
2   Closure Systems and 
Implications

5   Implications

Formal
Concept Analysis
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Def.: An implication
X Y holds in a context, if
every object having all 
attributes in X also has all 
attributes in Y.

• Examples:

{ Swimming }  { Hiking }

Implications

{ Boating }  { Swimming, Hiking, NPS Guided Tours, Fishing }

{ Bicycle Trail, NPS Guided Tours }  { Swimming, Hiking }
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Def.: Let X M. The
attributes in X are
independent, if there
are no trivial 
dependencies
between them. 

Example:
• Fishing
• Bicycle Trail
• Swimming

are independent 
attributes.

Independency
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Lemma: Attributes
are independent if
they span a hyper-
cube.

Example:

• Fishing
• Bicycle Trail
• Swimming

are independent 
attributes.

Independency
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Def.: A subset T M respects an implication A B, if A T or B T.

T respects a set of implications, if T respects every single implication in 

Lemma: An implication A B holds in a context iff B A‘‘ . It is then respected by all 
concept intents.

Concept Intents and Implications

20.06.2005 6

Lemma: Is a set of implications in M, then

( ) := { X M | X respects }

is a closure system.

The related closure operator is constructed as follows: 
For a set X M let

X := X { B | A B , A X }.

Compute X , X , X ,..., until a set

(X) := X ...

with (X) = (X)  (i.e., a fix point) is reached. (for infinite contexts this may be an 

infinite process). (X) ist then the closure of X with respect to the closure system  ( ).

Bem.: Dies ist der Algorithmus AttrHülle der Datenbankvorlesung!
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Def.: An implication A B is (semantically) entailed from a set of implications, if

every subset of M respecting also respects A B.

A family of implications ist called closed if every implication entailed from is already

contained in .

Lemma: A set of implications on M is closed iff the following conditions (Amstrong

rules) are fulfilled for all  W, X, Y, Z M :

1. X X ,

2. If X Y , then X Z Y ,

3. If X Y and Y Z W , then X Z W .

Bem.: Auch diese Regeln sollten einem aus der Datenbankvorlesung bekannt 
vorkommen!
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Def.: A set of implications of a context (G, M, I) is called complete, if every
implication of (G, M, I) is entailed from .
A set of implications is called non-redundant, if no implication is entailed from
the others.

Def.: P M is called pseudo intent of (G, M, I) if P P “ and for every pseudo
intent Q P with Q P holds Q“ P.

Theorem: The set of implications

:= { P P“ | P Pseudoinhalt }

is non-redundant and complete. We call stem basis.
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Example: Membership of developing countries in supranational groups
(Source: Lexikon Dritte Welt. Rowohlt-Verlag, Reinbek 1993)

Taken from: B. Ganter, R. Wille: Formal Concept Analysis -
Mathematical Foundations. Springer, Heidelberg 1999
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Stem basis of the 3rd World context:

{ OPEC }
{ MSAC }

{ Non-Alligned } 
{ Group of 77, Non-Alligned, MSAC, OPEC } 
{ Group of 77, Non-Alligned, LLDC, OPEC } 

{ Group of 77, Non-Alligned }
{ Group of 77 }
{ Group of 77 }
{ LLDC, AKP }
{ MSAC, AKP }
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Determining the stem basis with Next-Closure

is based on the following theorem:

Theorem: The set of all intents and pseudo-intents is a closure system. Its
corresponding closure operator is given as follows: 

Starting from set X we compute successively

X * := X { B | A B , A X, A X }

X * * := X * { B | A B , A X *, A X }

etc, until a set *(X) with *(X) = *( *(X)) is reached. This is then the desired intent
or pseudo-intent.
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The first part of the theorem is proven by using the following lemma:

Lemma: If P and Q are concept intents or pseudo-intents with P Q, P Q,  and Q 
P, then P Q is a concept intent.

Proof: P and Q, and therefore also P Q, respect all implications in \ { P P‘‘, Q 
Q‘‘}.   If P P Q Q, then P Q  respects these implications, too, and is

hence a concept intent.
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Algorithm Next-Closure for computing all concept intents and the
stem basis:

0) The set of all implications is set to the empty set.

1) The lectically first intent or pseudo-intent is .

2) Is A determined to be intent or pseudo-intent, then the lectically next intent/pseudo-
intent is computed by checking all i M \ A in decreasing order until A <i *(A • i )
holds.

*( A • i ) is then the next intent or pseudo-intent.

3)  If *(A i ) = ( *( A • i ))‘‘, then *(A • i ) is a concept intent, else it is a pseudo-
intent, and the implication *(A • i ) ( *( A • i ))‘‘ is added to .

4) If *(A • i ) = M, then stop, else A *( A • i )  and continue at 2).
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Example: on blackboard

A     i A • i *(A • i )     A <i *(A • i )?      ( *(A • i )‘‘ intents
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Association Rules

{ veil color: white,  gill spacing: close }  { gill attachment: free } 

Support: 78,52 % Confidence: 99,6 %

The input data of association rules algorithms can be written as a formal 
context (G,M,I):

• M is a set of items,

• G consists of the transaction IDs, 

• and the relation I is the list of transactions.
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Association Rules

The support is the percentage of all objects having all attributes in premise and conclusion:

Def.: The support of an attribute set X M is given by

The support of an association rule X Y is given by supp (X Y) := supp (X Y).

The confidence is the percentage of all objects fulfilling the premise
among all objects fulfilling both premise and conclusion. 

Def.: The confidence of a rule X Y is given by

G
X

(X)
´

supp

)(supp
)(supp)conf(

X
YXYX

{ veil color: white,  gill spacing: close }  { gill attachment: free } 

Support: 78,52 % Confidence: 99,6 %
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Our task: Find a basis of rules, i.e., a minimal set of rules out of which all 
other rules can be derived.

Classical Data Mining Task: Find, for given minsupp, minconf [0,1], all 
rules with support and confidence above these thresholds

Bases of Association Rules

{ veil color: white,  gill spacing: close }  { gill attachment: free } 

Support: 78,52 % Confidence: 99,6 %
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• From B‘ = B‘‘‘ follows

)´´supp(
´´´´

)supp( B
G
B

G
B

B

Theorem: X Y and X‘‘ Y‘‘ have the same support and the same confidence.

Hence for computing association rules, it is sufficient to compute the supports of all 
frequent sets with B = B´´ (i.e., the intents of the iceberg concept lattice).
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more efficient computation (e.g. TITANIC)

fewer rules (without information loss!)

32 frequent itemsets are
represented by 12 
frequent concept intents

minsupp = 70%

Advantage of the use of iceberg concept lattices
(compared to frequent itemsets)
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Association rules can be visualized
in the iceberg concept lattice:

• exact rules

• approximate rules

conf = 100 %

conf < 100 %

Advantage of the use of iceberg concept lattices
(compared to frequent itemsets)
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can be derived from the stem basis (Sect. 2).

In concept lattices, they can be directly read from the diagram:

• Lemma: An implication X Y holds iff the largest concept which is below
all concepts generated by the attributes in X is below all concepts generated
by attributes in Y.

• Examples:
• { Swimming }  { Hiking }   

(supp=10/19 52.6%, conf = 100%)

• { Boating }  { Swimming, Hiking, NPS Guided Tours, Fishing }   

(supp=4/19 21.0%, conf = 100%)

• { Bicycle Trail, NPS Guided Tours }  { Swimming, Hiking } 

(supp=4/19 21.0%, conf = 100%)

Exact Association Rules
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Each arrow indicates a rule of the basis, e.g. the rightmost arrow stands for
{ veil type: partial, gill spacing: close, veil color: white } { gill attachment: free }
(conf = 99.6 %, supp = 78.52 %)

Def.: The Luxenburger basis consists of all valid association
rules X Y such that there are concepts (A1, B1) and (A2, B2) where
(A1, B1) is a direct upper neighbor of (A2, B2), X = B1,  and X Y = B2.

supp = 78.52 %

Approximate Association Rules
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Theorem: From the Luxenburger-Basis all approximate rules (incl. support und 
confidence) can be derived with the following rules:

• (X Y) = (X Y\ Z), für { conf, supp }, Z X

• (X‘‘ Y‘‘) = (X Y)

• conf(X X) = 1

• conf(X Y) = p,  conf(Y Z) = q conf(X Z) = p·q
for all frequent concept intents X Y Z.

• supp(X Z) = supp(Y Z), for all X, Y Z.

The basis is minimal with this property.
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Example: 

{ ring number: one } { veil color: white }
• has support 89.92 % (the support of the largest concept having both

attributes in its intent) 
• and confidence 97.5 % × 99.9 % 97.4 %.

supp = 89.92 %
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Some experimental results


