F. Description Logics

This section is based on material from

* lan Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

Aside: Semantics and Model Theories

Ontology/KR languages aim to model (part of) world
Terms in language correspond to entities in world

Meaning given by, e.g.:
— Mapping to another formalism, such as FOL, with own well defined
semantics

— or a bespoke Model Theory (MT)

MT defines relationship between syntax and interpretations
— Can be many interpretations (models) of one piece of syntax
— Models supposed to be analogue of (part of) world
+ E.g., elements of model correspond to objects in world
— Formal relationship between syntax and models
+ Structure of models reflect relationships specified in syntax

— Inference (e.g., subsumption) defined in terms of MT
. E.g., TE A C B iff in every model of 7; ext(A) C ext(B)

Slide 1

X

Slide 3

Description Logics

« OWL DL ist aquivalent zur Beschreibungslogik SHOIA(D,). Auf letzterer basiert
also die Semantik von OWL DL.

* Unter Beschreibungslogiken (Description Logics) versteht man eine Familie von
Teilsprachen der Pradikatenlogik 1. Stufe, die entscheidbar sind.

o SHOIN(D,) ist eine relativ komplexe Beschreibungslogik.

* Um einen ersten Einblick in das Prinzip der Beschreibungslogiken zu erhalten,
werfen wir zum Abschluss der Vorlesung einen Blick auf etwas abgespeckte
Fassungen.

Literatur:

¢ D. Nardi, R. J. Brachman. An Introduction to Description Logics. In: F. Baader,
D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.):
Description Logic Handbook, Cambridge University Press, 2002, 5-44.

e F. Baader, W. Nutt: Basic Description Logics. In: Description Logic Handbook,
47-100.

¢ lan Horrocks, Peter F. Patel-Schneider and Frank van Harmelen. From SHIQ

and RDF to OWL: The making of a web ontology language. http:/www.cs.man.ac.uk/%
7Ehorrocks/Publications/download/2003/HoPH03a.pdf

Aside: Set Based Model Theory

* Many logics (including standard First Order Logic) use a model theory
based on Zermelo-Frankel set theory

+ The domain of discourse (i.e., the part of the world being modelled) is
represented as a set (often refered as A)

+ Objects in the world are interpreted as elements of A
— Classes/concepts (unary predicates) are subsets of A
_ Properties/roles (binary predicates) are subsets of A x A (i.e., A?)

— Ternary predicates are subsets of A etc.

+ The sub-class relationship between classes can be interpreted as set
inclusion

+ Doesn’'t work for RDF, because in RDF a class (set) can be a member
(element) of another class (set)

— In Z-F set theory, elements of classes are atomic (no structure)

X

Slide 2

Slide 4

Aside: Set Based Model Theory Example

Aside: Set Based Model Theory Example

Model Interpretation + Formally, the vocabulary is the set of names we use in
our model of (part of) the world

— {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car,
drives, ...}

. Aninterpretation Z'is a tuple (A, -7)

Daisy isA Cow
Cow kindOf Animal

E,_ ! l Mary isA Person

% Person kindOf Animal

LA\ Z123ABC isA Car

- Ais the domain (a set)
— Tis a mapping that maps

+ Names of objects to elements of A

+ Names of unary predicates (classes/concepts) to subsets
of A

{{ab),..} € AxA + Names of binary predicates (properties/roles) to subsets of
, AxA
Slide 5

Mary drives Z123ABC

Slide 6

+ And so on for higher arity predicates (if any)

What Are Description Logics? X DL Architecture X

» A family of logic based Knowledge
Representation formalisms

— Descendants of semantic networks and KL-ONE
— Describe domain in terms of concepts Man = Human 11 Male
(classes), roles (relationships) and individuals
» Distinguished by:

— Formal semantics (typically model theoretic)

« Decidable fragments of FOL

* Closely related to Propositional Modal & Dynamic Logics (J':;:" M::yp)pyhz:t::;d
— Provision of inference services

« Sound and complete decision procedures for key
problems

« Implemented systems (highly optimised) Sige? side 8

Happy-Father = Man M 3 has-child Female

Short History of Description Logics X

Phase 1:
— Incomplete systems (Back, Classic, Loom,...)
— Based on structural algorithms

Phase 2:
— Development of tableau algorithms and complexity results
— Tableau-based systems for Pspace logics (e.g., Kris, Crack)
— Investigation of optimisation techniques

Phase 3:
— Tableau algorithms for very expressive DLs

— Highly optimised tableau systems for ExpTime logics (e.g.,
FaCT, DLP, Racer)

— Relationship to modal logic and decidable fragments of FOL

Slide 9

—From RDF to OWL y%

+ Two languages developed to satisfy the requirements

— OIL: developed by group of (largely) European researchers
(several from EU OntoKnowledge project)

— DAML-ONT: developed by group of (largely) US researchers
(in DARPA DAML programme)

+ Efforts merged to produce DAML+OIL

— Development was carried out by “Joint EU/US Committee on
Agent Markup Languages”

— Extends (“DL subset” of) RDF
+ DAML+OIL submitted to W3C as basis for standardisation
— Web-Ontology (WebOnt) Working Group formed

— WebOnt group developed OWL language based on
DAML+OIL

— OWL language now a W3C Recommendation (i.e., a
standard like HTML and XML)

Slide 11

Latest Developments

Phase 4:
— Mature implementations
— Mainstream applications and Tools
» Databases
— Consistency of conceptual schemata (EER, UML etc.)
— Schema integration
— Query subsumption (w.r.t. a conceptual schema)
» Ontologies and Semantic Web (and Grid)
— Ontology engineering (design, maintenance,
integration)
— Reasoning with ontology-based markup (meta-data)
— Service description and discovery
— Commercial implementations
» Cerebra system from Network Inference Ltd

Description Logic Family

* DLs are a family of logic based KR formalisms

» Particular languages mainly characterised by:

— Set of constructors for building complex concepts
and roles from simpler ones

— Set of axioms for asserting facts about concepts,
roles and individuals

* ALCis the smallest DL that is propositionally closed

— Constructors include booleans (and, or, not), and
— Restrictions on role successors

— E.g., concept describing “happy fathers” could be
written:
Man O BhasChild.Female O BhasChild.Male

0 ®hasChild.(Rich O Happy)

Slide 10

X

Slide 12

DL Concept and Role Constructors X

* Range of other constructors found in DLs, including:
— Number restrictions (cardinality constraints) on
roles, e.g., >3 hasChild, <1 hasMother

_ Qualified number restrictions, e.g., >2
hasChild.Female, <1 hasParent.Male

— Nominals (singleton concepts), e.g., {Italy}

— Concrete domains (datatypes), e.g.,
hasAge.(< 21)

— Inverse roles, e.g., hasChild- (hasParent)
— Transitive roles, e.g., hasChild* (descendant)
_ Role composition, e.g., hasParent o hasBrother Siide 13

(uncle)

—DL Knowledge Base

« DL Knowledge Base (KB) normally separated into 2 parts:

— TBox is a set of axioms describing structure of domain (i.e., a
conceptual schema), e.g.:
. HappyFather = Man O HhasChild.Female O ...

. Elephant = Animal O Large O Grey

« transitive(ancestor)

— ABox is a set of axioms describing a concrete situation (data), e.g.:

+ John:HappyFather
» <John,Mary>:hasChild

» Separation has no logical significance
— But may be conceptually and implementationally convenient

Slide 14

OWL as DL: Class Constructors

X

Constructor DL Syntax Example FOL Syntax
intersectionOf Cimn...NCy Human n Male Ci(x) A ... A Cn(z)
unionOf CiU...UCh Doctor U Lawyer | Ci(z) V...V Cu(x)
complementOf -C -Male -C(x)

oneOf {z1}U...U{zn} | {John}U{mary} |z=z1V...Vz=ua,
allvValuesFrom vP.C VvhasChild.Doctor | Vy.P(z,y) — C(y)
someValuesFrom 3rP.C FhasChild.Lawyer | Jy.P(z,y) A C(y)
maxCardinality <nP <1lhasChild ISy P(x,y)
minCardinality >nP >2hasChild 321y P(xz,y)

. XMLS datatypes as well as classes in YP.C and 3P.C

_ E.g., FhasAge.nonNegativelnteger

* Arbitrarily complex nesting of constructors
_ E.g., Person 1 YhasChild.Doctor U3hasChild.Doctor

Slide 15

RDFS Syntax X

E.g., Person n vYhasChild.Doctor LiI3hasChild.Doctor:

<owl:Class>
<owl:intersectionOf rdf:parseType="
collection">
<owl:Class rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty
rdf :resource="#hasChild"/>
<owl:toClass>
<owl:unionOf rdf:parseType="
collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>
<owl:onPropert
rdf:resource="#hasChild"7§
<owl:hasClass
rdf :resource="#Doctor"/>
</owl:Restriction>
</owl:unionOf> Sae 16
</owl:toClass>
</owl:Restriction>
</owl:intersectionOf>

OWL as DL: Axioms

Axiom DL Syntax | Example

subClassOf C1C 0y Human C Animal 1 Biped
equivalentClass C1=0y Man = Human 1 Male
disjointWith C1CE-Cy | MaleC —Female
samelndividualAs {z1} = {zp} | {President_Bush} = {G_W_Bush}
differentFrom {z1} C ~{zp} | {iohn} C —{peter}
subPropertyOf PICP hasDaughter C hasChild
equivalentProperty P=P cost = price

inverseOf Pi=P; hasChild = hasParent™
transitiveProperty PtC P |ancestort C ancestor
functionalProperty TLCL1P T C <1lhasMother
inverseFunctionalProperty | TC 1P~ | T C <1hasSSN~™

. Axioms (mostly) reducible to inclusion (C)

_C=D iff bothCCDandDLC C

* Obvious FOL equivalences
_E.g.,C=D iff Ox. C(x) < D(x),

CLCD iff Ox. C(x) = D(x)

Why Separate Classes and Datatypes?

+ Philosophical reasons:

— Datatypes structured by built-in predicates

— Not appropriate to form new datatypes using
ontology language

* Practical reasons:

— Ontology language remains simple and compact

— Semantic integrity of ontology language not

compromised

— Implementability not compromised — can use
hybrid reasoner

X

Slide 19

XML Schema Datatypes in OWL

+ OWL supports XML Schema primitive datatypes
— E.g., integer, real, string, ...
+ Strict separation between “object” classes and

datatypes

— Disjoint interpretation domain A, for datatypes
. For a datavalue d holds d* C A

Land A, 0 AT=0

— Disjoint “object” and datatype properties
. For a datatype propterty P holds PZ C A x A,

+ For object property S and datatype property P hold

STIPI=(

. Equivalent to the “D,)” in SHOZMD,)

OWL DL Semantics

. Mapping OWL to equivalent DL (SHOZN(D,)):

— Facilitates provision of reasoning services (using

DL systems)

— Provides well defined semantics
. DL semantics defined by interpretations: Z= (A?, %),

where

_ A7 is the domain (a non-empty set)
— I is an interpretation function that maps:
. Concept (class) name A to subset A’ of A”
. Role (property) name R to binary relation R” over A’

. Individual name i to element i’ of A”

X

Slide 18

X

Slide 20

DL Semantics

. Interpretation function - extends to concept

expressions in the obvious way, i.e.:

(cnD)X =ctnp?

(cuD)YX =ctupt

(ﬁc)I = AL \ CI

{z}f = {«T}

(3R.C)Y = {z | y.(z,y) € RT Ay € CT}
(VR.C)L = {z | Vy.(z,y) € Rt = y € CT}
(<nR)t = {z | #{y | (z,y) € RT} <n}
(nR) = {z | #{y | (z,y) € RT} > n}

Knowledge Base Semantics

. Aninterpretation Z satisfies (models) an axiom A (Z = A):
- IECLCDIffC*CD?
- IEC=DIiffC*=D*
— ZERLCSIffRECSF
- IER=SIiffRZT=
- IER+*CRIiff R)* CR?
-~ IExeDiffxte D?
- TE (x)y) € Riff Fy?) € R*

* T satisfies a Thox 7 (Z F 7) iff Z satisfies every axiom A in 7

* T satisfies an Abox A (Z E A) iff Z satisfies every axiom A in A

* I satisfies an KB K (Z F K) iff Z satisfies both 7and A

Slide 21

X

Slide 23

DL Knowledge Bases (Ontologies)

. An OWL ontology maps to a DL Knowledge Base K = (T,A)

— 7(Tbox) is a set of axioms of the form:
« CLE D (concept inclusion)
« C=D (concept equivalence)
« R C S (role inclusion)
« R =S (role equivalence)

« R+ C R (role transitivity)

— A(Abox) is a set of axioms of the form

« x € D (concept instantiation)

* (x,y) € R (role instantiation)

—lnference Tasks

Knowledge is correct (captures intuitions)
_ C subsumes D w.r.t. K iff for every model T of K, C*T C D

Knowledge is minimally redundant (no unintended synonyms)
_ Cisequivalent to D w.r.t. K iff for every model Z of K, CT= D

Knowledge is meaningful (classes can have instances)
_ Cis satisfiable w.r.t. K iff there exists some model Z of K s.t. CZ# ()

Querying knowledge

— xis an instance of C w.r.t. K iff for every model Z of K, xZ € C*

— {x,y)is aninstance of R w.r.t. K iff for, every model Z of K, (x%,y%) € R

Knowledge base consistency
_ A KB K is consistent iff there exists some model Z of

Slide 22

X

Slide 24

DL Reasoning

* Tableau algorithms used to test satisfiability (consistency)
» Try to build a tree-like model I of the input concept C

» Decompose C syntactically
— Apply tableau expansion rules
— Infer constraints on elements of model

. Tableau rules correspond to constructors in logic (M, U etc)
_ Some rules are nondeterministic (e.g., U, <)
— In practice, this means search

« Stop when no more rules applicable or clash occurs
_ Clash is an obvious contradiction, e.g., A(x), = A(x)

» Cycle check (blocking) may be needed for termination

Slide 25
« C satisfiable iff rules can be applied such that a fully expanded clash
free tree is constructed

Subslass Relationship IC19L.S) Margherita_pizza (ypesowl:Class) NN
= & S -
Asserted Hierare = Bl 2 g Name | | Annotations 4 ;1?.]9

[T)E',,qgam Entity |Marghema_p\2a Property | Walue \ Lal

(C. T .

\gtiél%‘iaandmgj;mw rdfscomment

@ Maraherita_pizza
@ (£} Pizza_topping
@ (C)Veoetable_topping

\@Tumatu_tuppmg
@ Onion_topping
(£} Hot_penper_tonping

Asserted

(Bl Props (27 [cF el (L &

ng o R i ? @has topping
Asserted Conditions \-_-ﬁl \5 g‘) ® x oty
- - EE_U“W'”Q (@ Tomata_topping
d 0 oni_topping NECEGSARY & SUFFICIENT (3 Mozarella_topping

NE @ [l has_base
Wlopping LS Pizza has_part

(€} Anchovy_topping 123 has_topping Tomato_tapping
@ @ Cheese_topping @)3 has_topping Mozzarella_topping
@ Mozzarella_topping
\@ Parmesan_tapping
k@ Pizza_base

Ih
[from Pizz:

@3 has_hase Piza_bhase

Properties
subpane showing
alternative ‘frame’
view

Slide 27

Highly Optimised Implementation

+ Naive implementation leads to effective non-termination

+ Modern systems include MANY optimisations

+ Optimised classification (compute partial ordering)
— Use enhanced traversal (exploit information from previous tests)
— Use structural information to select classification order

+ Optimised subsumption testing (search for models)
— Normalisation and simplification of concepts
— Absorption (rewriting) of general axioms
— Davis-Putnam style semantic branching search
— Dependency directed backtracking
— Caching of satisfiability results and (partial) models

— Heuristic ordering of propositional and modal expansion

Slide 26

