
Comparing Conceptual, Divisive and Agglomerative
Clustering for Learning Taxonomies from Text

Philipp Cimiano
�
, Andreas Hotho

�
and Steffen Staab

�

Abstract. The application of clustering methods for automatic tax-
onomy construction from text requires knowledge about the trade-
off between, (i), their effectiveness (quality of result), (ii), efficiency
(run-time behaviour), and, (iii), traceability of the taxonomy con-
struction by the ontology engineer. In this line, we present an original
conceptual clustering method based on Formal Concept Analysis for
automatic taxonomy construction and compare it with hierarchical
agglomerative clustering and hierarchical divisive clustering.

1 Introduction

In order to reduce efforts for engineering large ontologies, recent
years have seen a surge of interests for learning ontologies from text
in general and learning of taxonomies, i.e. concept hierarchies, in
particular. The principle paradigm exploited in many of these ap-
proaches is to derive knowledge from texts by analyzing how certain
terms are used. The distributional hypothesis [9] assumes that terms
are similar to the extent to which they share similar linguistic con-
texts and thus gives rise to various methods that cluster terms based
on their linguistic context and form corresponding taxonomies.

In spite of increased interest in ontology learning and in spite of
a growing number of approaches that have been investigated, we see
two drawbacks currently prevailing in the field:

1. Ontology engineers who are interested in applying such meth-
ods still lack an adequate comparison in order to choose between
available methods.

2. The set of unsupervised methods for automatic taxonomy con-
struction has so far been very focused on agglomerative cluster-
ing methods, while the more efficient partitional clustering meth-
ods and conceptual clustering, which leads to more easily trace-
able taxonomy construction, have been investigated only to a very
small extent and not at all, respectively.

In this paper we examine different clustering paradigms that ex-
ploit the distributional hypothesis to automatically construct tax-
onomies. We provide an original conceptual clustering method based
on Formal Concept Analysis for automatic taxonomy construction
and we compare it against standard hierarchical agglomerative clus-
tering and Bi-Section KMeans as an instance of a divisive algorithm.

We discuss the approaches comparing them along the dimensions
of, (i), effectiveness (i.e. quality of result), (ii), efficiency (i.e. run-
time behaviour) and, (iii), traceability of taxonomy construction by
the ontology engineer. We base the discussion on, (i), a manually

�
AIFB, University of Karlsruhe, Germany; � cimiano,staab,hotho � @aifb.uni-
karlsruhe.de

built gold standard, (ii), results from the literature, and, (iii), a quali-
tative discussion of how easy it is for the ontology engineer to com-
prehend why the taxonomy was constructed in a particular way by
the corresponding method.

The reminder of this paper is organized as follows: Section 2
describes the text processing methods used to describe terms by
their linguistic context. Section 3 introduces the different clustering
paradigms, and more concretely the approaches, we consider in our
comparison. Then, Section 4 compares the different approaches. Be-
fore concluding, we discuss some related work in Section 5.

2 Text Processing

We describe the linguistic context of a term by the syntactic depen-
dencies that it establishes as the head of a subject, of an object or
of a PP-complement with a verb. Then, we represent a term by its
context, i.e. by a vector, the entries of which count the frequency of
syntactically dominating verbs. In order to determine the frequencies
of such dependencies automatically, we parse the text with LoPar, a
trainable, statistical left-corner parser2. From the parse trees we then
extract the syntactic dependencies between a verb and its subject, ob-
ject and PP complement by using tgrep3. Finally, we also lemmatize
the verbs as well as the head of the subject, object and PP comple-
ment by looking up the lemma in the lexicon provided with LoPar4.
Let’s take for instance the following two (made-up) sentences:

People book hotels. The man drove the bike along the beach.
After parsing these sentences, we would extract the following syntac-
tic dependencies (left) and after lemmatizing we would get the pairs
on the right:

book subj(people) book subj(people)
book obj(hotels) book obj(hotel)
drove subj(man) drive subj(man)
drove obj(bike) drive obj(bike)
drove along(beach) drive along(beach)

Furthermore, as (i) the output of the parser can be erroneous, i.e.
not all derived verb/object dependencies are correct, and (ii) not
all the derived dependencies are ’interesting’ in the sense that they
will help to discriminate between the different objects, we weigh the
verb/object dependencies with regard to a certain information mea-
sure. Thus, we consider only those verb/object relations for which
this information measure is above some threshold � . In earlier work

�
http://www.ims.uni-stuttgart.de/projekte/gramotron/
SOFTWARE/LoPar-en.html�
see http://mccawley.cogsci.uiuc.edu/corpora/treebank3.html�
The main difference to our earlier work presented in [3] is that here we
performed lemmatization and also improved the accuracy of the syntactic
dependency process this yielding better results.

we experimented with different information measures and found out
that the conditional probability works well enough ([3]). Thus, we
calculate the conditional probability that a certain (multi-word) term� appears as head of a certain argument position ����� of a verb � as
follows: �	� ��
 ����
�������������� �������! ����� �"��� , where #$� �&% ���'
"��� is the number of
occurrences of a term � in the argument position ���!� of a verb � and
#$�(� �'
"� � is the number of occurrences of argument position ����� for a
verb � .

3 Clustering Approaches

Different methods have been proposed in the literature to address
the problem of (semi-) automatically deriving a concept hierarchy
from text via clustering. They can be grouped in two classes: the
similarity-based methods on the one hand and the set-theoretical
approaches on the other hand. Both methods adopt a vector-space
model and represent a word or term as a vector containing features
or attributes derived from a certain corpus.

The first type of methods is characterized by the use of a sim-
ilarity/distance measure in order to compute the pairwise similar-
ity/distance between vectors corresponding to terms in order to de-
cide if they are semantically similar and thus should be clustered or
not. In our experiments, for example, we measure the similarity be-
tween terms by the cosine of the angle between the vectors)� � %)� �
representing them, i.e. *,+�-!�/.0�1)� � %)� � ���2� 34(5'6 34879 34:5 9 6 9 34;7 9
The similarity-based clustering algorithms are further categorized
into agglomerative (bottom-up) and divisive (top-down). Some
prominent examples for this type of method are [2, 10, 6, 12, 1].

In contrast, set-theoretic approaches partially order the objects ac-
cording to the inclusion relationship between their feature sets ([8]).

In what follows we first describe the different clustering ap-
proaches we used in our experiments, i.e. a set-theoretic approach
based on FCA and two similarity-based approaches, viz. a hierarchi-
cal agglomerative clustering algorithm and Bi-Section-KMeans as an
instance of a divisive algorithm.

3.1 Formal Concept Analysis

Formal Concept Analysis (FCA) uses order theory to analyze the cor-
relations between objects, < , and their features, = . FCA identifies
from such a data description, a so called formal context > , its set of
features ?A@B= being bijectively correlated with its set of objectsC @D< . Such a correlated pair is called a formal concept � C % ?E� . 5

Formal concepts are partially ordered by � C � % ? � �EF�� C � % ? � �HGC � @ C � or, which is equivalent, ? � @I? � . Objects J � % J �LK <
are conceptually clustered iff M!J � % J �!N @ C

, where � C % ?O� is a for-
mal concept in > . We illustrate FCA with a brief example. From a
corpus of text on tourism, we may derive features as described in sec-
tion 2 and construct a vector representation for objects < = M apart-
ment, car, bike, trip, excursion N . The representation with features
=QP �RM bookable %'S,S'S'% joinable N is given in table 1. It describes that
all given objects can be booked. Furthermore, one can rent a car, a
bike or an apartment. Moreover, one can drive a car or a bike, but
one may only ride a bike. Eventually, it is derived from the corpus
that one may join an excursion or a trip.

From this binary representation of objects, FCA constructs a lat-
tice of formal concepts. The lattice corresponding to our running ex-

T
The reader is referred to [8] for the formal definition of formal context,
formal concept, and the subconcept-superconcept relation between formal
concepts.

bookable rentable driveable rideable joinable

apartment x x
car x x x
motor-bike x x x x
excursion x x
trip x x

Table 1. Tourism domain knowledge as formal context

rentable

excursion driveable

rideable

joinable

car

trip apartment

bike

bookable

Figure 1. The lattice and concept hierarchy for the tourism example

ample is depicted in figure 1 (left).6 In order to interpret it as a tax-
onomy, we apply the following two rules:

1. Introduce one taxonomy concept U!V labeled with ? for each for-
mal concept � C % ?E� iff
 C
�WYX . Order them according to the order
in the lattice.

2. Introduce one taxonomy concept U'Z for each object J K < and
label it by J . Order them such that U Z F[U'V where � C % ?E� is a
formal concept, J K C

and there is no formal concept � C0\ % ? \ �
such that � C \ % ? \ �]F^� C % ?O� and J K C \ .

Traceability By our FCA-based method we derive a taxonomy
mostly with (object) terms and partially with verb-like identifiers.
This view of the taxonomy is quite natural when interpreting it in
terms of logical subsumption, e. g.: _a`b�(c1d/egfh�(`i�EjQ��d:k�f���c'l;fh�(`i���
We observe that the ‘verb-like’ concept identifiers have the same sta-
tus as any other concept identifier from an extensional point of view.
Even going further, in some cases, there may not even exist an appro-
priate hypernym in the language to label a certain abstract concept,
such that using a verb-like identifier might even be necessary. For
example, we could easily replace the identifiers joinable, rideable,
driveable by activity, two-wheeled vehicle and vehicle, respectively.
However, it is certainly difficult to replace rentable by some mean-
ingful term denoting the same extension, i. e. all the things that can
be rented. Thus, FCA is a method that allows very well for tracing
the reasons that a taxonomy has been constructed the way it is.

Efficiency Finally, we notice from the literature [8] that the runtime
of FCA is exponential in the minimum of the number of objects and
the number of features. Thus, its general time complexity is m	� X � � in
the worst case, where � is the number of terms to be ordered, as the
set of features typically outnumbers the set of terms to be ordered.

3.2 Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering (compare [5]) is a similarity-
based bottom-up clustering technique in which at the beginning every
term forms a cluster of its own. Then the algorithm iterates over the
step that merges the two most similar clusters still available, until one
arrives at a universal cluster that contains all the terms.
In our experiments, we use three different strategies to calculate the
n

The Concept Explorer software was used to produce this visualization (see
http://sourceforge.net/projects/conexp).

similarity between clusters: complete-, average- and single-linkage.
The three strategies may be based on the same similarity measure
between terms, i.e. the cosine measure in our experiments, but they
measure the similarity between two non-trivial clusters in different
ways.
Single linkage defines the similarity between two clusters � and � to
equal �������	��
 � � ��
��'d�� ���

%�� � , considering the closest pair between
the two clusters. Complete linkage considers the two most dissimi-
lar terms, i.e. ����� �	��
 � � ��
 �'d�� ���

%�� � . Finally, average-linkage com-
putes the average similarity of the terms of the two clusters, i.e.��
 � �
 �	� �	��
 � � ��
 �'d�� ���

%�� � . The reader should note that we prohibit
the merging of clusters with similarity 0 and rather order them under
a fictive universal cluster ‘root’.

Traceability. Similarity measures in a high-dimensional space —
like the vector representations we consider here — and their con-
sequences in agglomerative clustering are typically hard to trace by
the ontology engineer. Insight into the constructed taxonomy is usu-
ally restricted to understanding that a few initial merges of individual
terms into small-sized clusters are meaningful given the concrete text
corpus.

Efficiency. The time complexity of naive implementations of hierar-
chical agglomerative clustering algorithms is m	� � � � where � is the
number of terms. Optimized implementations achieve m	� � ��� +�� � �
(cf. [4]). The time complexity when using single-linkage as linkage
metric is even m	� � � � .
3.3 Bi-Section-KMeans

In [13] it has been shown that Bi-Section-KMeans – a variant of
KMeans – is a good and fast divisive clustering algorithm. It fre-
quently outperforms standard KMeans as well as agglomerative clus-
tering techniques.

Bi-Section-KMeans is defined as an outer loop around standard
KMeans. In order to generate e clusters, Bi-Section-KMeans repeat-
edly applies KMeans. Bi-Section-KMeans is initiated with the uni-
versal cluster containing all terms. Then it loops: It selects the cluster
with the largest variance7 and it calls KMeans in order to split this
cluster into exactly two subclusters. The loop is repeated e! #" times
such that e non-overlapping subclusters are generated. As similarity
measure we also use the cosine measure as defined above. Further, as
Bi-Section-KMeans is a randomized algorithm, we produce ten runs
and average the obtained results.

Traceability. Concerning traceability, Bi-Section-KMeans shares
the problem that similarities in high-dimensional space are difficult
to understand. In contrast to agglomerative algorithms, Bi-Section-
KMeans may incur that the two most similar terms are still split into
different clusters, as a wrong decision at the upper level of general-
ization may jeopardize intuitive clusterings at the lower level.

Efficiency. The time complexity of Bi-Section-KMeans algorithms
is m	� � eg� where � is the number of terms and e is the number of
clusters. In our setting we are interested in the complete tree for all
terms produced by Bi-Section-KMeans. Thus, e is equal to � and the
overall complexity is m	� � � � .

4 Evaluation

In order to evaluate the different clustering approaches, we com-
pare the automatically generated concept hierarchies against a hand-
$

Though we don’t make use of it in our experiments, it is also possible to
select the largest cluster for splitting.

crafted ontology for the tourism domain. Actually, we used the ref-
erence ontology of the comparison study in [11], which was mod-
eled in German by an experienced ontology engineer. Further, we
manually added the English labels for those concepts whose German
label has an English counterpart with the result that most of the con-
cepts (% 95%) finally came with an English label, too.8 The resulting
tourism domain ontology comprised 289 concepts.
The task we are evaluating against is as follows, given the 289 con-
cepts of this ontology, our aim is to reproduce the hierarchy by apply-
ing clustering techniques. In this line we are evaluating how similar
the automatically produced hierarchies and the reference hierarchy
are.
One of the few approaches to compare the similarity of two ontolo-
gies as a whole can be found in [11]. There ontologies are compared
at a lexical as well as at a semantic level. Following their approach,
we present a comparison based on lexical overlap as well as taxo-
nomic similarity between ontologies.
The core ontological model on which we base our evaluation is de-
fined as follows:

Definition 1 (Core Ontology)
A core ontology is a structure m P �D�'& % F)(2� consisting of (i) a set &
called concept identifiers, (ii) a partial order F (on & called concept
hierarchy or taxonomy.

As we injectively map terms onto concepts in all three clustering
approaches, we neglect the fact that terms can be polysemous.9 Now,
the Lexical Overlap (LO) and Lexical Recall (LR) of two ontologies
m � and m � are measured as follows:

* m	�:m � % m � �2�
� (,+ 5.- (,+ 7 �� (,+ 5./ (,+ 7 � and

*10 �:m � % m � �2�
� (,+ 5�- (,+ 7 �� (,+ 7 �

Further, we also introduce the lexical recall
*20 \

which mea-
sures the recall of the ontology m � against those terms/concepts in
m � which appear as arguments of a certain verb in the results of our
syntactic dependency extraction process which results in the set & \3 7 :
*10 \ �:m � % m � �2�

� (,+ 5 - (.4+ 7 �� (4+ 7 �
This variant of the lexical recall was introduced in order not
to penalize the system for not producing information for terms
which are not in our dataset.
In order to compare the taxonomy of the ontologies, we use the
semantic cotopy (SC) presented in [11]. The semantic cotopy of a
concept is defined as the set of all its super- and subconcepts:

5 &O�(U76 % m � P � M!U98
 U98 K & 3;: �(U76�F (U<8>= U<8 F (U76 � N ,
where U 6 K & 3 . For example, the semantic cotopy of bike in
the concept hierarchy in Figure 1 (right) would be M rideable,
driveable, rentable, bookable N . However, when comparing the
similarity between an automatically clustered ontology and a
human-modeled one, in order to have a fair comparison we should
exclude (i) concepts such as rideable, driveable, rentable etc.
from the automatically created hierarchy and (ii) abstract concepts
such as partially material thing from the reference standard when
computing the semantic cotopy. Thus, given two ontologies m � and
m � we will only consider the common concepts in the semantic
?

Some concepts did not have a direct counterpart in English.@
In principle, FCA is able to account for polysemy of terms; however, we
will gloss over this aspect in the present paper.

cotopy
5 & \ , i.e.

5 & \ �(U 6 % m � % m � �]P �^M!U98
 U98 K & � � & � : �(U<8 F (5 U 6	= U76�F (5 U98�� N .
Now the taxonomic overlap of two ontologies m � and m � is
computed as follows according to [11]:

� m	�:m � % m � ��� �� (5 � ��� � (5 � m	�(U % m � % m � � , where

� m	�(U % m � % m � �]P �
� � m \ �(U % m � % m � � d # U K & �� m \ \ �(U % m � % m � � d # U��K & �

and TO’ and TO” are defined as follows (compare [11]):

� m \ �(U % m � % m � �]P � � � (4 � � � 3 5 � 3 7
	 � (4 � � � 3 7 � 3 5 �� � (4 � � � 3 5 � 3 7
� � (4 � � � 3 7 � 3 5 �� m \ \ �(U % m � % m � � P � � � ` � 4 � (7 � � (4 � � � 3 5 � 3 7
	 � (4 � � 4 � 3 7 � 3 5 �� � (4 � � � 3 5 � 3 7
� � (4 � � 4 � 3 7 � 3 5 �
In order to balance the lexical recall and the taxonomic over-
lap against each other, we compute the F-Measure of them as
follows: �	� C % ?E�2� ��
���
 V��� V .
In particular, we evaluate an automatically produced ontology
m ����� 3 by evaluating how much of the terms in m������ it is able
to order hierarchically, i.e. calculating

10 �:m ����� 3 % m ����� � or m	�:m ����� 3 % m������2� as well as how much of the taxonomy of
m������ it is able to reproduce, i.e. calculating

� m	�:m������ % m ����� 3 �
Finally we balance these two values by the F-Measure de-
scribed above. Thus, henceforth

*20
,
*20 \

,
* m and

� m will
stand proxy for

*20 �:m ����� 3 % m������2� , *20 \ �:m ����� 3 % m������2� ,* m	�:m ����� 3 % m������2� and
� m	�:m������ % m ����� 3 � , respectively.

4.1 Results

As domain-specific text collection we use texts acquired from
http://www.lonelyplanet.com as well as from http://www.all-in-
all.de. Furthermore, we also used a general corpus, the British Na-
tional Corpus. Figure 2 (left) shows the values of the lexical mea-
sures LO, LR as well as LR’ for the results of the FCA-based ap-
proach. Obviously, the lexical recall measures LR and LR’ decrease
with higher thresholds � for the conditional probability �	� ��
 � �'
"� �
as the more information we cut off, the less lexical material we will
have. In contrast, we can also observe that the lexical overlap (LO)
increases proportionally to the threshold � . The reason for this is that
the higher the threshold, the smaller the automatically produced on-
tologies get.10 Overall, the best results for the measures are a LR of
44.56% (t=0.005), a LR’ of 79.40%11 (t=0.005) and a LO of 37.63%
(t=0.7). Figure 2 (left) also shows the results for the taxonomic over-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
threshold t

LR’

TO

LR

LO

F(LR,TO)

F(LO,TO)

F(LR’,TO)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
threshold t

Figure 2. Results of the lexical, taxonomic and F-measures over threshold
(FCA-based approach)

lap (
� m) calculated by using the modified semantic cotopy

5 & \
�"!

The size of the automatically acquired hierarchy at
 $#&%(' %)%)*

was of
7.236 concepts, which explains why LO is almost

%
at this threshold.� �

The reason why the maximum lexical recall LR’ is not 100% is because
we started with a threshold of

 +#,%(' %)%)*
; when using no threshold, the

lexical recall LR’ is 100%

which takes into account only concepts common to both ontologies.
Figure 2 (right) shows the F-Measures for the different combinations.
The measures are ordered bottom-up according to the ’fairness’ with
the system. The best result of the base F-Measure �	� * m % � m � is
43.83% (t=0.7), for �	� *10 % � m � we get 51.10% (t=0.005) and the
best result of �	� *10 \ % � m � is an impressive 68.23% (t=0.005).
Compared to the agglomerative hierarchical clustering algorithm as
well as to Bi-Section-KMeans, we get the results depicted in Fig-
ure 312. The best result is achieved by the FCA-based approach
with the above mentioned �	� *10 \ % � m � = 68.23%, followed by
the agglomerative clustering approach with �	� *20 \ % � m � = 62.92%
(complete-linkage), �	� *10 \ % � m � = 62.84% (average-linkage)
and �	� *10 \ % � m � = 62.78% (single-linkage). Bi-Section-KMeans
achieves a best result of �	� *10 \ % � m � = 62.80%. It is important
to mention that from threshold - S . on, the elements have no com-
mon features anymore such that the produced hierarchies are ei-
ther flat with all terms directly under the root node as in the FCA-
based and agglomerative approaches or just a binary tree produced
by random splits in the case of Bi-Section-Kmeans. The result here
is �	� *20 \ % � m � = 58.97% , which constitutes the baseline to com-
pare with.

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F(
L

R
’,

T
O

)

threshold t

FCA
Complete Linkage

Bi−Section−KMeans

Figure 3. Comparison: results of /1032�4 \65 798;: over threshold

for the
FCA-based approach, hierarchical agglomerative clustering with complete

linkage and Bi-Section-KMeans

Discussion. In order to compare the performance of our approach
with the human performance on the task, we interpret our results with
regard to the study presented in [11]. In this study, four subjects were
asked to model a taxonomy on the basis of 310 lexical entries rele-
vant for the tourism domain. The taxonomic overlap (

� m) between
the manually engineered ontologies reached from 47% to 87% with
an average of 56.35%. Thus, it is clear that any automatic approach
to derive a conceptual hierarchy between a set of concepts has defi-
nitely its limits. Assuming a LR of 100% for humans on the task of
modelling a concept hierarchy, i.e. being able to order all the terms in
question, we thus get ��<)=?> � � � *10 % � m � =72.1%, from which – even
artificially creating a human-like recall by measuring �	� *20 \ % � m � –
all the approaches fall short of. However, in order to be fully compa-
rable, we should perform an additional experiment in which humans
hierarchically order the terms appearing in our dataset.
On the other hand, we also conclude that the problem of automati-
cally constructing hierarchies from text by clustering techniques is
inherently hard, which can be seen by the fact that the best approach
is just over 9% above the baseline strategy corresponding to putting
all terms under the root node.

Comparison. We have shown that the different clustering ap-
proaches we have compared exhibit similar effectiveness when auto-
matically creating a taxonomy from text. The novel approach based
on FCA even seems to achieve slightly better results than the other
clustering approaches. In general, all the approaches fall short of hu-
man achievement, however they appear to be good enough to support

� �
Here we have not shown the results for average- and single linkage as they
are very similar to the ones for complete linkage.

the human ontology engineer.
Furthermore, Table 2 summarizes previous sections and highlights
the fact that every approach has its own benefits and drawbacks. The
main benefit of using FCA is that it does not only generate clusters
- formal concepts to be more specific - but it also provides an inten-
sional description for these clusters thus contributing to better under-
standing by the ontology engineer (compare Figure 1 (left)). This is
in contrast to the similarity-based methods, which do not provide the
same level of traceability due to the fact that it is the numerical value
of the similarity between two high-dimensional vectors which drives
the clustering process and which thus remains opaque to the engineer.
The agglomerative and divisive approach are different in this respect
in that in the first, initial merges of small-size clusters correspond to
high degrees of similarity and are thus more understandable, while
in the latter the splitting of clusters aims at minimizing the overall
cluster variance thus being harder to trace.
A clear disadvantage of FCA is that the size of the lattice can get
exponential in the size of the context in the worst case thus result-
ing in an exponential time complexity — compared to m	� � � � +�� � �
and m	� � � � for agglomerative clustering and Bi-Section-KMeans, re-
spectively. However, in our experiments FCA showed a near linear
time complexity which is due to the fact that vector representations
of terms are extremely sparse.

Effective- Efficiency Traceability
ness

FCA Good
8 0�� � : Good

Near Linear (empirical)
Agglomerative Good

8 0�� �����	� � : Fair
Clustering (complete/average)8 0
� � :

(single)
Bi-Section- Good

8 0�� � :
Weak-Fair

KMeans

Table 2. Trade-offs between different taxonomy construction methods

5 Related Work

Without doubt, there is a lack of evaluation standards and thus also
of comparative work in the field of learning concept hierarchies from
text by clustering. In the following, we mention some related ap-
proaches and briefly review their evaluation methodology.
There exist several approaches which are based on the distributional
hypothesis and which make use of clustering techniques to derive
term hierarchies from text by using certain syntactic dependencies.
Faure et al. ([6]) present an iterative bottom-up clustering approach
of nouns appearing in similar contexts. At each step, they cluster to-
gether the two most similar extents of some argument position of two
verbs. Their approach is not unsupervised as the user has to validate
the built clusters after each iteration. As results, they give the number
of ’relevant’ clusters produced (in terms of accuracy) in dependence
of the percentage of the corpus used. Pereira et al. ([12]) present
a top-down clustering approach to build an unlabeled hierarchy of
nouns. As in our approach, they also make use of verb-object rela-
tions to represent the context of a certain noun. They evaluate their
results on the one hand by considering the entropy of the produced
clusters and also in an indirect way in the context of a linguistic de-
cision task. Caraballo ([2]) also uses an agglomerative technique to
derive an unlabeled hierarchy of nouns by using data on conjunctions
of nouns and appositive constructs. She evaluates her approach by
presenting the hypernyms and the hyponym candidates to users for
validation. Another interesting approach is the incremental concep-
tual clustering presented in [7] which is based on a category utility
as a quality measure to be maximized. Fisher evaluates his system in

the context of a diagnosis prediction task in the medical domain.
It is clear that none of the above presented evaluation methodologies
is neither comparable to our evaluation method nor between them.
This corroborates our initial claim that there is a lack of comparative
work in the field which would help an ontology engineer to choose
the appropriate methods. One step in this direction is the work in [1].
They present an interesting framework and a corresponding work-
bench - Mo’K - allowing users to design conceptual clustering meth-
ods to assist them in an ontology building task. In particular, they
compare different representations, pruning parameters and distance
measures. Though their framework is in principle general enough to
integrate different clustering methods, they only present results for
an agglomerative clustering algorithm.

6 Conclusion and Outlook

We have presented a comparison of different clustering approaches
with regard to the task of automatically learning taxonomies from
textual data. Such a comparison is novel and to our knowledge has
not been presented before. Our conclusion is that the approaches we
examine have a comparable performance regarding the task we con-
sider. Regardless of performance, each approach has its own bene-
fits. The novel approach based on FCA we present has the advantage
that it not only produces clusters, but also intensional descriptions of
these clusters thus facilitating their understanding. The benefit of us-
ing Bi-Section-K-Means is certainly its efficiency. Furthermore, we
have also proposed a systematic way of evaluating ontology learning
algorithms by comparing them to a given human-modeled ontology.
In this sense our aim has also been to establish a baseline for further
research.
Acknowledgements. Research reported in this paper has been partially
financed by EU in the IST projects Dot-Kom (IST-2001-34038) and SWAP
(IST-2001-34103).

REFERENCES
[1] G. Bisson, C. Nedellec, and L. Canamero, ‘Designing clustering meth-

ods for ontology building - The Mo’K workbench’, in Proceedings of
the ECAI Ontology Learning Workshop, (2000).

[2] S.A. Caraballo, ‘Automatic construction of a hypernym-labeled noun
hierarchy from text’, in Proceedings of the 37th Annual Meeting of the
ACL, (1999).

[3] P. Cimiano, A. Hotho, and S. Staab, ‘Clustering ontologies from text’,
in Proceedings of LREC’04, (2004).

[4] W. Day and H. Edelsbrunner, ‘Efficient algorithms for agglomerative
hierarchical clustering methods’, J. of Classification, 1(7), (1984).

[5] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, John
Wiley & Sons, Inc., 2001.

[6] D. Faure and C. Nedellec, ‘A corpus-based conceptual clustering
method for verb frames and ontology’, in Proceedings of the LREC
Workshop on Adapting lexical and corpus resources to sublanguages
and applications, ed., P. Verlardi, (1998).

[7] D. Fisher, ‘Knowledge acquisition via incremental conceptual cluster-
ing’, Machine Learning, (2), 139–172, (1987).

[8] B. Ganter and R. Wille, Formal Concept Analysis – Mathematical
Foundations, Springer Verlag, 1999.

[9] Z. Harris, Mathematical Structures of Language, Wiley, 1968.
[10] D. Hindle, ‘Noun classification from predicate-argument structures’, in

Proceedings of the Annual Meeting of the ACL, pp. 268–275, (1990).
[11] A. Maedche and S. Staab, ‘Measuring similarity between ontologies’,

in Proceedings of EKAW’02. Springer, (2002).
[12] F. Pereira, N. Tishby, and L. Lee, ‘Distributional clustering of english

words’, in Proceedings of the 31st Annual Meeting of the ACL, (1993).
[13] M. Steinbach, G. Karypis, and V. Kumar, ‘A comparison of document

clustering techniques’, in KDD Workshop on Text Mining, (2000).

