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Summary: The development of conceptual knowledge systems specifically re-
quests knowledge acquisition tools within the framework of formal concept analy-
sis. In this paper, the existing tools are presented, and further developments are
discussed.

1 Introduction

In the last years conceptual data systems have been established as tools in
data analysis (cf. Vogt and Wille (1995)). Based on the mathematical theory
of formal concept analysis (cf. Wille (1982), Ganter and Wille (1995)), they
allow to browse through the data and to explore interactively their concep-
tual structure. Although conceptual data systems are already used within
a broad field of applications, they have to be extended in order to make
them more flexible. The extension of conceptual data systems to conceptual
knowledge systems specifically includes the treatment of incomplete data
and updates as well as techniques for knowledge inference and knowledge
acquisition.

In this paper we focus on techniques for knowledge acquisition. As they
are used for exploring incompletely known contexts we refer to them as
exploration tools. Specifically, we discuss Attribute Faploration, Object Fa-
ploration, Concept Frploration and Distributive Concept Fxploration. The
problem of efficient knowledge acquisition appears quite natural in formal
concept analysis, and so the work on these tools began soon after the intro-
duction of formal concept analysis by Wille (1980). Already in Wille (1982)
the idea of Concept Exploration is discussed.

All exploration tools presented in this paper are interactive procedures.
This means that knowledge is not “learned automatically” by the machine,
but has to be asked from an expert of the domain. This means that, con-
cerning complexity, we are not interested in minimizing the calculation that
has to be done. What is more important is to minimize the number and
complexity of questions the expert has to be asked.

Formal concept analysis is a set-theoretical model for concepts that re-
flects the philosophical understanding of a concept as a unit of thoughts



consisting of two parts: the extent which contains all objects that belong to
the concept, and the intent which contains all attributes common to all the
objects (cf. Wagner (1973)). The basic notion which models the knowledge
about a specific domain is the (one-valued) formal context. A formal context
consists of a set of objects, a set of attributes, and a relation that indicates
whether an object has an attribute or not. The formal concepls can be
derived from this context as described below. There is a natural order on
the formal concepts that reflects the subconcept-superconcept-relation. The
adjective “formal” indicates that we do not talk about concepts of the real
world, but only about their counterparts in our model.

In many applications the notion of one-valued contexts is too rigid to
model the data adequately. Conceptual knowledge systems are often based
on many-valued contexts, in which the objects may have different values for
an attribute. However the exploration tools described in this paper apply
only to one-valued contexts; exploration tools for many-valued contexts have
still to be developed. Later in this paper we briefly discuss the conception
of Secale Kxploration for exploring dependencies in many-valued contexts.

We give now the mathematical definitions of (one-valued) contexts and
concepts: A (formal) context (G, M, T) consists of two sets G and M and a
relation [ between them. The elements of G and M are called objects resp.
attributes, and (g,m) € I (or gIm) is read as “the object g has the attribute
m”.

For every set of objects A C (7 we define the set A’ := {meM|gim
for all ¢ € A} of all attributes shared by all objects in A. Dually the set
B’ :={geG|glm for all m € B} is the set of all objects having all attributes
in BC M.

A (formal) concept of the context (G, M, T)is a pair (A, B) with A C G,
BC M, A = B,and B’ = A. The set A is called the extent of the concept,
the set B the intent. The hierarchical subconcept-superconcept-relation is
formalized by (Ay, By) < (Aq, By) :<= A1 C Ay( <= By O B,) .

The set of all concepts of a context (G, M, T) together with this order
relation is a complete lattice which is called the concept lattice of (G, M, T)
(cf. Wille (1982)). This means that for every set of concepts there exist a
unique largest subconcept (the infimum) and a unique smallest superconcept
(the supremum).

The following example shows how the line diagram of a concept lattice
unfolds the information contained in the underlying data context.

Frample. The context in Fig. 1 classifies some pure chemical substances
(cf. Mortimer (1983)). The objects in this example are the substances CI, He,
NaCl, HyO, HCI, and NaOH, and the attributes are “compound”, “element”,
“(Bronsted-) acid”, “(Bronsted-) base”, “salt”, “inert gas”, and “halogen”.
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Figure 1: Context and concept lattice of pure chemical substances

The small circles in the line diagram of the concept lattice stand for the
concepts. A circle labeled by an object g represents the concept with the
smallest extent containing ¢g. A circle labeled with an attribute m represents
the concept with the smallest intent containing m. In general, the circle of
a concept is linked by a descending path to all the circles that are labeled
by objects belonging to the extent of the concept, and by an ascending path
to all circles that are labeled by attributes belonging to the intent of the
concept. For example, the leftmost concept in the diagram has the objects
NaOH and H,0 in its extent and the attributes “base” and “compound” in
its intent. The whole information given by the context can though be read
from the line diagram of its concept lattice: An object ¢ has an attribute m
if and only if there is an ascending path from ¢ to m in the line diagram.

2 Exploration Tools

If a context is completely given, then there is no problem to calculate the
concept lattice (cf. Ganter (1987), Burmeister (1987)). In many applica-
tions however we either do not have the complete knowledge of the domain
in which we are interested or the context is too large to be completely given.
As a context consists of the three components (z, M and I, there are mainly
the following possibilities of incomplete contexts (Wille (1980)):

1. The sets G and M are completely given, but not the relation [.
2. (G is incomplete, M is complete.

3. G is complete, M is incomplete.

4. Neither ¢ nor M are completely given.

In the first case, there is no exploration tool available up to now. Such a
tool depends on the way how the knowledge asked from the expert is repre-
sented (e. g. implications, constraints, ... ). In order to get an efficient tool,
dependencies between single entries in the relation I have to be considered,
so that every answer in the interactive exploration dialogue determines more
than one entry.



In the second case we are not interested in completing the whole set
it 1s sufficient to obtain information on “typical objects” which generate the
whole concept lattice. Attribute Frploration suggests implications between
the attributes to the expert. FEvery rejection of an implication has to be
justified with a “typical object” as a counterexample.

The third case is dual to the second one. As all definitions in formal
concept analysis are (at least up to now) dually symmetric in G and M,
we can just interchange them and then apply Attribute Exploration. So we
obtain the Object Fxploration, in which implications between the objects
are suggested to the expert, who in case of rejection has to give a
“typical attribute” that separates the objects in premise and conclusion.
Both attribute and object exploration are discussed in the next section,
where also Rule Fxploration as an extension of Attribute Exploration to
horn clauses in first order predicate logic is described.

The fourth case (where neither G nor M are completely known) is more
difficult to treat, as we do not have an obvious start as in cases 2 and 3.
Concept Frploration starts from some “basic concepts” that are assumed to
be concepts of the (unknown) context. The expert has to answer questions of
the form: “Is s a subconcept of 177, where s and t are lattice terms built with
the basic concepts. Negative answers have to be answered by an object and
an attribute that separate the concepts. The result is the largest lattice that
can be generated by the basic concepts with respect to the given answers.
Principal and technical difficulties suggested an alternative approach named
Distributive Concept Exploration. These two exploration tools are described
in Section 4.

3 Attribute Exploration, Object Exploration
and Rule Exploration

Attribute Frploration can be used to determine the concept lattice of a con-
text, where the set (¢ of objects is either not completely known or too large
to be listed completely (G may even be infinite). The implementation in
Burmeister (1987) is based on the Next-Closure-Algorithm of B. Ganter
(1987) which calculates a minimal set of implications, from which all other
implications can be derived (Duquenne and Guigues (1986)). The program
starts by asking for the attributes (and eventually some objects) of the con-
text. Then it suggests implications between the attributes to the expert.
Either the expert accepts an implication or he gives another object that
has all attributes in the premise of the implication, but not all attributes in
its conclusion. These objects are enough to determine the structure of the
concept lattice. The implications that are valid for these separating objects
are exactly those which are valid for all objects in the explored universe.
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P. Burmeister (1991) discusses how incomplete knowledge can be han-
dled by the algorithm and gives two examples. In Stumme (1995b) is dis-
cussed how the calculation of a minimal set of implications can be done with
respect to background implications which represent previously given know-
ledge. There is also an example of an exploration given, where exceptions
are allowed. Other examples of Attribute Explorations are given in Ganter
(1987), Ganter and Zickwolff (1994). A larger exploration is e. g. done hy
S. Reeg and W. Wei} (1990), who determined the dependencies between
50 attributes of finite lattices with Attribute Exploration. The context in
Fig. 1 results from an Attribute Exploration that started with the attributes
“compound”, “element”, ..., “halogen”. Here we obtain for example the im-
plication “base” —“compound”, which in fact is valid for all pure chemical
substances.

Rule Exploration is a generalization of Attribute FExploration by M. Zick-
wolff that is able to treat relations between the objects of the field of interest
(7Zickwolff (1991), Ganter and Zickwolff (1994)). The attributes of the explo-
ration context are positive literals of a first order language, and the objects
added by the expert during the exploration are variable assignments to the
objects of the field of interest. The application of Attribute Exploration to
this specific context is called Rule Exploration. The resulting implications
are then Horn clauses of the first order language describing the dependencies
between the relations on the objects of the field of interest.

Object Fxploration is used, when all objects of the context are given, but
not all attributes. It determines “typical attributes” that distinguish the
objects. This “structured brainstorming” (Wille) uses the same algorithm
as Attribute Exploration, only objects and attributes interchange their roles.

Object Exploration can for example be used for determining key words
for books. This has been done in a research project concerning literature of
interdisciplinary technology research at the Technische Hochschule Darm-
stadt. The exploration started with 20 books, for which distinguishing at-
tributes were determined. The following is part of the exploration dialogue:

“Is Mayer-Abich — 17 valid?”

“No! Mayer-Abich is about “Philosophie”, 17 is not.”

“Is Meyer-Abich, Zwick — Bohme, Buhl, 17, Kepplinger, Luthe
valid?”

“No! Meyer-Abich, Zwick, Bohme, 17, and Kepplinger are about
“Verantwortungsethik”, Buhl and Luthe are not.”

“Is Meyer-Abich, Zwick — Bohme, 17, Kepplinger valid?”
“Yes!”

]



An implication A — B is valid if every attribute that is common to all books
in A is also common to all books in B. E. g. the last answer expresses that
the experts did not find any attribute common to the two books written by
Meyer-Abich resp. Zwick, which is not common to all three books of Bohme,
17, vesp. Kepplinger.

This example already shows that an exploration may request some effort
even for a small number of objects. On the other hand one is often only
interested in attributes which distinguish the objects on a rather coarse
level at least for the generation of keywords for a library. In this case
one could do an “Object FExploration with exceptions”, where implications
may be accepted, even if there are contradicting attributes (cf. Stumme
(1995h)). Tt is also promising to generalize Attribute Exploration (resp.
Object Exploration) for partial implications (i. e. implications that are only
valid for a certain percentage of objects, Luxenburger (1993)).

4 Concept Exploration and Distributive Con-
cept Exploration

In the last section Attribute and Object Exploration were discussed. These
knowledge acquisition tools can only be applied if either the set of attributes
or the set of objects is completely given. But what can we do if both sets
are only partially given?

P. Burmeister suggested to start with an attribute exploration with the
given attributes, which extends the set of objects. A succeeding Object Ex-
ploration on these objects extends the set of attributes. Both tools are
applied alternately until no more objects and attributes are added. Although
it it is a natural approach, there are no experimental results so far.

Another approach is the Concept Frploration. 1t is based on the obser-
vation that “in many situations one has only a vague knowledge of a context
although many of its concepts are fairly clear” (Wille (1982)). Concept
FExploration starts with these “fairly clear concepts” (called basic concepts)
and follows the free generating process of lattices. It produces new concepts
by taking greatest common subconcepts and least common superconcept.
The questions that have to be answered are essentially of the form: “Is s
a subconcept of 177, where s and ¢ are lattice terms built with the basic
concepts. Different concepts are separated by an object and an attribute
given by the expert. This conception is already mentioned in Wille (1982).
It is elaborated in Wille (1987) and Wille (1989a), were also examples can be
found. U. Klotz and A. Mann (1988) further elaborated and implemented
the method.



There are some principal problems in using Concept Exploration, which
led to the development of another tool named Distributive Concept Frplo-
ration: Concept Exploration assumes that the exploration takes place in a

potentially given context (which is sometimes called conceptual uni-
verse to emphazise that the exploration is restricted to this context). One
has to be sure that the basic concepts are really concepts of the conceptual
universe before starting the exploration. As the example of a concept explo-
ration in number-theory in Wille (1987) shows, this is not always obvious.
Another problem is the interpretation of suprema in the resulting concept
lattice. It depends on the set of attributes that is assigned to the conceptual
universe. In the number-theory exploration this set is well specified, but in
non-mathematical examples often “all possible attributes of the objects” are
allowed. The suprema vary depending on how restrictive this “definition”
is understood. The interpretation of infima on the other hand is generally
no problem, as it depends on the set of objects of the conceptual universe,
which is usually already circumscribed by the name of the exploration (e. g.
“an exploration of pure chemical substances” in the following example).

Another problem is the fact that it is (at least theoretically) possible
that a concept exploration does not end.! For usual applications however
(where the basic concepts are sufficiently related) this does not seem to be
a serious problem.

These difficulties led to the development of distributive concept explo-
ration (cf. Stumme (1995a)). Here we understand the conceptual universe
in a more liberal way: The decision whether an object or attribute belongs
to the universe or not is left to the expert. He is responsible for choosing
appropriate objects and attributes. The questions appearing in the dialogue
again are essentially of the form: “Is s a subconcept of 177 with lattice terms
s and t; and if a question is denied, then again an object and an attribute
have to be given which separate the two concepts.

All we assume about the universe is that its attributes are closed under
disjunction. The infimum of concepts corresponds to the conjunction of the
attributes in their intents  and therefore it is natural to let the supremum
correspond to the disjunction of the attributes. Then an object belongs to
the supremum of some concepts, if and only if it belongs to at least one of
them (as it belongs to their infimum, if and only if it belongs to all of them).

This definition implies that the resulting concept lattices are always
completely distributive, and we can benefit from the richer mathematical
structure of completely distributive complete lattices (instead of arbitrary
(complete) lattices). Specifically we use tensor products and congruence re-

"The lattice FL.(3) that is freely generated by three elements is infinite, and so a concept
exploration in the conceptual universe (FL(3),FT.(3),<) with the three generators as basic
concepts cannot end.



lations on completely distributive complete lattices, which can efficiently be
described by operations on contexts. This allows a more efficient determi-
nation of the questions for the exploration dialogue.

Another advantage is the fact that the bottom element of the concept
lattice can now (as supremum of the empty set) be identified with the con-
cept “nothing”, while in the general case only the top element (as infimum of
the empty set) represents the concept “everything (in our field of interest)”.
The following example shows how the existence of the concept “nothing”
supports the interpretation of the result.

Distributive concept exploration subsequently adds the basic concepts.
When the concept lattice generated by the first n basic concepts is deter-
mined, the (n+1)th basic concept is added. Then the relationships of the
already given objects and attributes to the new basic concept are asked from
the expert, before he has to answer to questions of the form “Is s a subcon-
cept of 177, where s and 1 are lattice terms built with the basic concepts. If
the expert replies “No!”, then he has to justify his answer by a separating
pair, i. e. an object g belonging to s an an attribute m belonging to f, such
that ¢ does not have the attribute m.

Frample. The concept lattice in Fig. 1 is the result of an Attribute Fxplo-
ration. If we are interested in more details about pure chemical substances,
then we can perform a Distributive Concept Exploration instead now
with “compound”, “element”, “acid”, “base”, “inert gas”, and “halogen”
as basic concepts. Here is that part of the dialogue which determines the
concept lattice generated by the first four basic concepts, when the concept
lattice generated by the first three basic concepts “compound”, “element”,
and “acid” is already calculated:

“Is Hy0O a base?”

Lﬁqu’”

“Is NaOH a base?”

Lﬁqu’”

“Is He a base?”

LLNO’”

“Has every base the attribute ‘consists of two or more elements’?”
Lﬁqu’”

“Is the infimum of ‘element’ and ‘base’ a subconcept of the supre-
mum of ‘compound’ and ‘acid’?”

“No! A separating pair is HCI and ‘cannot be split further in
substances or can receive protons’.”

“Is ‘compound’ a subconcept of the supremum of ‘element’, ‘acid’
and ‘base’?”

“No! A separating pair is NaCl and ‘cannot be split in further
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substances or can exchange protons’.”

The concept lattice generated by all seven basic concepts is shown in
Fig. 2. Tt is drawn as a nested line diagram (Wille (1989h)), in which the 55
small circles represent the concepts. Fvery thick line between two ellipses
has to be replaced by five lines between the corresponding concepts. The
separating pairs are indicated by similar symbols (e. g. NaCl and ‘cannot be
split in further substances or can exchange protons’, which is a separating
pair for “salt” (with symbol &) and the supremum of “base”, “acid”, and
“halogen” (with symbol (9)).

The concept lattice resulting from Attribute Exploration is infimum-
embedded in this lattice. Additionally we obtain concepts which can only
be reached from the basic concepts by taking suprema. In general there may
also be an additional top and a bottom element.

We can now see in the diagram that there exists no “base” that is also a
“salt” (because the infimum of these two concepts is the concept “nothing”)

unlike in the concept lattice resulting from Attribute Exploration, where
it is possible that the lowest concept has a non-empty extent. We can also
see, if some concepts cover a common superconcept or not: For example,
there are other compounds than bases, acids, and salts (e. g. CO3), because
the supremum of “base”, “acid”, and “salt” is unequal to “everything”.

From the fact that the supremum of “compound” and “element” is the
top element (the concept “everything”) and the infimum is the bottom el-
ement (the concept “nothing”) of the lattice, we can deduce that the pure
chemical substances can be divided in two disjunctive classes “compound”
and “element”. The whole lattice is thus the direct product of the five-
element concept lattice which is generated by the concept “element” and
its subconcepts “inert gas” and “halogen” (with “everything”:=“element”)
and the eleven-element concept lattice which is generated by the concept
“compound” and its subconcepts “base”, “acid”, and “salt” (with “every-
thing”:=“compound”). These two concept lattices are shown in Fig. 3.

The concept lattices resulting from Distributive Concept Explorations
are often “blown up at the top”, e. g. the basic concepts are usually placed
in the lower half of the lattice. This results from the fact that all possible
unions of concept extents are built. The advantage is that one can see if
a concept is covered by some of its subconcepts or not. However a lot of
concepts may be generated, which are not really interesting. In this case
one should consider to split up the exploration in two or more explorations
on suitable subsets of basic concepts as, e. g., in Fig. 3.

In the existing examples of Concept Fxplorations, where the set of at-
tributes is only vaguely fixed (“all possible attributes of the objects”), the
results are mainly the same when distributive concept exploration is applied.
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Figure 2: Result of the distributive concept exploration of pure chemical
substances
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Figure 3: Results of three partial Distributive Concept Explorations of pure
chemical substances

In both cases the use of attributes that are built with disjunctions can be
observed. We conclude that if there is no canonical set of attributes, Dis-
tributive Concept Exploration may be preferred, because the interpretation
of suprema is assured and the dialogue is less complex. If there is a canonical
set, of attributes, and it is assured that the basic concepts are concepts of the
conceptual universe, then the general Concept Exploration may yield useful
results.

5 Outlook

The exploration tools described in this paper have two major restrictions:
They are not able to treat negations and  what is more important for the
development of conceptual knowledge systems they are limited to one-
valued contexts. There are two exploration tools in development which by-
pass these restrictions, Boolean Concept Faploration and Scale Exploration.

Boolean Concept Exploration includes negated concepts and works simi-
lar as Distributive Concept Exploration. It also starts with basic concepts,
but it determines the Boolean lattice that is freely generated by them with
respect to the answers given by the user. The implementation of the algo-
rithm should not be too difficult, because the contexts of Boolean concept
lattices have a very clear structure. The complexity is probably very similar
to the one of distributive concept exploration theoretically the resulting
lattices can grow super-exponentially, but in real applications (where the
basic concepts are sufficiently related) there should be no problem.

Scale FExploration determines dependencies between the attributes of a
many-valued context. Secales are used to interpret the data given by the
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context. Usually there is one scale for every many-valued attribute. A scale
is a one-valued context whose objects are the values of the many-valued
attribute. Its attributes determine how the values are interpreted.

Scales can be combined to larger scales. The most natural combination is
done by the semi-product?. Tt produces the scale that respects all dependen-
cies in the single scales, but no dependencies between them. The latter ones
have then to be asked from an expert in an efficient way. This approach is
analogous to Distributive Concept Exploration, where we also first calculate
the lattice that respects all dependencies between the first n basic concepts,
but no dependencies between them and the (n—l—])th one. The latter ones
are again determined by the answers of the expert.

For the concept lattices of the scales the exploration basically corresponds
to calculating their direct product on which then a (meet-semilattice) con-
gruence relation is determined. In this view Attribute Exploration is just a
special case of Scale Exploration.

Exploration tools in formal concept analysis are able to treat incomplete
knowledge and they yield criteria for the completeness of the acquired knowl-
edge. The fact that explorations of a larger domain request some effort from
the experts indicates the complexity of the explored domain. Often however
complete knowledge about all dependencies in the domain is not required.
It would be sufficient to obtain complete knowledge only about parts of the
domain. Therefore it is interesting to extend the exploration tools such that
they support the splitting of the exploration in suitable parts, as we did
for the chemical substance exploration in Fig. 3. The possibility of combin-
ing different tools (both from inside and outside of formal concept analysis)
should also be supported.
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