
Slide 1

F. Description Logics

This section is based on material from

• Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/ Slide 2

Description Logics

• OWL DL ist äquivalent zur Beschreibungslogik SHOIN(Dn). Auf letzterer basiert
also die Semantik von OWL DL.

• Unter Beschreibungslogiken (Description Logics) versteht man eine Familie von
Teilsprachen der Prädikatenlogik 1. Stufe, die entscheidbar sind.

• SHOIN(Dn) ist eine relativ komplexe Beschreibungslogik.

• Um einen ersten Einblick in das Prinzip der Beschreibungslogiken zu erhalten,
werfen wir zum Abschluss der Vorlesung einen Blick auf etwas abgespeckte
Fassungen.

Literatur:
• D. Nardi, R. J. Brachman. An Introduction to Description Logics. In: F. Baader,

D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.):
Description Logic Handbook, Cambridge University Press, 2002, 5-44.

• F. Baader, W. Nutt: Basic Description Logics. In: Description Logic Handbook,
47-100.

• Ian Horrocks, Peter F. Patel-Schneider and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. http://www.cs.man.ac.uk/%
7Ehorrocks/Publications/download/2003/HoPH03a.pdf

Slide 3

 Aside: Semantics and Model Theories

• Ontology/KR languages aim to model (part of) world

• Terms in language correspond to entities in world

• Meaning given by, e.g.:
– Mapping to another formalism, such as FOL, with own well defined

semantics
– or a bespoke Model Theory (MT)

• MT defines relationship between syntax and interpretations
– Can be many interpretations (models) of one piece of syntax
– Models supposed to be analogue of (part of) world

• E.g., elements of model correspond to objects in world
– Formal relationship between syntax and models

• Structure of models reflect relationships specified in syntax
– Inference (e.g., subsumption) defined in terms of MT

• E.g., � � A � B iff in every model of �, ext(A) � ext(B)
Slide 4

 Aside: Set Based Model Theory

• Many logics (including standard First Order Logic) use a model theory

based on Zermelo-Frankel set theory

• The domain of discourse (i.e., the part of the world being modelled) is
represented as a set (often refered as ∆)

• Objects in the world are interpreted as elements of ∆
– Classes/concepts (unary predicates) are subsets of ∆

– Properties/roles (binary predicates) are subsets of ∆ � ∆ (i.e., ∆2)

– Ternary predicates are subsets of ∆3 etc.

• The sub-class relationship between classes can be interpreted as set
inclusion

• Doesn’t work for RDF, because in RDF a class (set) can be a member
(element) of another class (set)

– In Z-F set theory, elements of classes are atomic (no structure)

Slide 5

Aside: Set Based Model Theory Example

World Interpretation

Daisy isA Cow

Cow kindOf Animal

Mary isA Person

Person kindOf Animal

Z123ABC isA Car

∆

{�a,b�,…} � ∆ � ∆

a

b

Model

Mary drives Z123ABC

Slide 6

Aside: Set Based Model Theory Example

• Formally, the vocabulary is the set of names we use in

our model of (part of) the world

– {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car,
drives, …}

• An interpretation � is a tuple ��∆, 	���

– ∆ is the domain (a set)
� 	�� is a mapping that maps

• Names of objects to elements of ∆
• Names of unary predicates (classes/concepts) to subsets

of ∆
• Names of binary predicates (properties/roles) to subsets of

 ∆ � ∆

• And so on for higher arity predicates (if any)

Slide 7

What Are Description Logics?

• A family of logic based Knowledge
Representation formalisms
– Descendants of semantic networks and KL-ONE

– Describe domain in terms of concepts
(classes), roles (relationships) and individuals

• Distinguished by:
– Formal semantics (typically model theoretic)

• Decidable fragments of FOL

• Closely related to Propositional Modal & Dynamic Logics

– Provision of inference services
• Sound and complete decision procedures for key

problems

• Implemented systems (highly optimised) Slide 8

DL Architecture

Knowledge Base

Tbox (schema)

Abox (data)

Man
 Human � Male

Happy-Father
 Man � � has-child Female
� …

John : Happy-Father
�John, Mary� : has-child In

fe
re

nc
e

Sy
st

em

In
te

rfa
ce

Slide 9

 Short History of Description Logics

Phase 1:

– Incomplete systems (Back, Classic, Loom, . . .)
– Based on structural algorithms

Phase 2:

– Development of tableau algorithms and complexity results

– Tableau-based systems for Pspace logics (e.g., Kris, Crack)
– Investigation of optimisation techniques

Phase 3:

– Tableau algorithms for very expressive DLs
– Highly optimised tableau systems for ExpTime logics (e.g.,

FaCT, DLP, Racer)
– Relationship to modal logic and decidable fragments of FOL

Slide 10

 Latest Developments

Phase 4:

– Mature implementations

– Mainstream applications and Tools
• Databases

– Consistency of conceptual schemata (EER, UML etc.)
– Schema integration
– Query subsumption (w.r.t. a conceptual schema)

• Ontologies and Semantic Web (and Grid)

– Ontology engineering (design, maintenance,
integration)

– Reasoning with ontology-based markup (meta-data)
– Service description and discovery

– Commercial implementations
• Cerebra system from Network Inference Ltd

Slide 11

 From RDF to OWL

• Two languages developed to satisfy the requirements

– OIL: developed by group of (largely) European researchers
(several from EU OntoKnowledge project)

– DAML-ONT: developed by group of (largely) US researchers
(in DARPA DAML programme)

• Efforts merged to produce DAML+OIL

– Development was carried out by “Joint EU/US Committee on
Agent Markup Languages”

– Extends (“DL subset” of) RDF

• DAML+OIL submitted to W3C as basis for standardisation

– Web-Ontology (WebOnt) Working Group formed

– WebOnt group developed OWL language based on
DAML+OIL

– OWL language now a W3C Recommendation (i.e., a
standard like HTML and XML)

Slide 12

 Description Logic Family

• DLs are a family of logic based KR formalisms

• Particular languages mainly characterised by:
– Set of constructors for building complex concepts

and roles from simpler ones
– Set of axioms for asserting facts about concepts,

roles and individuals

�
�� is the smallest DL that is propositionally closed

– Constructors include booleans (and, or, not), and
– Restrictions on role successors
– E.g., concept describing “happy fathers” could be

written:
Man � ∃hasChild.Female � ∃hasChild.Male
 � ∀hasChild.(Rich � Happy)

Slide 13

 DL Concept and Role Constructors

• Range of other constructors found in DLs, including:

– Number restrictions (cardinality constraints) on
roles, e.g., �3 hasChild, �1 hasMother

– Qualified number restrictions, e.g., �2

hasChild.Female, �1 hasParent.Male

– Nominals (singleton concepts), e.g., {Italy}

– Concrete domains (datatypes), e.g.,
hasAge.(� 21)

– Inverse roles, e.g., hasChild- (hasParent)

– Transitive roles, e.g., hasChild* (descendant)

– Role composition, e.g., hasParent � hasBrother

(uncle)

Slide 14

 DL Knowledge Base

• DL Knowledge Base (KB) normally separated into 2 parts:

– TBox is a set of axioms describing structure of domain (i.e., a
conceptual schema), e.g.:

• HappyFather ≡ Man � ∃hasChild.Female � …

• Elephant ≡ Animal � Large � Grey

• transitive(ancestor)

– ABox is a set of axioms describing a concrete situation (data), e.g.:

• John:HappyFather
• <John,Mary>:hasChild

• Separation has no logical significance

– But may be conceptually and implementationally convenient

Slide 15

 OWL as DL: Class Constructors

• XMLS datatypes as well as classes in �P.C and �P.C

– E.g., �hasAge.nonNegativeInteger

• Arbitrarily complex nesting of constructors

– E.g., Person � �hasChild.Doctor ���hasChild.Doctor

Slide 16

 RDFS Syntax

<owl:Class>
 <owl:intersectionOf rdf:parseType="
collection">

 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="#hasChild"/>

 <owl:toClass>
 <owl:unionOf rdf:parseType="
collection">

 <owl:Class rdf:about="#Doctor"/>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="#hasChild"/>

 <owl:hasClass
rdf:resource="#Doctor"/>

 </owl:Restriction>
 </owl:unionOf>
 </owl:toClass>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

E.g., Person � �hasChild.Doctor ���hasChild.Doctor:

Slide 17

 OWL as DL: Axioms

• Axioms (mostly) reducible to inclusion (�)

– C
 D iff both C � D and D � C

• Obvious FOL equivalences

– E.g., C
 D iff ∀x. C(x) � D(x),

– C � D iff ∀x. C(x) � D(x)

Slide 18

 XML Schema Datatypes in OWL

• OWL supports XML Schema primitive datatypes

– E.g., integer, real, string, …

• Strict separation between “object” classes and
datatypes

– Disjoint interpretation domain ∆D for datatypes

• For a datavalue d holds d� � ∆D

• and ∆D � ∆� = �

– Disjoint “object” and datatype properties

• For a datatype propterty P holds P� � ∆� � ∆D

• For object property S and datatype property P hold
S� � P� = �

• Equivalent to the “(Dn)” in �����(Dn)

Slide 19

 Why Separate Classes and Datatypes?

• Philosophical reasons:

– Datatypes structured by built-in predicates

– Not appropriate to form new datatypes using
ontology language

• Practical reasons:

– Ontology language remains simple and compact

– Semantic integrity of ontology language not
compromised

– Implementability not compromised — can use
hybrid reasoner

Slide 20

 OWL DL Semantics

• Mapping OWL to equivalent DL (�����(Dn)):

– Facilitates provision of reasoning services (using
DL systems)

– Provides well defined semantics

• DL semantics defined by interpretations: ��= (∆�, 	�),

where

– ∆� is the domain (a non-empty set)

� 	� is an interpretation function that maps:

• Concept (class) name � to subset �� of ∆�

• Role (property) name � to binary relation �� over ∆�

• Individual name � to element �� of ∆�

Slide 21

 DL Semantics

• Interpretation function 	� extends to concept

expressions in the obvious way, i.e.:

Slide 22

 DL Knowledge Bases (Ontologies)

• An OWL ontology maps to a DL Knowledge Base � = ���, �
�

� ���(Tbox) is a set of axioms of the form:

� � � ��(concept inclusion)

� �
 ��(concept equivalence)

� � � ��(role inclusion)

� �
 ��(role equivalence)

� �� � ��(role transitivity)

�
��(Abox) is a set of axioms of the form

� 	 � ��(concept instantiation)
� �	,
� � ��(role instantiation)

• Two sorts of Tbox axioms often distinguished

– “Definitions”

� � � � or �
 � where � is a concept name

– General Concept Inclusion axioms (GCIs)

� � � � where � in an arbitrary concept

Slide 23

 Knowledge Base Semantics

• An interpretation � satisfies (models) an axiom � (� � �):

� � � � � ��iff �� � ��

� � � �
 ��iff �� = ��

� � � � � ��iff �� � ��

� � � �
 ��iff �� = ��

� � � �� � ��iff (��)� � ��

� � � 	 � ��iff 	� � ��

� � � �	,
� � ��iff (�,
�) � ��

� � satisfies a Tbox � (� � ��) iff � satisfies every axiom � in �

� � satisfies an Abox
 (� �
) iff � satisfies every axiom � in

� � satisfies an KB � (� � �) iff � satisfies both ���and

Slide 24

 Inference Tasks

• Knowledge is correct (captures intuitions)

– C subsumes D w.r.t. � iff for every model � of �, �� � ��

• Knowledge is minimally redundant (no unintended synonyms)

– C is equivalent to D w.r.t. � iff for every model � of �, �� = ��

• Knowledge is meaningful (classes can have instances)

– C is satisfiable w.r.t. � iff there exists some model � of � s.t. �� ≠ �

• Querying knowledge

� 	 is an instance of � w.r.t. � iff for every model � of �, 	� � ��

– �	,
� is an instance of � w.r.t. � iff for, every model � of �, (�,
�) � ��

• Knowledge base consistency

– A KB � is consistent iff there exists some model � of �

Slide 25

 DL Reasoning
• Tableau algorithms used to test satisfiability (consistency)

• Try to build a tree-like model � of the input concept C

• Decompose C syntactically

– Apply tableau expansion rules

– Infer constraints on elements of model

• Tableau rules correspond to constructors in logic (�, � etc)

– Some rules are nondeterministic (e.g., �, �)

– In practice, this means search

• Stop when no more rules applicable or clash occurs

– Clash is an obvious contradiction, e.g., ��	�, � ��	�

• Cycle check (blocking) may be needed for termination

• C satisfiable iff rules can be applied such that a fully expanded clash
free tree is constructed

Slide 26

 Highly Optimised Implementation

• Naive implementation leads to effective non-termination

• Modern systems include MANY optimisations

• Optimised classification (compute partial ordering)

– Use enhanced traversal (exploit information from previous tests)

– Use structural information to select classification order

• Optimised subsumption testing (search for models)

– Normalisation and simplification of concepts

– Absorption (rewriting) of general axioms

– Davis-Putnam style semantic branching search

– Dependency directed backtracking

– Caching of satisfiability results and (partial) models

– Heuristic ordering of propositional and modal expansion

– …

Slide 27

Results for Margherita Pizza

• What it means

– All Margherita_pizzas (amongst other things)
• Are Pizzas
• have_topping some Tomato_topping
• have_topping some Mozzarella_topping

– & because they are Pizzas
have_base some Pizza_base

someValuesFrom
restrictions

Properties
subpane showing
alternative ‘frame’
view

