fuzzy-logics, hierarchies with valuations, graphs with valuations, orders of
substructures (e. g., lattices of subgroups of a group), congruence relations.

Tt is of particular interest to examine the compatibility of various conceptual
scales and relational structures on the same set of attribute values. From a formal
point of view both structures are of the same generality in the sense that each
conceptual scale can be described as a relational structure and vice versa. But
they are used differently: conceptual scales generate overviews for knowledge
landscapes, while relational structures serve for computations.

We plan to extend conceptual data systems to conceptual knowledge systems
which comprise methods of knowledge acquisition and knowledge inference. That
indicates the need for extending TOSCANA not only by a computational com-
ponent, but also by a logical component. Since there are already many tools
focussing on logical aspects of the data, we suggest not reinventing the wheel:
similarly to the computational component, the logical component should pro-
vide an interface so that most of the logical computations can be delegated. One
should especially consider combining conceptual data systems with systems for
description logics and conceptual graphs.

This paper discussed how computational components can support concep-
tual data processing. One should also investigate how, vice-versa, results of data
analysis and retrieval activities in conceptual data systems can be made acces-
sible to other systems. This discussion may lead to hybrid knowledge systems
composed of conceptual, computational and logical subsystems, each focussing
on different aspects of the knowledge landscape inherent in the data.
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