Statistical Alignment and Machine Translation

- Word for word
- Syntactic Transfer
- Interlingua
- Semantic Transfer
- Approaches

Machine Translation

- Sentences and paragraphs
- Text Alignment
- Length-based
- Methods
- Offset by signal processing techniques
- Lexical

- Translation probabilities
- Statistical MT
- Word Alignment

- Language Model
- Translation Model
- Decoder
Approaches

- **Interlingua**
 - Semantic representation
 - Syntactic Structure
 - Word string
 - Source Text

- **Semantic representation**
 - Semantic transfer
 - Syntactic Structure
 - Word string
 - Target Text

- **Syntactic Structure**
 - Syntactic transfer
 - Word string

- **Word string**
 - Word-for-word transfer

- **Source Text**
 - **Target Text**

Parse the sentence \rightarrow Transform the sentence \rightarrow Translate the words

In English:
- In the beginning was the word

In German:
- Im Anfang war das Wort

An interesting book
- Un interessante libro
- An interessante livro
- An interessante libro
Approaches: Interlingua

- Independent of the way particular languages express meaning
- Need only $O(n)$ translation systems
Text Alignment

• Parallel texts (bitexts):
 – which paragraphs or sentences in one language correspond to which paragraphs or sentences in another language
 – Which words tend to be translated by which other words

• Aligning sentences and paragraphs
 – Some group of sentences in one language corresponds in context to some group of sentences in the other language
 – **1:1** one sentence in the source document corresponds to one sentence in the target document
 – **n:m** \(n \) sentences in the source document correspond to \(m \) sentences in the target document
 – How much content has to overlap between sentences?
 – Problem of crossing dependencies
Methods in Text Alignment

• *Length-Based Approaches*: compare the lengths of units of text in the parallel corpora (short sentences will be translated as short sentences and long sentences as long sentences)

• *Offset Alignment by Signal Processing Techniques*: attempt to align position offsets in the two parallel texts

• *Lexical Methods*: Use lexical information to align beads of sentences.
Length-based approaches

- Gale & Church (1993)
 - Find the alignment \(A \) with highest probability given the two parallel texts \(S \) and \(T \)
 - To estimate the probabilities: decompose the aligned texts into a sequence of aligned beads

- Brown et al. (1991)
 - Similar to Gale & Church, but works by comparing sentence length in words (not characters)

- Wu (1994)
 - Unrelated languages (English and Cantonese)
 - Uses lexical cues
Offset Alignment by Signal Processing Techniques

- Church (1993)
 - Alignment using cognates (words that are similar across languages)
 "supérieur (French) – superior (English)"
 - Find cognates at the level of character sequences
 - Dot-plot construction

- Fung & McKeown (1994)
 - Seek an algorithm that will work without having found sentence boundaries, in only roughly parallel texts, and with unrelated language pairs
 - A small bilingual dictionary gives points of alignment
 - For each words, a signal is produced:
 - an arrival vector of integer numbers giving the number of words between each occurrence of the word at hand
 - A measure of similarity between signals is calculated using Dynamic Time Warping

Word offset: (1, 263, 267, 519)
Arrival vector: (262, 4, 252)
Lexical Methods

• Kay & Röscheisen (1993)
 – Assumption: two words should correspond if their distributions are the same
 – Steps:
 • Assume the first and last sentences of the texts align. These are the initial anchors.
 • Then, until most sentences are aligned:
 – Form an envelope of possible alignments.
 – Choose pairs of words that tend to co-occur in these potential partial alignments.
 – Find pairs of source and target sentences which contain many possible lexical correspondences.

• Chen (1993)
 – Sentence alignment by constructing a simple word-to-word translation model
 – The best alignment is the one that maximizes the likelihood of generating the corpus given the translation model

• Haruno & Yamazaki (1996)
 – Work with structurally different languages
 – Do lexical matching on content words only (use POS taggers)
 – Use an online dictionary to find matching word pairs
Word Alignment

- Derivation of bilingual dictionaries and terminological databases:
 - text alignment is extended to a word alignment.
 - some criterion (frequency) is used to select aligned pairs
- Word alignment based on measures of association (χ^2)
 - works well unless one word in L1 frequently occurs with more than one word in L2. Then, it is useful to assume a one-to-one correspondence.
Statistical Machine Translation

Language Model $P(e)$

Translation Model $P(f|e)$

Decoder

The decoder combines the evidence from $P(e)$ and $P(f|e)$ to find the sequence that is the best translation.

$$\arg\max_e P(e|f) = \arg\max_e P(f|e)P(e)$$
Translation Probabilities

- Are estimated using the EM algorithm, which solves the credit assignment problem
- Random initialization of the translation probabilities
- Compute the expected number of times we will find w_f in the French sentence given that we have w_e in the English sentence
- Reestimate the translation probabilities from the expectations
Problems (Brown et al. 1990, 1993)

- Fertility is asymmetric
- Independence assumptions
- Sensitivity to training data
- Efficiency

Lack of linguistic knowledge

- No notion of phrases
- Non-local dependencies
- Morphology
- Sparse data problems