
Super-Peer-Based Routing Strategies
for RDF-Based Peer-to-Peer Networks

Wolfgang Nejdl
�

Martin Wolpers
�

Wolf Siberski
�

Christoph Schmitz
�

Mario Schlosser
�

Ingo Brunkhorst
�

Alexander Löser
�

�
Learning Lab Lower Saxony, University of Hannover, 30167 Hannover, Germany

�

Computation and Information Structures Institute, Technical University Berlin, 10587
Berlin, Germany

Abstract

RDF-based P2P networks have a number of advantages compared to simpler P2P net-
works such as Napster, Gnutella or to approaches based on distributed indices on binary
keys such as CAN and CHORD. RDF-based P2P networks allow complex and extendable
descriptions of resources instead of fixed and limited ones, and they provide complex query
facilities against these metadata instead of simple keyword-based searches.

In this paper we will discuss RDF-based P2P networks like Edutella as a specific example
of a new type of P2P networks - schema-based P2P networks - and describe the use of
super-peer based topologies for these networks. Super-peer based networks can provide
better scalability than broadcast based networks, and provide support for inhomogeneous
schema-based networks, with different metadata schemas and ontologies (crucial for the
Semantic Web). Based on (dynamic) metadata routing indices, stated in RDF, the super-
peer network supports sophisticated routing and distribution strategies, as well as preparing
the ground for advanced mediation and clustering functionalities.

Key words: Peer-to-Peer, Semantic Web, Schema-Based Routing, Distributed RDF
Repositories, Routing Protocols, Semantic Networks

Email addresses: nejdl@learninglab.de (Wolfgang Nejdl),
wolpers@learninglab.de (Martin Wolpers), siberski@learninglab.de
(Wolf Siberski), schmitz@learninglab.de (Christoph Schmitz),
schlosser@learninglab.de (Mario Schlosser),
brunkhorst@learninglab.de (Ingo Brunkhorst),
aloeser@cs.tu-berlin.de (Alexander Löser).

Preprint submitted to Web Semantics 18 November 2003



1 Super-Peer Networks for Distributed RDF Repositories

P2P applications have been quite successful, e.g., for exchanging music files, where
networks use simple attributes to describe these resources. A lot of effort has been
put into refining topologies and query routing functionalities of these networks,
and simple systems like Napster and Gnutella have inspired more efficient infra-
structures such as the ones based on distributed hash tables (e.g. CAN and CHORD
[1,2]). Less effort has been put into extending the representation and query func-
tionalities offered by such networks, and projects exploring more expressive P2P
infrastructures [3–6] have only slowly started the move toward schema-based P2P
networks.

Database Research

P
2P

 R
es

ea
rc

h

schema-
based

peer-to-peer

CAN
CHORD

DIRECTCONNECT

GNUTELLA

KAZAA
P-GRID

NAPSTER

AMOSII
OBJECTGLOBE

TSIMMIS
TUKWILA

EDUTELLA

PIAZZA
ANY DBMS

fixed
schema/
keywords

key

local distributed

Fig. 1. Schema Capabilities and Distribution

Schema-based P2P networks finally allow us to solve the shortcomings of P2P net-
works with restricted and fixed metadata elements, by enabling truly expressive as
well as distributed data and metadata repositories. They do this by building upon
peers that use explicit and possibly heterogeneous schemas describing their content,
and implementing sophisticated routing strategies based on this knowledge. This
approach parallels recent developments for distributed data management, which
also start to evolve towards a higher degree of distribution, but so far have usually
assumed static distribution and query plans. As we show in figure 1 schema-based
P2P systems are the next step in distributed P2P networks with advanced data man-
agement and storage features (see also [7]). Their architectures have to take into
account the typical characteristics of P2P systems, i.e. local control of data, dy-
namic addition and removal of peers, only local knowledge of available data and
schemas and self-organization and -optimization.

In the Edutella project [8,3,9] we have been exploring some issues arising in that
context, with the goal of designing and implementing a schema-based P2P infra-
structure for the Semantic Web. Edutella relies on the W3C metadata standards
RDF and RDF Schema (RDFS) [10,11] to describe distributed resources, and uses
basic P2P primitives provided as part of the JXTA framework [12].

2



Two other approaches are the ones investigated by Bernstein and Aberer. Bernstein
et.al. [4] propose the Local Relational Model (LRM) enabling general queries to be
translated into local queries with respect to the schema supported at the respective
peer, using the concept of local translation/coordination formulas to translate be-
tween different schemas. Aberer et.al. [5] proposes schema-based peers and local
translations to accommodate more sophisticated information providers connected
by a Gnutella-like P2P topology.

The infrastructure we will discuss in detail in this paper is based on a so-called
super-peer topology, where peers connect to super-peers that build up the routing
backbone for the whole network (see [13] for the general characteristics of super-
peer networks, and Kazaa, Grokster and Morpheus for existing super-peer systems).
The responsibility of a super-peer is the efficient query and answer routing as well
as the distribution and execution of query plans based on local routing indices at
each super-peer. Further capabilities like mediation and transformation of queries
and answers also can be implemented in a super-peer.

In the following we will start by describing the general topology for our schema-
based super-peer network in section 2, and discuss how peers register to this net-
work. In section 3 we describe the schema-aware routing indices, which are needed
for query planning and routing within the super-peer network and from the super-
peers to the associated peers. Section 3.5 discusses (distributed) routing based on
these indices. Finally, section 4 briefly introduces the implementation of the super-
peer network.

2 Super-Peer Networks for Schema-based P2P Systems

Peer usually are not created equal but have different characteristics with respect to
their capabilities, e.g. available bandwidth, storage space or processing power. As
discussed in [14], exploiting the different capabilities in a P2P network can lead to
an efficient network architecture, where a small subset of peers, called super-peers,
takes over specific responsibilities for peer aggregation, query routing and possibly
mediation. The KaZaA network [15] uses a simple version of a super-peer based
architecture, more elaborate versions are described in [16] and [17]. Super-peer-
based P2P infrastructures usually exploit a two-phase routing architecture, which
routes queries first in the super-peer backbone, and then distributes them to the
peers connected to the super-peers. The last step can sometimes be avoided if the
super-peers cache data from their connected peers. Super-peer routing is usually
based on different kinds of indexing and routing tables, as discussed in [16] and
[17].

3



2.1 The Edutella Super-Peer Topology

The Edutella super-peers [17] employ routing indices, which explicitly acknowl-
edge the semantic heterogeneity of schema-based P2P networks, and therefore in-
clude schema information as well as other possible index information. This super-
peer backbone is responsible for message routing and integration / mediation of
metadata. Scaling a P2P network to a large number of super-peers while maintain-
ing certain properties such as low network diameter requires guiding the evolution
of the network topology upon peer joins and departures. In the Edutella network,
super-peers are arranged in a hypercube topology, according to the HyperCuP pro-
tocol [18]. For a simple example see figure 2.

Fig. 2. HyperCuP Super-Peer Topology

A new super-peer is able to join the network by asking any other, already integrated
super-peer which then carries out the peer integration protocol. ���������	��

��� mes-
sages are sent in order to integrate the new super-peer and maintain a hypercube-
like topology. Any number of super-peers can be accommodated in the network:
If some peers are “missing” in order to construct a complete hypercube topology
which consists of ��� nodes in a d-dimensional binary hypercube, some super-peers
in the network occupy more than one position on the hypercube. When new super-
peers join the network, they fill the gaps in the hypercube topology and possibly
extend the dimensionality of the hypercube.

The advantages of HyperCuP are an efficient and guaranteed non-redundant query
broadcast, which we will then further restrict by using the indices as described in
section 3 and 3.5. For broadcasts, each node can be thought of as the root of a spe-
cific spanning tree through the P2P network. The topology allows for ��������
 path
length and ����� � 
 number of neighbors, where 
 is the total number of nodes in
the network (i.e. the number of super-peers in our case). Moreover, the topology
is vertex-symmetric and thus features inherent load balancing among super-peers.
Thus, we can use the topology to carry out efficient communication and message
forwarding among super-peers: Certain updates (which we will communicate by
broadcast to other super-peers) can be executed efficiently, without message over-
head. Also, a path of ����� � 
 length exists between any two super-peers, thus any

4



two distinct schemas can be reached within a short number of hops from each other.
Alternatives to this topology are possible, as long as they guarantee the spanning
tree property for the super-peer backbone, which we exploit for maintaining our
routing indices and for building our distributed query plans (section 3, section 3.5,
and [19]).

Peers themselves do not connect to each other in super-peer networks. Instead they
connect to a super-peer thus forming a star-like local network at each super-peer. In
turn the super-peer takes over specific responsibilities for peer aggregation, query
routing and possibly mediation. This topology allows the peers to use their re-
sources more efficiently while the super-peer provides the necessary bandwidth and
processing power to enable efficient and reliable query processing and answering.

2.2 Registering Peers at Super-Peers

In order to avoid broadcasting a query to all connected peers of a super-peer we
introduce the super-peer/peer routing indices that are used to forward the query to
the respective peers only. These indices store information about metadata usage at
each peer. This includes schema information such as schemas or attributes used, as
well as possibly conventional indices on attribute values.

On registration the peer provides the super-peer with its metadata information by
publishing an XML registration message. This advertisement encapsulates meta-
data based description of the peers’ properties. As the registration may involve
quite a large amount of metadata, we build upon the schema-based approaches
which have successfully been used in the context of mediator-based information
systems (e.g. [20]). A peer must register at least one schema (e.g. the LOM or the
DC element set) with a set of properties or with information about specific property
values.

The behavior of (super-) peers is rather unpredictable in a P2P network. Thus,
these registration messages are valid for a certain period only, and peers have to re-
register periodically. By invalidating the peers’ registrations periodically we chose
a behavior similar to other protocols for dynamic settings (like DHCP) since peers
may leave the network without any notice. If a super-peer fails, its formerly con-
nected peers must re-register with another super-peer. We are currently investigat-
ing deterministic reconnection strategies using testaments which specify alternative
super-peers, and clustering strategies, grouping similar peers (in terms of supported
schema) together.

5



3 Index Structures and Index Updates

The introduction of super-peers in combination with routing indices at these peers
reduces the workload of peers significantly by distributing queries only to the ap-
propriate subset of all possible peers (see also [16] which discusses routing indices
based on various aggregation strategies of content indices).

3.1 Super-Peer / Peer Routing Indices

The first level index, the SP/P index, is an index which describes the characteristics
of all peers connected to a specific super-peer, and thus guides the forwarding of
queries from a super-peer to a connected peer. Furthermore, it forms the basis of
the second level of indices, the SP/SP indices, which are derived from the SP/P
indices, and facilitate routing within the super-peer backbone. Both indices contain
information at different granularities.

Fig. 3. Super-Peer/Peer Routing Index

Schema Index. At the schema level we assume that different peers will support dif-
ferent schemas. These schemas are uniquely identified by their respective names-
pace, therefore the SP/P routing index contains the schema identifier and the peers
supporting the respective schema.

Property/Sets of Properties Index. Routing indices also contain properties or sets
thereof thus enabling peers to support only parts of schemas. The properties are
uniquely identified by namespace/ schema ID and property name and form the
routing index entry together with those peer IDs where the properties are used.

Property Value Range Index. For properties which contain values from a prede-
fined hierarchical vocabulary we can use an index which specifies taxonomies or
part of a taxonomy for properties (the property value range). This is a common
case in Edutella, because in the context of the Semantic Web quite a few appli-
cations use standard vocabularies or ontologies. In our example, peers could be
characterized by their possible values in the dc:subject field, and the query would
not be forwarded to peers managing “ccs:networks” or “ccs:artificial intelligence”
content (as these sub-hierarchies are disjoint from the ccs:software engineering
sub-hierarchy), and will not be forwarded to peers which use the MeSH vocabulary

6



(because these peers manage medical content). Note that the subsumption hierar-
chy in a taxonomy such as ACM CCS can be used to aggregate routing information
in order to reduce index size.

Property Value Index. For some properties it may also be advantageous to create
value indices to reduce network traffic. This case is identical to a classical database
index with the exception that the index entries do not refer to the resource, but
the peer providing it. The index contains only properties that are used very often
compared to the rest of the data stored at the peers. This would be used e.g. for
string valued properties such as dc:language or lom:context.

3.2 Super-Peer / Super-Peer Routing Indices

Super-peers connect to each other using the HyperCuP protocol. Even though this
protocol enables an efficient message broadcast, further indices can be used to re-
strict message propagation even further. These super-peer/super-peer routing in-
dices are essentially extracts and summaries from our local SP/P indices. They ba-
sically contain the same kind of metadata information as the SP/P indices, but refer
to the direct neighbors of a super-peer (as shown in figure 4). Queries are then for-
warded to super-peer neighbors based on the SP/SP indices, and sent to connected
peers based on the SP/P indices.

Fig. 4. Super-Peer/Super-Peer Routing Index

A sample SP/SP routing index is shown in figure 5 (taken from figure 7, super-peer��� � ). Again, we see that such an index contains metadata information on different
granularities. For example,

��� � knows at the schema level that all of its neighbors
(
�����

,
�����

,
�����

) use the DC namespace, but only
���	�

and
�����

contain informa-
tion described in the LOM schema. The index contains also index entries based
on the property value range, used in combination with a classification hierarchy:
ccs:networks is a common super concept of ccs:ethernet and ccs:clientserver in
the ACM CCS taxonomy.

7



Granularity Index of
��� �

Schema
dc

�����
,
�����

,
�����

lom
�����

,
�����

Property

dc:subject
�����

,
�����

,
�����

dc:language
���	�

,
�����

lom:context
���	�

,
�����

Property dc:subject ccs:networks
�����

Value Range dc:subject ccs:software-eng.
��� �

,
�����

Property lom:context “undergrad”
��� �

,
�����

Value dc:language “de”
���	�

,
�����

Fig. 5. SP/SP Index of
��� � at Different Granularities

3.3 Updating SP/P Routing Indices

An update of the SP/P index of a given super-peer occurs, when a peer leaves the
super-peer, a new peer registers, or the metadata information of a registered peer
changes (e.g., new attributes are added or deleted).

In case of a peer leaving the super-peer all references to this peer have to be re-
moved from the SP/P index of the respective super-peer. The same applies if a
peer fails to re-register periodically. In the case of a peer joining the network or
re-registering, its respective metadata/schema information are matched against the
SP/P entries of the respective super-peer. If the SP/P routing index already contains
the peers’ metadata only a reference to the peer is stored in the index otherwise the
respective metadata with references to the peer are added to the index.

The following algorithm formalize this procedure: We define
�

as a set of schema
elements

�
:
�����	��

����� �����������

. The super-peer
�����

already stores a set
���

of
schema elements in its SP/P index. The SP/P index of a super-peer

�����
can be

considered as a mapping
��
�� � ��!��#"$�%�����&�(')�

. A new peer
��*

registers to the
super-peer

�����
with a set

��*
of schema elements.

(1) If
��*�+ �,�

, then add
��*

to the list of peers at each
�-
/. �,*

(2) Else if
�,*�0 �,�1�2�	��354��&���&46�-78�:9�<;

, then update the SP/P index by adding new
rows

�-3=� ��*>4-���&��4���7?� ��*
.

�
A complete schema, e.g., dc is also considered as schema element

8



3.4 Updating SP/SP Routing Indices

First, let us consider how to update the SP/SP indices in the backbone, when one
of them has been modified as described in the last section. We assume here, that
each SP/P modification triggers the update process for SP/SP indices, though we
can also collect the modifications for a given period and only then trigger the SP/SP
update process.

We further assume that the super-peers cluster peers according to their schema
characteristics, so that peers connected to a super-peer usually have similar char-
acteristics, and SP/P modifications trigger SP/SP index updates less frequently. If
we take for example the network in figure 7 and the example SP/SP index of

��� �
shown in figure 5, a new peer

� �
registering at super-peer

���	�
with the property

dc:language does not trigger the update process since this metadata information
already exists in the SP/P index. If a new peer

� *
registers at

�����
with the property

dc:created, the SP/SP update process starts, as this property was not included in the
index before.

Fig. 6. HyperCuP Topology and Spanning Tree Example

SP/SP Update Process. Remember that the super-peers in the network are orga-
nized into a HyperCuP topology, which implicitly defines each super-peer as root
of a spanning tree. Query routing takes place along the spanning trees (restricted
by the SP/SP indices), so the update of SP/SP indices has to be done in the reverse
direction. For these updates, again each super-peer acts as the root of a spanning
tree (in the “backward direction”), as we show in figure 6 for the super-peer called
G. In this example we have a simple (complete) cube, which has three dimensions
(0,1,2), such that every node has 3 neighbors.

In order to update the SP/SP indices after an update of the SP/P index of the super-
peer

���
� we build the spanning tree of the super-peer

���
� as follows:

���
� sends

the update message to all its neighbors, tagging it with the edge label (dimension)
on which the message was sent. Super-peers receiving the message update their
SP/SP index accordingly and forward the update message, but only to those super-
peers tagged with lower edge labels. Furthermore, whenever a message does not

9



change the SP/SP index at a receiving super-peer
��� *

, forwarding stops. The span-
ning tree for

���
� is given in figure 6. The update is done as follows:

� For all
��
 . �,��� �,*

add dimension of
�����

to the list of dimensions at row
��


if
this dimension do not exist.

� For all
�-
�. �,� 0 �,*

add a new row
�-
�� � � '��-�������>� � ����� �

Adding new Super-Peers. Adding a new super-peer is a bit more complicated.
For a new super-peer, the HyperCuP protocol takes care of identifying new neigh-
bors as discussed in [18]. In this process one of the super-peers is “responsible”
for integrating the new super-peer. In most cases the new super-peer will fill a “va-
cant” position in the hypercube, which has temporarily been administered by the
responsible super-peer. In this process, this super-peer, who has been holding an
additional SP/SP and SP/P index for the vacant position, transfers these indices to
the new super-peer. If the new super-peer opens a new dimension, it has to take over
some peers from the old super-peer, and the SP/SP index has to be split into two
indices. The neighboring super-peers have to update their indices accordingly, by
exchanging the responsible super-peer with the new super-peer on the appropriate
dimension. Beyond the immediate neighbors, no further update is necessary.

Removing Super-Peers. The HyperCuP protocol also takes care of a super-peer
leaving the backbone. We usually assume that the leaving super-peer coordinates
this operation, and specifically asks appropriate super-peer(s) (more than one if the
leaving super-peer temporarily fills several positions) that will administer its posi-
tion afterwards. In this process the administering super-peers take over the SP/SP
and SP/P indices of the leaving super-peer, and the neighbors of the leaving super-
peer as well as of the administering ones have to update their SP/SP indices. Again,
no update is required beyond the immediate neighbors. Peers of the leaving super-
peer reconnect to the super-peer which administers the vacant position.

In the case of unexpected link failure its neighbors determine the “closest” (re-
garding smallest hop distance) super-peer. This super-peer then coordinates the
administration of the open position with the same procedure as described above.
Peers of the failing super-peer have to reconnect at some other super-peer, possibly
triggering further SP/SP update messages.

3.5 Query Routing

The motivation for improved topologies for P2P networks is usually to make query
forwarding more efficient. The goal is then to forward queries only to the appropri-
ate peers, which can answer these queries. This can be easily achieved based on the
indices described in the previous section, by matching the query elements against
the super-peer/super-peer and super-peer/peer indices and forward the queries only
to those super-peers and peers, which can support the elements contained in the

10



query. A match means that a peer understands and can answer a specific query, but
does not usually guarantee a non-empty answer set (except in the case of a property
value entry).

Fig. 7. Routing Example Network

The algorithm described here handles queries which can be evaluated without join-
ing data from several peers. We are in the process of extending this algorithm to
dynamically create query evaluation plans based on our index information which
allow forwarding sub-queries to different peers and combining the results appro-
priately [19].

To illustrate this kind of routing mechanism, we use the following sample query:
find lectures in German language from the area of software engineering suitable
for undergraduates. In the Semantic Web context this query is formalized using
the dc schema for document specific properties (e.g. title, creator, subject) and
the lom schema which provides learning material specific properties, in combi-
nation with classification hierarchies (like the ACM Computing Classification Sys-
tem, ACM CCS) in the subject field. In line with RDF/XML conventions, we will
identify properties by their name and their schema (expressed by a namespace):
“dc:subject” therefore denotes the property “subject” of the DC schema. So, writ-
ten in a more formal manner, the query becomes:

Find any resource where the property dc:subject is equal to dc:language is equal
to “de”, ccs:softwareengineering and lom:context is equal to “undergrad”.

Figure 8 shows the values requested in the query at the different granularities;
e.g. the query asks for DC and LOM at the schema level, while it requests a
lom:context value of “undergrad” at the property value level, etc.

Figure 7 shows how peer
���

sends the sample query mentioned above to its super-
peer

�����
. In our example, this query could be answered by the peers

� �
and

���
, at-

tached to
���	�

and
�����

, respectively. These contain metadata about resources � and�
which match the query. Based on a schema-level-index, super-peer

��� �
forwards

11



Granularity Query

Schema dc, lom

Property dc:subject, dc:language, lom:context

Property Value Range dc:subject ccs:sw’engineering

Property
Value

lom:context “undergrad”

dc:language “de”

Fig. 8. Query Elements of the Sample Query at Different Granularities

the sample query only to peer
�	�

which supports the schemas lom and dc. Based
on the property-level-index, the sample query in figure 7 will be forwarded by

��� �

to
���

because it is the only peer at
���	�

that using at least dc:subject, dc:language
and lom:context.

Obviously, indices only help if they can exploit and express regularities present
in the peer and data distribution. Clustering peers based on similarity measures
therefore is a necessary ingredient for improving index effectiveness and thus query
efficiency.

4 Implementation

We are currently in the process of verifying the performance of our protocol and
routing mechanisms. To simulate a system based on the protocol, we have imple-
mented our algorithms within the current Edutella framework. The existing Edutella
framework has been extended in two areas: The first area consists of support for
construction of a network of super-peers based on such topologies as the HyperCup
topology discussed in section 2. The second area introduces additional components
for super-peer construction, including services for peer registration and query rout-
ing table management. The services a peer provides are specified by configuration.
Services are composed of standard modules (like a JXTA Endpoint handler which
manages service requests arriving via the JXTA infrastructure) and service-specific
modules. Attached to each service is a service advertisement which is published in
the network on peer startup. Discovery of published services is already provided by
the JXTA framework.

Figure 9 shows a minimal service configuration for super-peer. The super-peer pro-
vides four services:

� Bind Service. The bind service handles peer registration. Provider peers call this
service with their self-description to establish the connection to a super-peer. The
bind service takes care of the hand-shaking process and updates the SP/P indices
accordingly.

12



B
in

d
 S

er
vi

c
e 

A
d

v

Q
u

er
y 

S
er

v
ic

e 
A

d
v

R
o

u
rt

in
g

 S
er

vi
ce

 A
d

v

Query
Service

JXTA
Endpoint

Routing Service

Peer Service Registry

Binding
Service

Execution
Pool

JXTA
Endpoint

Execution
Pool

JXTA Endpoint

SP/SP
Routing

Processor

Execution
Pool

Execution
Pool

SP/P
Routing

Processor

Bind Service Routing Service Query Service

SP/P RIs

Query
Processor

Binding
Processor

T
o

p
o

lo
g

y 
S

er
vi

ce
 A

d
v

JXTA
Endpoint

Topology
Service

Topology Service

SP/SP RIs

Fig. 9. Super Peer Service Configuration

� Routing Service. This service is doing the real work. It routes queries it receives
to the appropriate peers and super-peers, based on the indices created by the
binding and topology service.

� Topology Service. The topology service takes care of maintaining the super-peer
network topology, and also keeps the SP/SP indices up-to-date. If a new super-
peer starts, its topology service connects to the topology service of another super-
peer, and the location of the new super-peer in the network is negotiated (as
described in [18]). Afterwards the new neighbors exchange SP/SP routing infor-
mation.

� Query Service. The query service provides a defined interface to issue new query
requests within the network. These requests are then then distributed via the
routing service.

Communication between service components within a peer is done by sending
events to monitoring listeners, according to the Observer design pattern. On startup,
the components for the configured services are instantiated and the necessary ob-
server relations are created. For example, the query service doesn’t have to know
how the query is finally distributed. Instead, the routing service is tagged as match-
ing actor for query events in the configuration, and thus the routing service is regis-
tered as listener at the query service. This way queries received by the query service
are passed to the routing services as query events.

5 Conclusion

RDF-based P2P networks have a number of important advantages over previous,
more simple P2P networks. In this paper we have discussed RDF-based P2P net-
works as prime examples of a new kind of P2P networks, schema-based P2P net-
works. Peers provide and use explicit (possibly heterogeneous) schema descriptions
of their content, and are therefore an infrastructure ideally suited for P2P networks
consisting of heterogeneous information providers.

13



We identified a super-peer topology as a suitable topology for these schema-based
P2P networks and discussed different kinds of super-peer indices describing the
data and schema characteristics of the peers connected to the network. Super-peer
indices exploit the RDF ability to uniquely identify schemas, schema attributes
and ontologies, and provide a necessary ingredient for a schema-aware peer-to-
peer data management infrastructure. We discussed how these indices are updated
and how they are used for routing and query distribution between super-peers and
peers as well as within the super-peer backbone network. Finally, we discussed our
current implementation in the context of the Edutella project.

References

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content
addressable network, in: Proceedings of the 2001 Conference on applications,
technologies, architectures, and protocols for computer communications, ACM Press
New York, NY, USA, 2001.

[2] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, Chord: A scalable
peer-to-peer lookup service for internet applications, in: Proceedings of the 2001
Conference on applications, technologies, architectures, and protocols for computer
communications, ACM Press New York, NY, USA, 2001.

[3] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
T. Risch, EDUTELLA: a P2P Networking Infrastructure based on RDF, in:
Proceedings of the 11th International World Wide Web Conference, Hawaii, USA,
2002, http://edutella.jxta.org/reports/edutella-whitepaper.pdf.

[4] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini,
I. Zaihrayeu, Data management for peer-to-peer computing: A vision, in: Proceedings
of the Fifth International Workshop on the Web and Databases, Madison, Wisconsin,
2002.

[5] K. Aberer, M. Hauswirth, Semantic gossiping, in: Database and Information Systems
Research for Semantic Web and Enterprises, Invitational Workshop, University of
Georgia, Amicalola Falls and State Park, Georgia, 2002.

[6] A. Y. Halevy, Z. G. Ives, P. Mork, I. Tatarinov, Piazza: Data management infrastructure
for semantic web applications, in: Proceedings of the Twelfth International World
Wide Web Conference (WWW2003), Budapest, Hungary, 2003.

[7] S. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, D. Suciu, What can databases do for
peer-to-peer, in: Proceedings of the Fourth International Workshop on the Web and
Databases (WebDB ’2001)., Santa Barbara, CA, USA, 2001.

[8] The Edutella Project, http://edutella.jxta.org/ (2002).

[9] W. Nejdl, B. Wolf, S. Staab, J. Tane, Edutella: Searching and annotating resources
within an RDF-based P2P network, in: Proceedings of the Semantic Web Workshop,
11th International World Wide Web Conference, Honolulu, Hawaii, USA, 2002.

14



[10] O. Lassila, R. Swick, W3C Resource Description Framework model and syntax
specification, http://www.w3.org/TR/REC-rdf-syntax/ (Feb. 1999).

[11] D. Brickley, R. V. Guha, RDF vocabulary description language 1.0: RDF Schema,
http://www.w3.org/TR/rdf-schema/ (Jan. 2003).

[12] L. Gong, Project JXTA: A technology overview, Tech. rep., SUN Microsystems,
http://www.jxta.org/project/www/docs/TechOverview.pdf (Apr. 2001).

[13] B. Yang, H. Garcia-Molina, Designing a super-peer network,
http://dbpubs.stanford.edu:8090/pub/2002-13 (2002).

[14] B. Yang, H. Garcia-Molina, Improving search in peer-to-peer systems, in: Proceedings
of the 22nd International Conference on Distributed Computing Systems, Viena,
Austria, 2002, http://dbpubs.stanford.edu:8090/pub/2001-47.

[15] N. Hemming, KaZaA, Web Site - www.kazaa.com.

[16] A. Crespo, H. Garcia-Molina, Routing indices for peer-to-peer systems, in:
Proceedings International Conference on Distributed Computing Systems, 2002.

[17] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst,
A. Loser, Super-peer-based routing and clustering strategies for RDF-based peer-to-
peer networks, in: Proceedings of the International World Wide Web Conference,
Budapest, Hungary, 2003, http://citeseer.nj.nec.com/nejdl02superpeerbased.html.

[18] M. Schlosser, M. Sintek, S. Decker, W. Nejdl, HyperCuP—Hypercubes, Ontologies
and Efficient Search on P2P Networks, in: International Workshop on Agents and
Peer-to-Peer Computing, Bologna, Italy, 2002.

[19] I. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, C. Wiesner, Distributed queries and
query optimization in schema-based peer-to-peer systems, in: International Workshop
on Databases, Information Systems, and P2P Computing, colocated with 29th
International Conference on Very Large Databases (VLDB2003), Berlin, Germany,
2003.

[20] G. Wiederhold, Mediators in the architecture of future information systems, IEEE
Computer 25 (3) (1992) 38 – 49.

15


