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ABSTRACT

The ongoing spread of online social networking and sharing
sites has reshaped the way how people interact with each
other. Analyzing the relatedness of different users within the
resulting large populations of these systems plays an impor-
tant role for tasks like user recommendation or community
detection. Algorithms in these fields typically face the pro-
blem that explicit user relationships (like friend lists) are
often very sparse. Surprisingly, implicit evidences (like click
logs) of user relations have hardly been considered.

Based on our long-time experience with running the social
bookmark and publication sharing platform BibSonomy [4],
we identify in this paper different evidence networks of user
relationships in our system. We broadly classify each net-
work based on whether the links are explicitly established
by the users (e.g., friendship or group membership) or ac-
crue implicitly in the running system (e.g., when user u
copies an entry of user v). We systematically analyze struc-
tural properties of these networks and whether topological
closeness (in terms of the length of shortest paths) coincides
with semantic similarity between users.

Our results exhibit different characteristics and provide
preparatory work for the inclusion of new (and less spar-
se) information into the process of optimizing community
detection or user recommendation algorithms.

Categories and Subject Descriptors: H.4 [Informati-
on Systems Applications]: Miscellaneous H.1.m [Information
Systems|: Models and Principles

General Terms: Experimentation, Measurement

Keywords: social networks, folksonomies, community de-
tection, user recommendation

1. INTRODUCTION

The participatory nature of many popular Web 2.0 appli-
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cations like Facebook, YouTube, Flickr, Delicious or Twitter
has affected the way how people interact with each other.
Catalyzed by the growing availability of mobile web access,
the mere fact of being part of an online community bears ma-
ny instant benefits (like receiving interesting news or staying
in touch) for professional and leisure activities.

The resulting “digitalization” of social links into online en-
vironments has opened up a number of interesting research
questions, many of them originating from the field of social
network analysis: Community detection is basically concer-
ned with identifying groups of users which share a common
interest or expertise, while approaches of user recommen-
dation often build personalized models to identify other re-
levant users within a (possibly large) population. From a
more formal perspective, both directions are fundamentally
concerned with discovering relationships between users.

Most automated approaches of inferring these links face
the problem of judging the quality of their predictions. As a
replacement for expensive studies with real users, the algo-
rithms are often evaluated against existing links, as proposed
by [15]. This paradigm rewards algorithms which are able to
restore existing structures (e.g., friendship connections). A
typical problem hereby is that these explicit links are often
sparse or not existent.

Apart from these explict relations, in typical social re-
source sharing systems one can find a number of implicit
evidences of user relationships. They comprise, e.g., click-
logs or page visit information. In some systems, it is also
possible to copy content from other users, which facilitates
the assembly of a copy-graph among users. Taking our own
system BibSonomy as an example, we identify a set of possi-
ble networks of user relationships characterized by different
degrees of explicitness. Starting with some basic network
properties, our first goal is to investigate to which extent
these networks exhibit typical characteristics of social net-
works. We then examine whether topological closeness in
these networks coincides with semantic similarity between
users. Ultimately, we would like to assess the suitability of
each network to serve as a valid surrogate for explicit data.

2. RELATED WORK

Despite the absence of well-established gold-standards,
the growing need for automated user community assessment
is reflected in a considerable number of proposed paradigms.
Evaluation approaches of generated links between users can



broadly be divided in content-based and structure-based me-
thods (relying on given links between users).

Ref. [7] introduced metrics for assessing user relatedness
and community structure by means of the normalized size
of user profile overlaps. They evaluate their metrics in a live
setting, focussing on the optimization of the given metrics.
Using a metric which is purely based on the structure of
graphs, Newman presents algorithms for finding communi-
ties and assessing community structure in graphs [13].

Recently Ref. [15] proposed an evaluation technique for
recommendation tasks in folksonomies which is based on
the reconstruction of existing links (e.g., friendship lists).
The performance of a given system is assessed by applying
IR-style quality measures. Ref. [14] investigated the rela-
tionship of topological closeness (in terms of the length of
shortest paths) with semantic similarity between users.

Another aspect of our work is the analysis of implicit link
structures which accrue in a running Web 2.0 system. Ref. [2]
proposed to present query-logs as an implicit folksonomy
where queries can be seen as tags associated to clicked do-
cuments. Based on this representation, the authors extracted
semantic relations between queries. Ref. [8] analyzed term-
co-occurrence-networks in the logfiles of Internet search sys-
tems. They showed that the exposed structure is similar to
a folksonomy.

Analyzing Web 2.0 data by applying complex network
theory goes back to the analysis of (samples from) the web
graph [3]. Ref. [10] applied methods from social network ana-
lysis as well as complex network theory and analyzed large
scale crawls from prominent social networking sites. Some
properties common to all considered social networks are wor-
ked out and contrasted to properties of the web graph.

3. EVIDENCE NETWORKS

3.1 Preliminaries

We briefly introduce terms and notions used in this paper.
For more details, we refer to standard literature [6]. A graph
G = (V,E) is an ordered pair, consisting of a finite set V'
which consists of the vertices or nodes, and a set E of edges,
which are two element subsets of E. A directed graph is de-
fined likewise, with E being defined as a subset of V' x V.
For simplicity we write in both cases (u,v) € E for denoting
an edge belonging to ¥ and freely use the term network as
a synonym for a graph.

A path vo —¢ vy, of length n in a graph G is a sequence
Vo, ...,vn withn > 1 and (v;,vi41) € Efori=0,...,n—1.
A shortest path between nodes u and v is a path u —¢g v of
minimal length. The transitive closure of a graph G = (V, E)
is given by G* = (V, E*) with (u,v) € E* iff there exists a
path u —¢ v. A strongly connected component (scc) of G is
a subset U C V, such that u —g+ v holds for every u,v € U.
A (weakly) connected component (wce) is defined similarly,
ignoring the directions of edges (u,v) € E.

For a set V', we denote a relation R as asubset R C V xV.
A relation R is naturally mapped to a corresponding graph
Gr = (V,R). We say that a relation R among individuals
U is explicit, if (u,v) € R only holds, when at least one of
u, v deliberately established a connection to the other (e.g.,
user u added user v as a friend in a online social network).
We call R implicit, if (u,v) € R holds as a side effect of u’s
or v’s actions taken.
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Copy | Visit | Click | Follower | Friend | Group
Vil 1427 | 3381 1151 183 700 550
2 4144 8214 1718 171 1012 6693
#scc 1108 | 2599 963 175 515 90
largest scc 309 717 150 5 17 228
#wcce 37 11 55 37 140 89
largest wee | 1339 | 3359 | 1022 83 283 228

Table 1: High level statistics for all relations

3.2 Datasets

For our experiments, we considered three different data
sources which accrue in the social bookmark and resour-
ce sharing system BibSonomy. Firstly, we used an anony-
mized dump of all public bookmark and publication posts
until January 27, 2010. It consists of 175,521 tags, 5,579
users, 467,291 resources and 2,120,322 tag assignments. The
dump also contains BibSonomy’s friendship relation among
700 users as well as the follower relation, which is explicitly
established between user u and v, if w is interested in v’s
posts and wants to stay informed about new posts.

Furthermore we used BibSonomy’s “click log”, consisting
of entries which are generated whenever a logged-in user
clicked on a link in BibSonomy, containing the current page
URL together with the corresponding link target, date and
user name'. For our experiments we considered all click log
entries until January 25, 2010. Starting in October 9, 2008,
this dataset consists of 1,788,867 click events.

We finally considered all available apache web server log
files, ranging from October 14, 2007 until January 25, 2010,
consisting of around 16 GB compressed log entries. We used
all log entries available, ignoring the different time periods,
as this is a typical scenario for real life applications.

From all these data sources we extracted ezxplicit and im-
plicit relations between BibSonomy users?.

Explicit relations: The Follower-Graph G1 = (Vi, E1)
is a directed graph with (u,v) € Ei iff user u follows the
posts of user v. The Friend-Graph G2 = (Va, E») is a direc-
ted graph with (u,v) € E» iff user u has added user v as
a friend. The friend graph’s only purpose is (currently) to
restrict access to selected posts so that only users added as
“friend” can see them. The Group-Graph Gs = (V3, Es) is a
undirected graph with {u,v} € Es iff user u and v share a
common group.

Implicit relations: The Click-Graph G4 = (Vi, FE4) is a
directed graph with (u,v) € E4 iff user u has clicked on a
link on v’s user page. The Copy-Graph Gs = (Vs, Es) is
a directed graph with (u,v) € Es iff user u has copied an
BibTeX entry from user v. The Visit-Graph Ge = (Vs, Es)
is a directed graph with (u,v) € Eg iff user u has navigated
to v’s user page.

Each implicit graph G;, i = 4,...,6 is given a weighting
function c¢;: E; — N where ¢; counts the number of corre-
sponding events (e.g., ¢s(u,v) counts the number of posts
which user u has copied from v). From all our graphs, we
removed spammers and system-introduced artifacts like the
artificial user dblp or the automatically added tag imported.
Table 1 summarizes statistical properties of our graphs.

3.3 Structural network properties

!For privacy reasons a user may deactivate this feature.
2All considered evidence networks are available at
http://www.kde.cs.uni-kassel.de/mitzlaff/papers/
2010



Following [10], we analyze the explicit and implicit user
relations given in graphs Gi,...,Gs, highlighting proper-
ties they share and properties which differentiate them from
other online social networks. For reasons of comparability,
we restrict our analysis in the following to each of the net-
work’s large (weakly) connected component.

Degree distribution: One of the most crucial network
properties is the probability distribution ruling the likelihood
p(k), that a node v has in- or out-degree k respectively. In
most real life networks, the so called degree distribution fol-
lows a power law [5], that is p(k) ~ k=% where o > 1 is the
exponent of the distribution. Considering G, ..., Gs, all in-
and out-degree distributions except those from the groups
graph show a power law like behavior. We omit a further
discussion for space reasons.

Link symmetry: Mislove et al. [10] showed for the Flickr,
LiveJournal and YouTube that 60-80% of the direct friend-
ship links between users are symmetric. Among others, one
reason for this is that refusing a friendship request is consi-
dered impolite. Looking at Table 3, we see that BibSonomy’s
friendship relation differs significantly. Only 43% of the fri-
endship links between users are reciprocal. But as BibSono-
my is not used for social networking rather than permission
management, the given value is surprisingly high.

When more features are available exclusively along fri-
endship links (e.g., sending posts), the friendship graph’s
structure will probably change and links will get more and
more reciprocal. But concerning the implicit networks we
will see, that link asymmetry is determined by a structure
common to all our implicit networks.

Path lengths: In many networks it is important to know,
whether one can reach a node v from a given node u and the
smallest length of all paths connecting v with « if so. Table
3 summarizes for G, ..., Ge the shortest path statistics. At
the first glance, the average shortest path length is strikingly
low, ranging from 2.6 to 5.7 hops (considering e.g., to the
much larger web graph where in [3] an average of 16.12 hops
is given). But many nodes are dead ends, connecting only to
a small sub graph. For getting a picture of the connectivity
within the graphs, we looked at the fraction of all possible
n? links in a graph which are present in its transitive closure.
The corresponding results are shown in table 3, showing that
G1,...,Ge vary significantly regarding the number of users
that are connected by a directed path, though the average
shortest paths are approximately the same. In the following
we will explore each graph’s structure more detailed.

Component structure: Analoguously to the analysis of
the webgraph in [3], we analyzed the graph structure re-
lative to a graph’s G = (V, E) largest strongly connected
component SCC, partitioning V' as follows:

IN:={u e V\SCC|3IveSCC: u—g v}
OUT :={v € V\SCC | 3u € SCC: u —¢ v}
MISC := V' \ (IN U OUT U SCC)

In [3] the webgraph was shown to be partitioned in ap-
proximately evenly sized node sets aligned around a stron-
gly connected component which covered 27% of the web-
graph’s node set. For Flickr and YouTube the largest stron-
gly connected componets, covering more than 40% of the
corresponding node sets were identified [10].

We saw in the last section, that G1,...,Ge varied in the
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Figure 1: Gradually removing central users from the
visit graph, ordered descending by in-degree (left)
and ordered descending by out-degree (right)

| Copy | Visit | Click | Follower | Friend | Group

[SCC] 309 | 717 | 150 5 6 228
[IN| 264 | 128 146 13 94 0
|OUT| | 525 | 2423 | 514 14 17 0
IMISC| | 241 91 212 51 156 0

Table 2: Core structure

fraction of all possible links between nodes which are present
in the corresponding transitive closure. Table 2 explains the
differences. Graphs which are clearly structured in IN, SCC
and OUT allow more node-to-node paths as those, where a
significant larger part of the nodes is located in the MISC
set.

But Table 2 reveals also, that in all implicit networks the
OUT set is significantly larger than the IN set. The pro-
% varies largly, ranging from 0.05 (visit) to 0.5
(copy). Especially the visit graph is clearly structured by the
SCC, where only 3% of the nodes do not lie on a walk from
a node u € IN to v € OUT. Most probably the SCC in the
implicit graphs is densely structured around BibSonomy’s
most active users. For analyzing the structure of a strong
component, we conducted an experiment similar to [3] and
[10], where central nodes from the webgraph and some so-
cial networks were gradually removed (sorted in descending
order by node degree). Figure 1 shows representatively for
all implicit graphs, that the structure is rapidly destroyed
and completely vanishes after removing the 10% of the most
active users (quantified by out- and in-degree respectively).
Caution is necessary when interpreting Figure 1, as it on-
ly reflects the proportions of the graph. Removing the top
four users results in removing half of the links and half of
the users. This is due the fact, that these top users were the
system maintainers, responsible (among others) for spotting
spammers which results in a very high out-degree. Notably
the overall structure was sustained, which indicates that it
is due to underlying usage patterns. The explicit graphs are
not structured accordingly. Notably, the friend graph again
shows its asymmetric nature, having a significantly larger
IN than OUT set, which corresponds to users having added
asymmetric friend relations.

Link degree correlations: A phenomenon often obser-
ved in social networks is that nodes tend to connect with
other nodes of “the same type”. This selective linking pat-
tern is called “assortative mixing” or “homophily” [12]. In
most social networks, assortative mixing relative to the no-
de degree is observed [11].

The degree correlation function k., maps a node’s out-
degree value k to the mean in-degree of all nodes incident to
a node with out-degree k [16]. A simple plot of k,, with loga-
rithmic scale reveals fundamental tendencies: If nodes with

portion



Copy | Visit | Click | Follower | Friend | Group
APL 4.31 3.87 4.79 2.61 3.5 2.98
Radius 1 1 1 1 1 4
Diameter| 15 11 14 7 10 7
FL* 27% 24% 19% 7% 7% 100%
SL 8% 12% | 12% 11% 43% 100%
SL* 20% 19% 12% 6% 15% 100%

Table 3: Link properties, including average path
length (APL), fraction of links in transitive closure
(FL*), fraction of links which are symmetric (SL)
and fraction which are symmetric in the transitive
closure (SL*)
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Figure 2: Degree correlation function k,, for the vi-
sit (left) and click graph (right).

larger degree connect to other high degree nodes (assortativi-
ty), the plot follows asymptotically an ascending line. If the
plot shows an descending tendency, nodes with high degrees
tend to connect with nodes of lower degree (dissortativity).

Figure 2 shows representatively a plot of ky, for G4 and
Ge. For all implicit user relation graphs the degree correlati-
on functions share the same pattern, suggesting assortativity
up to a small degree (cross) but then dissortativity (circle).
Due to sparsity of the data (there are few different node
degrees), it is not possible to say whether this observation
is an artifact (e.g., due to the limited size of the graphs)
or systematic. But it is worth mentioning, that it was also
observed within the network of scientific collaboration [1] as
well as in [4] and [8], where respectively BibSonomy’s under-
lying folksonomy and the network of term co-occurence in
search queries were analyzed. In these works, both regions
were treated separately, concluding that assortativity was
present, as the other part of the graph was rejected due to
its limited size.

3.4 Semantic Structure

The analysis of the last section has focussed on several
inherent network properties of each analyzed evidence net-
work of user relationship. A key insight was that from a
graph-theoretic perspective, the networks exhibit different
characteristics, and none of them can be understood as a
“typical” social network. In this section we will go one step
further and take into account information which is not pre-
sent in the networks itself — namely background informa-
tion about the semantic profile of each node. Despite the
differences to a typical social network reported above, it is
a natural hypothesis to assume that, e.g., two users which
are close in the click network can be expected to share some
common interest, which is reflected in a higher “semantic si-
milarity” between these user nodes. In this way we establish
a connection between structural properties of our networks
and a semantic dimension of user relatedness.

Here we also face of course the problem of measuring the
“true” semantic similarity between two users. Here we build
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Figure 3: Average Cosine Similarity (y-axis) bet-
ween tagclouds of users as a function of their di-
stance in each of our networks. The upper figure
represents the computation on the original folkso-
nomy, the lower figure the null model created by
reshuffling the tags for each user.

on our prior work on semantic analysis of folksonomies [9],
where we discovered that the similarity between tagclouds
is a valid proxy for semantic relatedness. We compute this
similarity in the vector space RT, where, for user u, the
entries of the vector (u1,...,ur) € RT are defined by u; :
w(u,t) for t € T where w(u,t) is the number of times user u
has used tag t to tag one of her resources. Each vector can
be interpreted as a “semantic profile” of the underlying user,
represented by the distribution of her tag usage. Similarity
is computed by the cosine similarity (refer to [9] for details).

Inspired by the presentation in [14], we plot the average
semantic similarity between all pairs (u,v) of users (as obtai-
ned by the cosine similarity in the tag vector space) against
the shortest path between v and v in each of our networks.
This is done in Figure 3 (upper figure).

The first obvious observation is that the highest avera-
ge semantic similarity is found for the smallest topological
distance of 1. With growing lengths of the shortest paths
(x-axis), the average semantic similarity decreases quickly
towards 0. This holds for almost all measures. Manual in-
spection of the peaks at greater distances in the friends and
follower networks showed that they are probably due to the
sparsity of our data.

In summary, these results indicate a correlation of topo-
logical proximity and semantic similarity between the nodes
in each of our observed networks. This confirms in a more
formal way that shared interests between users are reflec-
ted in a higher degree of interaction between them — in an
implicit or explicit manner.

Following again the ideas of [14], we also want to ensure
that the obverved phenomena are not due to statistical ef-
fects of, e. g., users with very large tagclouds in our networks
being more similar to others. To this end, we created the null
model proposed in [14] and reshuffled the tags for each user,



while keeping the original (global and per-user) frequencies.
For this shuffled folksonomy, we recomputed the pairwise se-
mantic similarity and plotted it again against the lengths of
the shortest paths in each of our networks. The result can be
seen in Figure 3 (lower figure). One can see that the shuffling
process has eliminated completely the correlation observed
before (upper part of Figure 3); this means that the latter
is a real and not a statistical effect.

Interestingly, this effect seems to be stronger for the ex-
plicit networks: The highest average semantic similarity is
found for the friends and the follower network. The click and
copy network are in between, and the “most implicit” visit
network yields the lowest values, while still exhibiting the
same peak for lower distances as the other networks. This
ranking is in line with an intuitive “quality” judgement of
the underlying activity: The more explicit the networks are,
the better they mirror semantic closeness of users. However,
it is important to notice that the less explicit networks are of
course much bigger and more dense; hence they can still be
of great use in complementing the sparse explicit structures.

4. CONCLUSIONS

In this work we analyzed and characterized a number of
evidence networks for user relationships which have evolved
within our system. Our primary motivation hereby was to
inform a larger research community about the availability of
this kind of data, and about the individual characteristics
of the networks induced by users visiting, clicking, copying
from each other, and being each others friends, followers
or group members. After a first broad distinction of these
graphs into more implicit and more explicit structures, we
analyzed several network properties and examined the corre-
lation of topological proximity and semantic similarity bet-
ween nodes in the respective networks. Our results confirm
the intuitive assumption that more explicit networks mirror
more closely semantic relationships between users; however,
given the larger size and higher density of implicit networks
like the visit or click graph, these can still be considered as
a valuable indicator of shared interests.

We do not want to argue that considering explicit structu-
res alone (as typically done in the literature, especially in the
field of user recommendations) is not enough. However, our
results indicate that one has to pay attention to the way how
the social networking facilities are embedded in the system.
While one would expect that the “friend”-relationship within
BibSonomy resembles probably most closely social links, our
analysis showed that the resulting graph only partially ex-
hibits the characteristics of a social network. This might be
due to the fact that the friendship-feature of BibSonomy is
focussed on permissions (one can set the visibility of certain
entries to “friends only”) rather than on, e.g., networking.
By this we would like to exemplify that the context of the
emergence of a specific evidence network has to be taken
into account when including it into a task like community
detection or user recommendation.

We are aware that this is work has a preparatory character
towards a more detailed analysis of the interplay between
each of our networks, especially in the context of a given
task. We see our results as a stimulation for social network
researchers to recognize the presence and value of implicit
evidences of user relationships. Futhermore, it is our goal to
share the unique possibility of posessing this broad variety
of user interaction logs with a broader research community.
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