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Summary: Implications between attributes can represent knowledge about ob-
jects in a specified context. This knowledge representation is especially useful
when it is not possible to list all specified objects. Attribute exploration is a tool
of formal concept analysis that supports the acquisition of this knowledge. For a
specified context this interactive procedure determines a minimal list of valid im-
plications between attributes of this context together with a list of objects which
are counterexamples for all implications not valid in the context. This paper de-
scribes how the exploration can be modified such that it determines a minimal
set of implications that fills the gap between previously given implications (called
background implications) and all valid implications. The list of implications can
be simplified further if exceptions are allowed for the implications.

1. Introduction

Implications between attributes can represent knowledge about objects in a
specified context. This knowledge representation is especially useful when it
is not possible to list all specified objects. Attribute exploration (cf. Ganter
(1987), Wille (1989)) is a tool of formal concept analysis that supports the
acquisition of this knowledge. Formal concept analysis was introduced in
Wille (1982) and has grown during the last fifteen years to an useful tool in
data analysis.

For a specified context the interactive procedure of attribute exploration
determines a minimal list of implications that is sufficient to deduce all valid
implications between the attributes of the context together with a list of
objects which are counterexamples for the implications that are not valid in
the context. As an interactive procedure, the program suggests implications
to the user which do not contradict to already given counterexamples. The
user can either accept a suggested implication or he must supply a new
object as a counterexample.

Usually, the user does not start such an exploration from scratch, but he
has already some idea how the attributes are related. Before starting the
exploration he can enter a list of objects which may significantly decrease
the number of remaining possible implications.

Another possibility is to enter some already known implications before start-
ing the exploration. These implications, the user already knows to be valid,



are here called background implications. This paper describes a general-
ization of attribute exploration, that it is able to determine a minimal list
of implications which together with the background implications is
sufficient to deduce all valid implications.

In P. Burmeisters implementation (1987), it is also possible to enter back-
ground implications. This program however determines a minimal set of
implications regardless of the background implications. They are only
used to decrease the number of questions to the user. The resulting list in
this program does not depend in any way on the background implications
one starts with. In the approach presented in this paper the background
implications are used to minimize only the number of additionally needed
implications. This is based on the belief that it is not always the best to
describe a context by a minimal number of implications. There may be more
implications if some of them are obvious.

In the next section the basic definitions of formal concept analysis are re-
called and explained by an example, before implications in contexts and
the notions of completeness and irredundancy are introduced. In the third
section the interactive procedure of attribute exploration with background
implications is described. 1t is illuminated by an example in the last section,
where we also discuss, how the admission of exceptions can further simplify
the result of the exploration.

2. Implications of Contexts and the £-Duquenne-
Guigues-basis

First we briefly recall the basic definitions of formal concept analysis (cf.

Ganter and Wille (1995)) and give an example.

Definition: We call (G, M, 1) a context, where G and M are sets and [ is
a relation between G and M (i. e. I C G x M). The elements of G and M
are called objects and attributes, respectively, and glm (<= (g,m) € ) is
read: “the object g has the attribute m”.

For every set A C (7 of objects we define the set A’ := {m € M | gIm
for all ¢ € A} of all attributes shared by all objects in A. Dually the set
B = {g € G| glm for all m € B} is the set of all objects having all
attributes in B C M.

Now a concept of the context (G, M, T)is a pair (A, B) with A C G, B C M,
A" = B, and B’ = A. The set A is called the extent of the concept, the set
B the intent. The hierarchical subconcept-superconcept-relation is given by
(A1, B1) < (Ag, By) :<= Ay C Ay( < By 2 B3). The set of all concepts
of a context (G, M, I) together with this order relation is a complete lattice
which is called the concept lattice of (G, M, T) and is denoted by B(G, M, T).

Infimum and supremum in the concept lattice are calculated as follows:

/\Ath:ﬂAhUBfua \/Ath: UA”ﬂBf

teT teT teT teT teT teT



The following example shows how the concept lattice unfolds the conceptual
relationships contained in the underlying data context: We consider the for-
mal context shown in Fig. 1. Tts objects are the graphs G up to G5z and
its attributes are ten attributes of undirected graphs (cf. Wilson (1975)):
connected, disconnected, bipartite, complete, complete bipartite, tree, forest,
planar, Fulerian, Hamiltonian. This context (together with a list of impli-
cations) is the result of the attribute exploration that is described in the
third section.

It is sufficient to label the line diagram not with the complete concepts, but
only with the attributes and objects: For every object g, its object concept
v(g), which is defined as the concept with the smallest extent containing
g, is labeled with “¢”. Dually, for every attribute m its attribute concept
p(m), which is defined as the concept with the smallest intent containing
m, is labeled with “m”. Then the extent and intent of every concept can
be determined in the diagram: A concept contains all those objects in its
extent which are linked to it by a descending path and it contains all those
attributes in its intent that are linked to it by an ascending path. The
rightmost concept in Fig. 2 for example has the graphs (3, G4 and (G5 in
its extent and the attributes connected, complete, Fulerian, and Hamiltonian
in its intent.

In the diagram one can see two cubes at the top: one is spanned by u(discon-
nected), u(planar) and p(bipartite), and the other by u(connected), p(planar)
and p(bipartite). This indicates that in both cases the three involved at-
tributes are independent.

The dominating part in the lattice lies between p(connected) and y(Gq3). 1t
is the direct product of a 6-element “ladder” with a 4-element “rectangle”,
but it can also be seen as 4-dimensional hypercubes that are glued together
at eight vertices. The upper one lies between p(connected) and y(G15) and
is spanned by p(planar)Ap(connected), p(bipartite)Ap(connected), p( Fule-
rian), and u( Hamiltonian). This shows that, for connected graphs, the four
attributes planar, bipartite, Fulerian, and Hamiltonian are independent.

In the lower hypercube (between u(bipartite)Ap(connected)) and v(G13) one
point is missing it is marked in the diagram with a little dot left of v((Gy5).
This indicates that every complete bipartite Hamiltonian planar graph is also
Fulerian. In fact there exist (up to isomorphism) only two such graphs, Gi3

a,nd G]g.

Definition: An implication between attributes in M is a pair (X,Y) of
subsets X and Y of M. Tt is denoted by X — Y and is read “X implies
Y7. A subset T of M respects the implication if X € T or Y C T. The set
T respects a set L of implications if it respects every implication in L. An
implication X — Y s valid in a context K if it is respected by every object
intent. The implication is then called an implication of the context K. An
implication X — Y is entailed by a set L of implications if every subset of
M that respects £ also respects X — V.
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Figure 1: Context of graphs

Lemma 1 An implication X — Y is valid in a context K if and only if
Y C X”. Then it is also respected by every concept intent of K.

The structure of a concept lattice is already described by all implications
between the attributes of the context, because the set of all intents is exactly
the largest closure system on M that respects all these implications. The im-
plications can equivalently be understood as equalities in the A-semilattice
B(K): In our example {complete, Fulerian} — {Hamiltonian} is an im-
plication of the context, which corresponds to the equality p(complete) A
pw(Fulerian) = u(complete) A p( Fulerian) A p( Hamiltonian) in the concept
lattice.



Figure 2: Concept lattice of the context in Fig. 1

Some of these implications may be known in advance, and in this paper
they will be referred to as background implications. In a formal sense every
implication of a context can be a background implication. The question is
now how to describe the structure of the concept lattice with implications
in the most efficient way when background implications are given. We are
looking for a minimal list that is “filling the gap” between the background
implications and all valid implications.

Definition: Let K be a finite context and L a set of (background) impli-
cations of K. A set B of implications of K is called L-complete, if every
implication of K is entailed by £ U B. 1t is called L-irredundant if no im-
plication A — B € B is entailed by (B\ {A — B})U L. A L-basis is a
L-complete and L-irredundant set of implications of K. If £ is empty then
B is called complete, irredundant, and a basis, respectively. A subset P of
M is called pseudo-intent of K if P £ P” and if for every pseudo-intent @
with Q C P the inclusion Q” C P holds.



J.-I.. Guigues and V. Duquenne (1986) show that B := {P—=P"|P is a
pseudointent} is a basis of (G, M, T) if M is finite. This basis is called
Dugquenne-Guigues-basis. We obtain a L-basis by generalizing this defini-
tion.

Without further mentioning, all sets of attributes considered in the following
will be finite.

Definition: The closure operator on the set M of attributes induced by the
background implications is denoted by P — P := PU P U P*“U... with
X = XUU{BCM|ACX, A— BecCL}

A subset P of M is called L-pseudo-intent of K if P = P # P" and if,
for every L-pseudo-intent @) with @ C P, the inclusion Q" C P holds.
The set By := {P — P”|P is a L-pseudo-intent} of implications is called
L-Duquenne-Guigues-basis.

Theorem 2 B, is a L-basis of K.

Proof. Obviously, all implications in B, are implications of K. We prove
that B, is L-complete by showing that every subset 7' C M respecting all
implicationsin LUB. is an intent: As T — T is entailed by £ we have T' =T
Furthermore T respects () — Q) for every L-pseudo-intent ) C T'. Suppose
T # T". Then T is a L-pseudo-intent by definition and so T"' — T" € By.

This is a contradiction because T' does not respect this implication.

Let P — P” € B;. We show that P — P” is not entailed by (B \
{P = P"})U L because P respects all implicationsin (B, \{P — P"})UL
(and prove so that B, is L-irredundant): As P = P, it clearly respects all
implications in L. For Q — Q" € B\ {P — P"} with Q C P we have
Q" C P, as P is a L-pseudo-intent. Hence P respects also Q — )”. O

One may ask if it is possible to get the L-pseudo-intents by just closing the
pseudo-intents with — and then deleting the (trivial) implications of the form
A—A. The context in Fig. 3 shows that in general this is not the case. The
Duquenne-Guigues-basis is B = {ed—abed, b—ab, ad—abed, ac—abed}. For
the background implication £ := {cd—a} we get the L-Duquenne-Guigues-
basis By = {b—ab, ad—abed, ac—abed} while {P—P"|P is pseudo-intent
with P # P"} additionally contains acd—abed. Tn general the resulting set
is not L-irredundant.

3. Attribute Exploration with Background Implications

B. Ganter (1987) presents attribute exploration as an interactive knowledge
acquisition tool that can be used to determine the Duquenne-Guigues-basis
of a context that is either too large for a complete input into the computer
or that is even not completely known. 1t is based on his Next-Closure-
Algorithm that efficiently calculates closure systems.
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Figure 3:

The Attribute Exploration procedure can be modified such that it can be
used to determine interactively the £-Duquenne-Guigues-basis for a given
set. £ of background implications. Therefore we proceed similar to Ganter
(1987). First we show that the set of all intents and L-pseudo-intents is a
closure system on the set M of all attributes:

Lemma 3 Let (G, M, 1) be a context, let L be a sel of implications of
(G, M, 1), and let P and @Q be intents or L-pseudo-intents with P € ()
and Q € P. Then PN Q is an intent.

Proof. P as () and therefore also P N () respect all implications in L U B,
except P — P” and Q — Q". Because of P Z PN Q and Q@ € PN Q the

set. P N @ respects these implications, too. Hence it must be an intent. [

(G, M, 1) is a closure system on M ; with the closure operator X — X*® :=
XUX°UX®U..., where X :=XUU{BCMA—-BeB,,AC X}.

Next we introduce the lectical order on the set of subsets of M. For the sake
of simplicity we assume that M :={1,... ., n}.

Definition: The lectical order on (M) is defined by

A<B:<—= (Fie B\A:An{l,....i.—1} = Bn{l,...;i —1}) for
A BC M.

For A, B C M and 7 € M we define

A<, B:<= (GeB\Aand An{l,....0—1}=Bn{l,....i —1})

and A@o:=((ANn{l,...;0—1Hn{i})*.

The Next-Closure-algorithm of B. Ganter (1987) lists all closed sets of a

closure system on a finite set in the lectical order. In the next theorem it is
applied to the closure system of all intents and all L-pseudo-intents:

Theorem 5 The lectically first intent or L-pseudo-intent is (. For a given
subset B C M the lectically next intent or L-pseudo-intent is the set B @1,
where 1 is the mazimal element in M\ B with B <; B & 1. The lectically
last intent or L-pseudo-intent is M.



This theorem provides the central part of the Attribute Faploration with
background implications, which we describe now: We want to determine
the £-Duquenne-Guigues-basis of a context (G, M, T) (which is a priori not
completely given) for a set £ of background implications of the context.
The algorithm starts with a partial context (H, M, I N (H x M) for a subset
H C (7 of objects. The set H may also be empty.

Algorithm. Set k:=1 and B := (.

(1) Determine the kth L-pseudo-intent Py of (H, M, I N (H x M) by ap-
plying Theorem 5. If M is reached (as intent) then STOP. B is then
the L-Duquenne-Guigues-basis.

(2) Ask the user: “Is the implication P, — P/ valid?”

— If the answer is “Yes”, then add P, — P/ to B and increase k.

— If the answer is “No”, then ask for an object ¢ that does not
respect this implication. The row {g}’ then also has to be entered

by the user. Add ¢ to H.
(3) Go to step (1).

The algorithm is correct because the lectically first L-pseudo-intents do not
change when an object is added that respects all previously accepted impli-
cations and all background implications:

Theorem 6 let (H, M,.J) be a finite context and let Py,..., Py be the k
lectically first L-pseudo-intents of (H, M, .J). Let (G, M, T) be a finite context
with H C G and J = TN(H x M), in which all the implications in LU{P; —
P =1,...,k} are valid. Then Py,..., P, are also the k lectically first
L-pseudo-intents of (G, M, T).

Proof. For i = 1,...,k we have P/ = P’/ because for every g € (7 the set
{g}' respects all P; — P/’ As every L-pseudo-intent Q C P; of (H, M,.J)
is lectically less than P;, the assertion is a consequence of the definition of
L-pseudo-intent. |

4. An Exploration of Graphs

In this section we see how the context in Fig. 1 is produced. We start with the
set M := {connected (conn), disconnected (disc), bipartite (bip), complete
(comp), complete bipartite (chip), tree (tree), forest (for), planar (plan),
Fulerian (eul), Hamiltonian (ham)} of attributes and want to know which
implications between these attributes are valid for all undirected graphs.
As the class (¢ of undirected graphs contains infinitely many isomorphism
classes, there is no possibility to determine the Duquenne-Guigues-basis for



the infinite context (G, M, I) directly. One has to work with some “typical”
graphs. The graphs the user gives as counterexamples during the attribute
exploration are just these typical graphs.

When we look at the list of attributes then we see that connected and discon-
nected are contradicting each other (i.e., no graph can have both attributes).
Furthermore we know that a free is just defined as a connected forest and
that a complete bipartite graph is always bipartite. This justifies the follow-
ing background implications:

{conn, disc} M
{tree} {conn, for}

—
—

{conn, for} — {iree}
—

{cbip} {bip}

We do not have any objects at the beginning, so the exploration starts with
an empty set H. In the following the attributes appearing in the premise of
an implication will not be listed in the conclusion again.

The first L-pseudo-intent is the empty set. Therefore the dialogue starts
with the question:

Q: Ts O — M valid?
A: No. 7y has the attributes conn, plan, ham.

Now H contains the object (7. In this enlarged context the first L-pseudo-
intent is still the empty set, but on this step we have (" = {conn, plan,

ham}.

Q: Ts O — {conn, plan, ham} valid?
A: No. (G5 has the attributes dise, bip, for, plan.

(74 is added to the set H.

Q: Ts O — {plan} valid?

A: No. (G5 has the attributes conn, comp, eul, ham.

(73 is added to H. In the context with H = {(G, G4, G5} the empty set is
an intent. The next L-pseudo-intent is {ham}.

Q: Ts {ham}—{conn} valid?
A: Yes.

The implication {ham}—{conn} is added to B, which was empty up to now.

Q: Ts {eul}—={conn, comp, ham} valid?
A: No. (G4 has the attributes conn, bip, cbip, plan, eul.



During the exploration the graphs (7 to (oo are given as counterexamples
and the following implications are accepted:

{ham}
{eul}
{for}

{eomp}
{disc, bip, chip}

{conn, comp, eul}

{conn, bip, tree, for, plan, ham}
{conn, bip, tree, for, plan, eul}
{conn, bip, cbip, plan, ham}
{conn, bip, comp}

{conn}
{conn}
{bip, plan}
{conn}
Uor, plan}
{ham}

{comp, cbip, eul}
{comp, cbip, ham}

{eul}

{cbip, tree, for, plan}

S A A

These ten implications constitute the L-Duquenne-Guigues-basis B.. Fvery
implication that is valid in the context can be deduced from them and the
four background implications. The Duquenne-Guigues-basis consists of all
implications in the £-Duquenne-Guigues-basis and additionally of the first
and the fourth background implication and the two implications {tree} —
{conn, bip, for, plan} and {conn, bip, for, plan} — {tree}. In this example
the cardinality of the £-Duquenne-Guigues-basis is just the difference of the
cardinalities of the Duquenne-Guigues-basis, but in general it may be larger.

During the exploration there are some implications that can be denied by
only one counterexample (up to isomorphism). If we want to determine
the general structure of graph theory without bothering with pathological
cases, we may confirm some implications that are true for almost all graphs
and keep in mind the exceptions. For example we can regard all graphs
as exceptions that contradict an implication and are (up to isomorphism)
unique in having exactly their attributes.

The beginning of the exploration dialogue remains unchanged. The first dif-
ference appears with the question: “Is {comp}—{conn, eul, ham} valid?”,
because Gg is (up to isomorphism) the only connected complete planar Ha-
miltonian graph which is not Fulerian and is therefore not allowed as coun-
terexample. However the implication has to be denied: Graph G in Fig.4
serves as new counterexample. The next suggestion {comp}—{conn, ham}
will be accepted with the exception (7, which is the only complete graph
that is not Hamiltonian. Tn this way the exploration continues. Instead
of GGi4 the graph G, will be used as a counterexample for the implication
{conn, eul, ham}—{comp}, because (714 is an exception in the sense defined
above.

This approach yields the following list of implications that is a L-basis for
all graphs except for (G¢, G7, (G153, G4, and G1z. Behind every implication
are listed its exceptions.
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Figure 4: Additional graphs for the exploration with exceptions

{ham} — {conn}
{eul} —  {conn}
{fort  — {bip, plan}
{comp} —  {conn, eul, ham} (G, Gir)
{disc, bip, chip} — {f()r, plan}
{conn, comp, plan, eul, ham} — (Gha, Gig)
{conn, bip, tree, for, plan, ham} — M (Ghg)
{conn, bip, Iree, fm“, plan, eult — M (Ghg)
{conn, bip, cbip, plan, ham} — {eul} (Ghs, Ghg)
{conn, bip, comp, eul, ham} — M (Ghg)

The 6th implication indicates that there exist (up to isomorphism) only two
complete planar Hamiltonian graphs: (G4 and Ghg. That G5 is the only
Hamiltonian tree and the only Fulerian tree is expressed by Tth resp. 8th
implication. It is also the only Hamiltonian bipartite complete graph (10th
implication).

The resulting concept lattice is shown in Fig.5. The implications valid in
this lattice are exactly those which are valid for all graphs except for (7,
(7, Gi3, G4, and Gg. The concept lattice of these exceptions is shown
in Fig.6. In particular one can see in the diagram that all exceptions are
connected planar graphs.

Attribute exploration determines the A-semilattice that is generated by the
attribute concepts. In premise and conclusion only conjunctions of attributes
are allowed. Disjunctions become involved in distributive concept exploration
(cf. Stumme (1995)), where the complete distributive lattice that is gener-
ated by some concepts is interactively determined.



Figure 6: Concept lattice of the exceptions
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