
Computing in Conceptual Data Systemswith Relational StructuresGerd Stumme1 and Karl Erich Wol�21 Technische Hochschule Darmstadt, Fachbereich Mathematik, Schlo�gartenstr. 7,D{64289 Darmstadt; stumme@mathematik.th-darmstadt.de2 Fachhochschule Darmstadt, Fachbereich Mathematik und Naturwissenschaften,Sch�o�erstr. 3, D{64295 Darmstadt; wol�@mathematik.th-darmstadt.deAbstract. While most data processing tools use numerical aspects ofthe data, conceptual data systems focus on their conceptual structure.This paper discusses how both approaches can be combined.1 IntroductionData tables are usually equipped with di�erent types of structures. While mostdata processing tools use their numerical structure, conceptual data systemsare designed for conceptually structuring data. They enrich data tables withso-called conceptual scales re
ecting di�erent conceptual aspects of the data([10], [7]). Conceptual scales provide graphical representations of the conceptuallandscape in the form of line diagrams. These \maps" can be explored with themanagement system TOSCANA ([4], [11]). This navigation tool allows dynamicbrowsing through and zooming into the data. Conceptual data systems are basedon the mathematical theory of formal concept analysis. For an introduction toformal concept analysis, the reader is referred to [1], [13], [14], and [15].Many applications indicate the need for combining both computational andconceptual structures for data analysis. This discussion can be seen in a broaderframework: the aim is to extend conceptual data systems to conceptual knowl-edge systems which provide, beside knowledge representation and communica-tion techniques, also techniques for knowledge acquisition and knowledge infer-ence. This requires not only a conceptual and a computational component, butalso a logical one. First e�orts have been made (cf. [5], [8]).In this paper, we discuss how to aggregate computational and conceptualaspects in conceptual data systems. A �nancial controlling system for privatehouseholds serves as a �rst example.2 The Conceptual Aspect of the Controlling SystemThe basic, controlling example underlying this paper consists of a table of allwithdrawals from a private bank account during several months. A small partof this table is shown in Fig. 1. As a reading example, the row numbered 20contains information about a withdrawal of 641.26 DM for o�ce chairs for the



no. value paid for objective health date3 42.00 Konni ski-club s 03. 01. 199520 641.26 Konni, Florian o�ce chairs / 23. 01. 199527 68.57 Family health insurance hi 02. 02. 199534 688.85 Tobias o�ce table / 06. 02. 199537 25.00 Father gymn. club s 08. 02. 199552 75.00 Konni gymn. club s 24. 02. 199573 578.60 Mother Dr. Schmidt d 10. 03. 199577 45.02 Tobias Dr. Gram d 17. 03. 199580 77.34 Parents money due / 21. 03. 1995Fig. 1. Withdrawals from a private bank accountsons Konni and Florian paid on January 23, 1995. In the following, we classifythese withdrawals with respect to the question \How much has been paid forhealth for which family members?" To classify the withdrawals with respectto health, we introduce the attribute values \sport" (s), \doctor" (d), \healthinsurance" (hi), and \/" for withdrawals not assigned to health. The conceptlattice in Fig. 2 is our formalization of the conceptual structure of these values.Concept lattices like this, which are used for scaling attribute values, representso-called conceptual scales.
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686Fig. 2. Frequencies of withdrawals related to \health".This line diagram represents the classi�cation of the concept \health" intothree subconcepts. The set of all withdrawals which are classi�ed by an entry \s"in the column \health" is understood as assigned to \sport", and therefore alsoto \health". The withdrawals classi�ed by \d" and \hi" are treated analogously.



All withdrawals which are not assigned to \health" are collected just below thehighest point.In the following, we distinguish, for each formal concept c, between its extent(i. e., the set of all objects (here withdrawals) belonging to c) and its contingent(i. e., the set of all objects belonging to c but not to any proper subconcept of c).In the standard line diagram, the contingent of a formal concept c is the set ofobjects which is represented just below the point representing c. The line diagramin Fig. 2 does not show the contingents explicitly, but only their cardinalities.For instance, the contingent of the highest concept in Fig. 2 is the set of all 67withdrawals indicated in the data table by \/" in column \health".The cardinality of a contingent S of a concept c is also called the frequency ofS. In TOSCANA, the user can switch, for each concept, by mouse click betweenthe display of the frequency and the explicit list of objects.The extent of the highest concept is always the set of all objects. The extentof an arbitrary concept is exactly the union of all contingents of its subconcepts.TOSCANA provides the possibility of displaying either contingents or extents.As a reading example we mention that there are exactly eight withdrawals inthe given data table which are classi�ed under \doctor", formally described in thecolumn \health" by \d". Finally we remark that there are no withdrawals whichare assigned to \health" but neither to \sport", \doctor" or \health insurance".The line diagram in Fig. 2 is unsatisfactory insofar as we would like to seenot only the frequencies of withdrawals but the amount of money paid. In thenext section we shall discuss how this can be visualized.3 The Computational Aspect of the Controlling SystemFor an e�cient controlling of the household, the user needs an overview overthe distribution of the money, and not of the number of withdrawals. Hence,for each contingent S, we display the sum over the corresponding entries in thecolumn \value" instead of the frequency of S. The result of this computation isthe left line diagram in Fig. 3. We can see for example that the withdrawals for\sport" sum up to 383 DM and the withdrawals not concerning \health" sumup to 41538 DM. The right line diagram shows, for each formal concept, the sumover the values of all withdrawals in the extent (instead of the contingent) ofthis concept, for instance the total amount of 45518 DM for all withdrawals inthe given data table and the amount of 3980 DM for \health".To visualize also the distribution of withdrawals over the family, we use thescale \family" in Fig. 4. This diagram shows for instance that there are with-drawals of 2445 DM for \Mother", that 78 DM are classi�ed under \Parents",but not under \Mother" or \Father" (this is the \money due" in the last rowof Fig. 1) and that 38213 DM appear for withdrawals classi�ed under \Family"which are not speci�ed further.Next we combine the scales \family" and \health". The resulting nested linediagram is shown in Fig. 5. Now the withdrawals of each family member (andmore generally of each object concept of the family scale) are classi�ed with
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1159Fig. 5. Summing up over contingents in the nested line diagram of the scales \health"and \family".spent on his o�ce table (see Fig. 1). This nested line diagram shows also that thewithdrawals for health insurance (which amount to 1930 DM) are all summarizedunder the concept \Family" and are not speci�ed further.In the next section, we describe the formalization of conceptual and compu-tational structures. This is the basis for generalizing the example in Sect. 5.4 Conceptual and Computational StructuresIn this section, we introduce the mathematical de�nition of conceptual datasystems, and discuss how it can be extended by means of utilizing its algebraicproperties.In formal concept analysis, data tables like the one in Fig. 1 are formalized asa many-valued context K := (G;M; (Wm)m2M ; I). G, M , and Wm, m 2M , are



sets, and I � f(g;m;w) j g2G;m2M;w2Wmg is a relation where (g;m;w1) 2 Iand (g;m;w2) 2 I implies w1=w2. Thus, each m 2 M can be seen as a partialfunction. For (g;m;w) 2 I we say that \object g has value w for attribute m"and write m(g) = w. The set G of objects can be understood as a primarykey in a relational data base. For instance, in Fig. 1, the objects are withdrawalnumbers, the attributes are \value", : : : , \date", and the attribute values are allpossible entries in the corresponding columns.4.1 Conceptual ScalesThe conceptual structure of the data is captured by conceptual scales. Formally, aconceptual scale for an attributem 2M is a formal contextSm := (Wm;Mm; Im)where the objects are the possible attribute values in Wm. It serves for \trans-lating" the entries in the many-valued context to aspects the user is interestedin. All conceptual scales for a many-valued context are stored in a conceptualscheme, together with line diagrams for their concept lattices.An example is the scale Shealth, which was used to generate the diagramsin Figs. 2 and 3. Its concept lattice is shown in Fig. 6. For technical reasons,the set Whealth = fs; d; hi; =g is replaced by corresponding parts of SQL-queriesof the form health=\: : :" . The set Mhealth contains the attributes \health",\sport", \doctor", and \health insurance", and the relation Ihealth indicates theirrelationships to the SQL-statements.
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health="hi"health="d"health="s" Fig. 6. The scale \health"In TOSCANA, the user can choose conceptual scales from a menu. ThenTOSCANA draws the corresponding (nested) line diagram on the screen. Thedata base is queried by SQL-statements that are composed out of the statementsin the scales. Finally, the results are displayed in the line diagram.



4.2 Relational StructuresIn the controlling example, we use the fact that bankbook values are numbers,for which addition is de�ned. In general, for each m 2M , there may be functionsand relations on the set Wm.De�nition. A relational structure R := (W;R;F) consists of a set W , a set Rof relations R � W ar(R) on W , and a set F of functions f :W ar(f) !W , wherear assigns to each relation and function its arity.For instance, the data types implemented in the data base management system(e. g., Integer, Real, Boolean, Currency, or Datetime) are relational structures.Hence, for each attribute m 2 M , we can capture the algebraic structureof its possible attribute values by a relational structure Rm := (Wm;Rm;Fm),just as we captured their hierarchical relationships by a conceptual scale Sm :=(Wm;Mm; Im). Conceptional-relational schemes { as extensions of conceptualschemes { may contain, beside a many-valued context and conceptual scales(together with their line diagrams), relational structures for each attribute.Here we should mention, that sometimes conceptual and relational aspectsoverlap. Depending on the purpose, they should be covered by a relational struc-ture or by a conceptual scale, or by both. Time, for instance, can be captured bya linear order in a relational structure, or by some scale (e. g., an inter-ordinalscale, if only certain time intervals are of interest).Relational structures can be used for creating new scales. This logical scalingwas developed by S. Prediger (cf. [6]). In this paper, however, we discuss only howrelational structures may a�ect the data analysis process once the conceptualscales are created.5 Conceptual Scaling Supported by ComputationalStructuresThe controlling example and many other applications show that it is useful notto analyze computational and conceptual aspects of the data independently, butto combine them. In this section, we discuss how conceptual data systems canbe extended by a computational component. Since the operability required dif-fers from application to application, the idea is to delegate application-speci�ccomputations to an external system (e. g., book-keeping system, CAD system,control system, etc.). TOSCANA already provides an SQL-interface to the rela-tional database management system in which the many-valued context is stored,so that we can use the numerical tools of the relational data base system (as,for instance, in the controlling example).In the process of going from the request of the user to the diagram shown onthe screen, we can distinguish two consecutive, intermediary subprocesses (cf.Fig. 7). First, the chosen scale is imported from the conceptual scheme, and a setof objects is assigned to each of its concepts (by default, its extent or contingent).Second, for each of these sets, some algebraic operations may be performed. Most
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�rst step, we also can identify two actions where a computational componentcan in
uence the analysis or retrieval process: the import of scales from theconceptual scheme, where parameters can be assigned to parametrized scales,and the import of objects from the data base, which can be sorted out by �lters.Finally, we can imagine a further action, following the display of the line diagram,which results in highlighting interesting concepts.These four activities which make an interaction between conceptual and com-putational component possible now shall be discussed in detail.5.1 Adapting Conceptual Scales to the DataIn general, conceptual scales do not depend on the actual data stored in the database, as for instance the scales \health" and \family" in the controlling example.Sometimes however, scales should adapt themselves automatically to the data.Therefore we allow parameters in the de�nition of conceptual scales whose valuesare determined only at runtime. The way of determining values may vary fromapplication to application. We shall discuss this by three examples.The �rst example is implemented in a commercial application where the userwants to analyze data for the last 23 workdays. (This is the maximal numberof workdays per month in Germany.) The result is displayed as a nominal scale.When the scale is invoked, then the data base is queried for the last 23 di�erententries in the \date" column. The answers are stored in variables #0, : : : , #22which are used for labeling all concepts of the nominal scale (except for the topand bottom elements), and for retrieving the corresponding objects from thedata base.The second example is similar to the previous example. Inter-ordinal scalesare typically used when a linear order (e. g., a price scale, a time scale) is dividedinto intervals with respect to their meaning. The boundaries of the intervals areusually �xed by a knowledge engineer. However, the range of possible attributevalues is not always known a priori. Hence, for a �rst glance at the data, it hasproved useful to query the data base for the minimal and the maximal valueand to split up this interval into intervals of equal length. Depending on theapplication, it might also be useful to �x the boundaries on certain statisticalmeasures, as for instance average, median, quantiles. These \self-adapting scales"reduce the e�ort needed to create the conceptual scheme, since they are re-usable.It is planned to implement a user interface by means of which the user canedit parameters at runtime. For instance, he could �rst invoke an inter-ordinalscale with equidistant boundaries and then �ne-tune it according to his needs.This user interface leads to the third example, an application in control the-ory: Process data of the incineration plant of Darmstadt were analyzed in orderto make the control system more e�cient (cf. [2]). Every ten seconds, di�erentprocess parameters were measured and stored in the data base, for instance \ramvelocity" and \steam".While \ram velocity" describes the feed amount of waste,\steam" describes the steam mass 
ow produced by the combustion. The ramvelocity does not in
uence the steam volume directly, but only with a time delayof about half an hour, in which the material passes through a drying process.



Hence the engineer had to compute a `shift' in the data base, assigning to eachtime stamp not the actual \steam" value, but the value of half an hour later.Instead of computing the shift in the actual process data base, it also can bedone by an inner join in the query generated by TOSCANA. When the `shifttime' is kept variable, the user can change it via the interface during the runtimeof TOSCANA. That can be used, for instance, for determining the time delay oftwo variables experimentally: The engineer examines the nested line diagram ofthe corresponding scales for ordinal dependencies. By varying the shift time, hetries to augment the dependencies, and to determine in this way the time delay.The possibility of using parameters is also of interest for �lters that controlthe data 
ow from the data base to TOSCANA. They are discussed in the nextsubsection.5.2 Filtering the Objects of the Many-valued ContextIn many applications, users are interested in analyzing only a speci�c subset ofobjects of the many-valued context. Usually such a subset is determined con-ceptually, being the extent (more rarely the contingent) of a concept of a suit-able combination of conceptual scales. TOSCANA provides for the possibility of\zooming" into that speci�c concept by mouse click. In the sequel of the analysisonly objects belonging to that concept are considered.Conceptual scales are an answer to the problem that often users are not ableto formulate a precise criterion as to how to restrict the set of objects. Conceptualscales provide di�erent concepts to zoom in on, and the user can choose the onethat best �ts his needs. A typical application is a retrieval system, where usersoften have only a vague idea about what they are looking for. However, if a precisecriterion is at hand, one wants to apply it directly without making the detourof using a conceptual scale. For instance, if one is interested in the withdrawalsfrom the bank account during the past quarter only, no explicit time scale isneeded.For such applications, the conceptual scheme should be extended by �lters.In addition to conceptual scales, the user can choose �lters from a menu. Whena �lter is activated, then objects are only considered for display if they passthe �lter. A �lter is realized as an SQL-fragment that is added by AND to theconditions provided by the chosen scales.The remarks about parameters in the previous subsection apply to �lters aswell. We give two typical examples for the use of parameters in �lters. The �rstexample is a conceptual knowledge system about pipelines (cf. [9]). The systemwas built in order to support an engineer by choosing suitable pipes, �ttings, andvalves for the construction of a pipeline. The desired functionality of the pipelinedetermines { among other parameters { pressure p and working temperature t.These parameters can for instance be imported from a CAD system, or areentered by the engineer. A condition for the pipes used in the construction isyI/II � p=�zul, where yI/II is a value depending on the measures of the pipe, and�zul is the maximal strain allowed in the wall of the tube. yI/II is stored in thedata base, and �zul depends on the temperature t and the material of the tube,



and can be read from a table. Hence the engineer can implement a �lter sortingout all components not satisfying the condition.The second example is again the controlling system of Sects. 2 and 3. Asdescribed above, we can construct a �lter that only accepts withdrawals e�ectedin a certain period, e. g., the last quarter. The interface for editing parametersintroduced in Sect. 5.1 provides the possibility of examining the withdrawals ofany period required. When the user activates the �lter, he is asked for start andend date.5.3 Focussing on Speci�c Aspects of the ObjectsThe controlling system is an example of focussing on di�erent aspects of thedata. There we focus not only on withdrawal numbers, but also on the sum ofbankbook values. Now we discuss how this example �ts into the formalizationdescribed in Sect. 4.Once the user has chosen one or more scales, TOSCANA determines for eachconcept of the corresponding concept lattice a set S of objects { in most casesits extent or its contingent. In Sect. 1 we mentioned that the user can choose foreach concept whether all names of the objects in S shall be displayed or only thecardinality of S. A third standard aspect in TOSCANA is the display of relativefrequencies. The last two aspects are examples of algebraic operations.The focussing in the example of Sects. 2 and 3 can be understood as beingcomposed of two actions: Firstly, instead of working on the set S, the sequence(m(g) 2 Wm)g2S is chosen. In the controlling example, this projection assignsto each withdrawal from S the corresponding book-value. Secondly, the sumP(m(S)) := Pg2S m(g) is computed (and displayed). The latter is done inthe relational structure assigned to the corresponding attribute. In TOSCANA,that is realized by a modi�cation of the way the SQL-queries are generated: thestandard COUNT-command used for the computation of the frequency of S isreplaced by a SUM-command operating on the column \value".Another important feature is to sort the list of displayed objects accordingto some attribute. This means that, for a speci�ed attribute m 2M , the objectsare ordered by a linear order which is given as binary relation in the relationalstructure Rm. We de�ne g1 � g2 i� m(g1) � m(g2). This ordering can be com-bined with the above described projection. For instance, instead of displaying thesum of book-values, the user might want to see the names of the correspondingshops, but ordered by decreasing book-value.Depending on the application, there may be other aspects to focus on. Ingeneral, this focussing can be realized by manipulating the SQL-queries. Theidea is to store them in the conceptual scheme, and to make them available forthe user in the same way that he already can switch between the display of theobjects and the display of their frequency: the focus can be chosen either globallyfor the displayed scale(s) by a pull-down menu, or locally for each concept by apop-up menu which appears by clicking on the concept.In general, focussing is independent from determining the extents or contin-gents. In practice, however, these two steps interact in order to increase per-



formance. For instance, if the user is interested only in frequencies, then theconcrete object names need not be retrieved from the data base.5.4 Highlighting Interesting ConceptsFocussing also can be understood in a di�erent setting. It also means drawingthe user's attention to those concepts where the frequency of objects (or the sumof book-values, etc.) is extraordinarily high (or low). The determination of theseconcepts is based on the frequency distribution of the nested line diagram. Thisdistribution can be represented { without its conceptual order { by a contingencytable with entry nij in cell (i; j) where i (j, resp.) is an object concept of the�rst (second) scale.As a re�nement of Pearson's Chi- Square calculations for contingency ta-bles we recommend calculating for each cell (i; j) the expected frequency eij :=(ninj)=n (\expected" means \expected under independence assumption") whereni ( nj, resp.) is the frequency of object concept i (j, resp.) and n is the totalnumber of all objects. To compare the distribution of the observed frequenciesnij and the expected frequencies eij, one should study the dependency doublematrix (nij; eij).Pearson's Chi-Square calculations reduce the dependency double matrix tothe famous �2 := Pij((nij � eij)2=eij). But the matrix also can be used as awhole in order to highlight interesting places in a nested line diagram:{ If the user wants to examine the dependency double matrix in detail, then hemay choose to display their entries at the corresponding concepts. Addition-ally, one of the matrices of di�erences nij � eij, quotients (nij � eij)=eij, orquotients nij=eij may be displayed in the same way. The conceptual struc-ture represented by the line diagram helps us to understand the dependencydouble matrix.{ If a less detailed view is required, then the calculation component can gener-ate graphical marks which indicate those concepts where the matrix entriesare above or below a given threshold. A typical condition in applications is"eij > k and nij=eij > p" where k and p are parameters which can be chosenon a suitable scale.The Chi-Square formula is a very rough reduction of the information aboutdependencies, but, clearly, the degree of reduction depends on the purpose of theinvestigation. If one is interested not only in having an index showing whetherthere is a dependency, but in understanding the dependencies between two many-valued attributes with respect to chosen scales in detail, then one should carefullystudy the distribution of observed and expected frequencies.6 OutlookThe connections between conceptual scales and relational structures should bestudied extensively. Therefore, practical relevant examples containing both parts



should be considered. Some examples are: optimization problems (shortest paths,
ow problems, minimal covering, minimizing electrical circuits), similarities anddistances connected with conceptual structures, valuations of states of a sys-tem, decision problems in conceptually complex situations, applications in logicsand fuzzy-logics, hierarchies with valuations, graphs with valuations, orders ofsubstructures (e. g., lattices of subgroups of a group), congruence relations.It is of particular interest to examine the compatibility of various conceptualscales and relational structures on the same set of attribute values. From a formalpoint of view both structures are of the same generality in the sense that eachconceptual scale can be described as a relational structure and vice versa. Butthey are used di�erently: conceptual scales generate overviews for knowledgelandscapes, while relational structures serve for computations.We plan to extend conceptual data systems to conceptual knowledge systemswhich comprise methods of knowledge acquisition and knowledge inference. Thatindicates the need for extending TOSCANA not only by a computational com-ponent, but also by a logical component. Since there are already many toolsfocussing on logical aspects of the data, we suggest not reinventing the wheel:similarly to the computational component, the logical component should pro-vide an interface so that most of the logical computations can be delegated. Oneshould especially consider combining conceptual data systems with systems fordescription logics and conceptual graphs.This paper discussed how computational components can support concep-tual data processing. One should also investigate how, vice-versa, results of dataanalysis and retrieval activities in conceptual data systems can be made acces-sible to other systems. This discussion may lead to hybrid knowledge systemscomposed of conceptual, computational and logical subsystems, each focussingon di�erent aspects of the knowledge landscape inherent in the data.References1. B. Ganter, R. Wille: Formale Begri�sanalyse: Mathematische Grundlagen. Sprin-ger, Heidelberg 19962. E. Kalix: Entwicklung von Regelungskonzepten f�ur thermische Abfallbehand-lungsanlagen. Diplomarbeit, TH Darmstadt 19973. W. Kollewe, C. Sander, R. Schmiede, R. Wille: TOSCANA als Instrument der bib-liothekarischen Sacherschlie�ung. In: H. Havekost, H.-J. W�atjen (eds.): Aufbau undErschlie�ung begri�icher Datenbanken. (BIS)-Verlag, Oldenburg 1995, 95{1144. W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA | ein Werkzeug zurbegri�ichen Analyse und Erkundung von Daten. In: R. Wille, M. Zickwol�(eds.): Begri�iche Wissensverarbeitung | Grundfragen und Aufgaben. B. I.{Wissenschaftsverlag, Mannheim 19945. P. Luksch, R. Wille: A mathematical model for conceptual knowledge systems. In:H.-H. Bock, P. Ihm (eds.): Classi�cation, data analysis and knowledge organiza-tion. Springer, Berlin 1991, 156{1626. S. Prediger: Logical scaling in formal concept analysis, Proceedings of the inter-national conference on conceptual structures. LNAI, Springer, Heidelberg 1997 (toappear)
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