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The issue of sustainability is at the top of the political and societal agenda, be-

ing considered of extreme importance and urgency. Human individual action im-

pacts the environment both locally (e.g., local air/water quality, noise disturbance)

and globally (e.g., climate change, resource use). Urban environments represent

a crucial example, with an increasing realization that the most effective way of

producing a change is involving the citizens themselves in monitoring campaigns

(a citizen science bottom-up approach). This is possible by developing novel tech-

nologies and IT infrastructures enabling large citizen participation. Here, in the

wider framework of one of the first such projects, we show results from an interna-

tional competition where citizens were involved in mobile air pollution monitoring

using low cost sensing devices, combined with a web-based game to monitor per-

ceived levels of pollution. Measures of shift in perceptions over the course of the

campaign are provided, together with insights into participatory patterns emerg-

ing from this study. Interesting effects related to inertia and to direct involvement
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in measurement activities rather than indirect information exposure are also high-

lighted, indicating that direct involvement can enhance learning and environmen-

tal awareness. In the future, this could result in better adoption of policies towards

decreasing pollution.

Air pollution has an important effect on our health, with an increasing number

of studies showing higher risk of respiratory and cardiovascular diseases for people ex-

posed to higher pollution levels1, 2. In this context, keeping air pollution at bay has been

a major priority for policy makers in the past decades. A lot of effort has been put into

monitoring and controlling air pollution. Large scale monitoring networks routinely

monitor target pollutants. They allow for temporal trends in air pollution to be tracked.

Significant effort has also been made to make information accessible to the wider pub-

lic. However, several papers indicate that official monitoring networks do not have suf-

ficient spatial coverage to provide detailed information on personal exposure of people,

as for some pollutants, this may vary substantially among micro-environments3, 4, i.e.,

in urban, traffic-prone areas spatial variability is very high5–7. Several pollution sources

have been addressed with success. However, persistent problems remain in urban areas,

where traffic and domestic heating are important sources8. Next to the technical solu-

tions (e.g., electrical mobility), people’s personal perceptions, behavior and choices play

a major role in addressing these issues and facilitating change in a bottom-up manner.
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Participatory sensing, involving citizens in environmental monitoring, can have

multiple potential benefits. Firstly, it can increase coverage of monitored areas, both

in time and space, due to the ability to distribute the monitoring activities to multiple

individuals9. Secondly, the act of monitoring pollution by citizens could facilitate learn-

ing and increase their awareness of environmental issues10. A recent report on environ-

mental citizen science concludes that few studies on public participation in science and

environmental education have rigorously assessed changes in attitudes towards science

and the environment, and environmental behaviors. There appear to be relatively few

examples of participatory citizen science having a tangible impact on decision making,

although the potential is often noted11.

One element to foster large scale participation in participatory monitoring cam-

paigns is the availability of low-cost wearable sensing devices. These will give intrinsi-

cally lower quality data, so the trade-off is between the social benefits and the quality of

the data12. Several efforts have been made to develop such low-cost wearable sensing

devices, integrating low-cost gas sensors, GPS and mobile phones. The CommonSense

project13 built hand-held devices containing CO, NOx and ozone sensors. Another ex-

ample, which was quite successful in raising funds through crowdfunding, is the Air

Quality Egg14, designed for static measurements and containing NO2 and CO sensors.

However, many of these projects focus mainly on the electronics and systems
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integration, power issues, wireless data transfer, data storage and visualization and pay

little attention to the limitations and quality issues of the gas sensors adopted. Very

few tests or validation results have been published in publicly available reports or peer

reviewed literature. Examples are Hasenfratz et al. and Mead et al.. Hasenfratz et al.9

introduce GasMobile, a platform measuring ozone concentration, which is connected to

a smartphone by USB. They take into account important issues such as sensor quality,

calibration, and effect of mobility on sensor readings. Mead et al.15 developed sensor

boxes with electrochemical sensors, which entailed changes in the sensor technology

itself, in the electronics and complex data analysis. The CitiSense16 project is currently

building an infrastructure for citizen engagement in environmental monitoring.

Another issue is the collection of a representative data set using mobile air qual-

ity sensing technologies. To be representative and useful for personal or community

decision making, mobile measurements have to be repeated regularly, data have to be

aggregated over relevant time frames and locations, and carefully interpreted using data

handling and expert knowledge to filter out inaccuracies6, 17.The supplementary material

S1 discusses the challenges involved in using low-cost sensors for air quality monitoring

and describes the approach used by our project to address quality issues.

An important issue concerns the technological versus social aspect of such projects.

Most of the existing projects concentrate mainly on the sensor side of participatory air
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quality sensing, i.e., how to build the sensing devices and map pollution. However,

participant engagement, participatory patterns, learning and awareness are equally im-

portant aspects, and feed back into the quality of the data collection, as we have also

shown in a parallel project concerned with noise pollution18. By collecting subjective

data as well, monitoring campaigns can enable not only air quality data collection, but

also analysis of volunteer behavior, strategies and a possible increase in awareness.

In this paper, we discuss the behavior and perceptions of citizens involved in mon-

itoring, during a large scale international test case: the AirProbe International Challenge

(APIC)19. This was organized simultaneously in four cities: Antwerp (Belgium), Kassel

(Germany), London (UK) and Turin (Italy). In this test case a web-based game, air qual-

ity sensing devices and a competition-based incentive scheme were combined to collect

both objective air quality data and data on perceived air quality, to analyze participation

patterns and (changes in) perception and behavior of the participants. The test case was

organized as a competition between the cities, to enhance participation. For the first

time to our knowledge, an end-to-end scientific platform for participatory air pollution

sensing, developed as part of the EveryAware project20, was used. This platform is de-

scribed briefly in the Methods section, with more details included in the supplementary

material S1. The quality and representativeness of the collected air quality data are also

discussed in S1.
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During this test case, volunteer participants were asked to get involved in two ac-

tivity types. The first one consisted in using a sensing device (Sensor Box), to measure

air pollution (black carbon (BC) concentrations) in their daily life, generating what we

call objective data. The second activity was playing a web game (AirProbe), where

volunteers were asked to estimate the pollution level in their cities by placing flags (so

called AirPins) on a map and tagging them with estimated black carbon (BC) concen-

trations on a scale from 0 to 10 µg/m3, resulting in subjective data on air pollution

(perception). Volunteers involved in the measuring activities were encouraged to play

the game and bring other players as well (create a team).

The two data types allow for an analysis of user behavior and perception through-

out the challenge. To enable this, the test case was composed of three phases. In phase

1, only the online game was available, so we could obtain an initial map of the perceived

air pollution. In phase 2 the measurements started in a predefined area in each of the

cities (corresponding also to the web game area), with the web game running in parallel.

Phase 3 introduced a change in the game, so that players could acquire limited infor-

mation about the real pollution in their cities in the form of sensor box measurements

averaged over small areas (so called AirSquares). At the same time, measurements

were continued, this time without a restriction of the area to be mapped. Incentives in

the form of prizes were given at the end of each phase to the best teams/players (please

see Methods and Supplementary Material S1 for more details).
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The data collected during the test case are used here to analyze participation pat-

terns, in terms of activity and coverage, and any changes in perception. Our results in-

dicate that better coverage is obtained when volunteers are assigned a specific mapping

area, compared to when they are asked to select the time and location of their measure-

ments. Additionally, when allowed to measure freely, they seem to be attracted to places

with higher pollution levels. Furthermore, while at the beginning of the challenge the

general perception was that pollution was higher than in reality, perceptions changed in

time indicating increased knowledge of real pollution levels. The amount of data col-

lected in the test case, together with the first insights we obtained from it, suggest that

bottom-up participatory sensing approaches are effective in attracting participants with

high levels of activity and also in enhancing citizen awareness of real pollution levels.

Results

Volunteer involvement and activity levels are among the most important elements in par-

ticipatory monitoring campaigns, since these can determine the success of the campaign.

Large activity is required for acquiring meaningful data, both objective, for analysis of

the environment itself, and subjective, for analysis of social behavior. The test case pre-

sented here has successfully involved 39 teams of volunteers in 4 European locations,

gathering 6,615,409 valid geo-localized data points during the challenge (the measuring

device collects one data point per second). An additional 3,326,956 data points were
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uploaded to our servers in the same period, but were missing complete GPS informa-

tion, and were not included in the analysis. Some of these measurements contained

labels (tags), with 742 geo-localized overall tags coming mostly from one location of

the challenge (London).

Additional information on perception of pollution has been extracted from the

online game. The platform had 288 users in total, over six weeks, 97 of which played

the game at least ten times. Their activity resulted in 70,758 AirPins at the end of the

test case, which we will use to assess perceived pollution levels.

Figure 1 shows general participation patterns, both for the measuring activity and

for the web game. Further details about participation, for each of the four locations of

the test case, can be found in supplementary file S1. The daily number of measurements

show larger activity during the week compared to weekends, with almost twice the

activity in the peak days (Wednesday/Friday). This indicates that the volunteers were

strongly interested in monitoring their exposure in relation to the routine activities of the

week, which probably include commuting and access to highly polluted environments.

It might also mean that it was easier for participants to monitor as part of their weekly

routine whereby at the weekend monitoring would require more effort as it would not

comprise part of their commute, for example, or may have impacted on other leisure

activities that they wanted to carry out. Daily patterns (hourly measurements) indicate
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a peak in activity in the afternoon, around 5 pm, again probably due to afternoon com-

muting. However, measurements are performed at all hours of the day, indicating the

presence of very dedicated volunteers. In fact, the total number of measurements per

team indicates several teams with very high activity levels, with the most active team

reaching almost 1 million points (equivalent to over 270 hours of measurements). How-

ever, team activity was very heterogeneous, with some teams collecting much less data

than the others. This heterogeneity was found within the same city (e.g., the highly ac-

tive teams are spread over three of the four cities), indicating that differences in activity

were in general based on personal predisposition and not location. However, some of the

heterogeneity between the cities can also be explained by the differences in instructions,

emphasis and incentives.

The web game activity follows similar heterogeneous patterns. Figure 1 also

shows the distribution of the number of AirPins used to declare perceived pollution

levels by game players. Some of them got very involved in this activity, with over 2000

AirPins used, while many players had very low activity (started the game but did not

continue). The distributions appear to follow a power law, also typical for other social

activity patterns21, 22. It is important to mention that managing hundreds of AirPins re-

quired a large amount of time to be spent in the game, indicating the high involvement

levels that the players reached.
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Besides activity in terms of number of measurements, another important aspect

is coverage, both in space and time. As we have seen before, measurements have been

performed at all hours of the day and days of the week. However, usually not all areas

are covered equally. Here we show general information about overall coverage achieved

(with more details for each location included in the supplementary file S1).

In order to compute the coverage, the area of each of the four participating cities

was divided into 10 by 10 meter squares (tiles). One square was considered covered

if at least one measurement was performed within it. Figure 2 shows how the number

of squares covered grows as users perform more measurements, both overall and for

each phase individually. The volunteers had different tasks in the two measuring phases

(phase 2 and 3 of the test case). In phase 2, they had to concentrate on covering as much

as possible of a specific area, while in phase 3 they could explore any area they wanted.

Figure 2 indicates that space coverage grows steadily with the number of mea-

surements, meaning that users continue to explore new areas over the course of the

challenge. However, while at the beginning of the challenge the growth is fast, this

decreases in time. This indicates less exploration as the challenge evolves, due to the

fact that volunteers measure at the same location multiple times. When looking at in-

dividual phases, it appears that during phase 2 space coverage was much better than in

phase 3. This does indeed mean that volunteers displayed a better exploratory behavior
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at the beginning and when asked to cover a specific area of the city, compared to when

they were asked to map any place they wished. In the latter case, they went for their

daily routes that were not so extensive, and did not explore further. For both phases

the growth of the space coverage follows a power-law, with exponent 0.73 in phase 2

and 0.79 in phase 3. This suggests that, although on the short term, space coverage in

phase two is larger, in the long run the strategy of phase 3 might actually produce better

coverage. However, the restricted time frame of our challenge can not provide further

proof for this hypothesis.

Since pollution levels vary both in time and space, it is important to have more

measurements in the same location. So, for each tile, we also look at how measurements

are spread in time, i.e., time coverage. We divided the measurements into 8 categories

based on the time of measurement: 4 working day categories and 4 weekend categories,

with time thresholds at hours 08:00, 14:00, 18:00 and 23:00. Measurements on Friday

after 23:00 fall in the working day category, while those on Saturday before 08:00 in the

weekend category. The entropy of the resulting sets was computed. For each square,

we obtained the fraction fi of measurements in each category i as the ratio between

measurements falling into that category and the overall number of measurements in that

square. Then the entropy for that square is S = −
∑8

i=1 fi log2 fi. A higher entropy

indicates a better spread of measurements in time. Figure 3 shows the distribution of

the entropy for all squares covered, in a rank-entropy plot (squares are sorted descending
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by entropy and the entropy values plotted for each square). A few squares had a very

good time coverage and they correspond, most likely, to hubs in the four cities (e.g.,

popular leisure locations or transportation hubs). At the other extreme there are many

squares (more than half) that have been covered only in one time slot (entropy is 0).

Between the two extremes, time coverage is dropping fast when moving through the

ranked squares.

The curves display jumps and it appears that squares can be divided into sets based

on time coverage. One first set (rightmost) includes those squares that have measure-

ments only at one time of the day (entropy 0), which is followed by those covered in 2

time slots, ending with those that are covered at all times of the day (leftmost). Within

each set, coverage decays differently. While for the highly covered squares decay ap-

pears to be exponential (as plotted in the inset), this becomes slower as the coverage

decreases, with curves resembling polynomial decay.

When comparing the two phases, time coverage in phase 2 is much better overall

than in phase 3. This indicates that volunteers not only explored more in space, but

also in time, during phase 2, while in phase 3 they followed their daily schedule which

allowed for poor time coverage as well. This underlines again the importance of giving

volunteers a specific mapping area in order to obtain better measurement spread.

The measured BC levels can also provide useful insight into the aims and strate-
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gies of the volunteers during the challenge. To this end, we can examine how these

change from phase 2 to phase 3. Thus, Figure 4 shows graphs of BC levels measured

in the two phases, and we can observe larger BC values in phase 3 (the distribution is

shifted to the right). A Kolmogorov-Smirnov test was performed to test whether differ-

ences are significant and a p-value of 2.2e-16 was obtained, confirming the difference.

When volunteers can freely choose where to take measurements, it appears that they

primarily target more polluted areas. When the mapping area is restricted, they tend

to have a more systematic approach and cover lower pollution levels as well. One may

argue that pollution levels may change naturally from one day to another, so the shift we

see could be do to a higher average pollution level from phase 2 to phase 3. However,

comparison with reference data seem to suggest that this is not the case (supplementary

material S1). Additional comparisons per location are also included in S1.

The analysis of the structure and location of the collected objective data gives

some insight into volunteer behavior and interests when measuring air pollution. Sub-

jective data, on the other hand, can provide a stronger indication of changes in per-

ception. For this, we look at the data collected by the web game, which consists of

perceived levels of pollution in the mapping area, the AirPin values. In particular, to

inspect awareness improvement and the learning process, we are interested in the rela-

tion between these annotations and the ‘true’ pollution values available in the web game

during phase 3 in the form of AirSquares. Thus we define the APD (AirPin difference)
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as the difference between the AirPin value (perception of the volunteer) and the relative

AirSquare value (real pollution level). In other words, the APD is the amount of ‘error’

in the annotation intended as distance from the measurement. Figure 5 shows several

distributions of the APD. In the left part we have APD distributions in each phase for

Turin, Kassel and London. Antwerp did not reach the critical mass of data required for

this analysis (the number of web game volunteers was very restricted).

In phase 1, when no volunteer had been exposed to real measurements, we observe

three different opinion structures in the three cities, representing the initial perception

of volunteers. A systematic overestimation of pollution is present, i.e., the APD has

peaks at ∼ 4 µg/m3. This is likely to be caused by a scale misunderstanding: players,

which were not accustomed to the BC concentration scale, almost ignored completely

which values were to be considered reasonable and thus used the middle of the scale

(i.e., 5 µg/m3) as a ’normal’ value. This results in the observed overestimation since

the real average BC concentration measured lies between 1 and 2 µg/m3.

In phase 2 things began to change. Some volunteers (so called Air Ambassadors)

were given the sensor boxes to start performing measurements. The web game players

consisted of these volunteers plus a set of other players recruited by them (so called

Air Guardians). No data, except for the direct feedback from the boxes, was shown

to the volunteers. Even so, a change is visible in the distribution of APD reported in
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the left part of Figure 5. By observing the measurements from their sensor boxes, Vol-

unteers learn that in general BC concentrations are lower than what they believed, and

respond by changing the values of the AirPins or taking the information into account

when placing new ones. Since the change is quite significant, we also believe that those

volunteers with the sensor boxes spread the information about what they were measur-

ing, so that all players changed their perception. This decrease in the pollution levels

reported in the subjective data of phase 2 is a first strong indication of learning during

this phase. The right side of Figure 5 shows APD distributions separately for AirAm-

bassadors (performing measurements) and AirGuardians (who had no direct exposure

to measurements until phase 3). We analyzed just the Turin dataset because in the other

cities there was no clear distinction due to Ambassadors sharing their sensor boxes. The

opinion shift in phase 2 is very strong for AirAmbassadors, but some change is also

visible for AirGuardians, at least for part of the AirPins. This indicates that there was

interaction among players, so that not only volunteers performing measurements, but

some of their friends also, changed their perceptions.

Phase 3 brought an important change in the web game. AirSquares were made

available, so players could acquire aggregated information (punctual information would

have been just copied by the users) in form of average pollution levels within the re-

spective square measured by the sensor boxes. There is a corresponding radical change

in the subjective air pollution estimation emerging clearly in the left part of Figure 5.
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In all cities, there is a peak around zero in phase 3 in the APD distribution, meaning

there were more players estimating the air quality correcly. This was in some way ex-

pected, since we are giving strong hints about pollution levels by means of AirSquares,

but there is something more happening. In London there is another bigger peak and also

in the other cities the distributions show some asymmetry, pointing out that people are

not trusting the hints completely because in that case the distribution would have been

more similar to a delta function, i.e., narrow and symmetric.

In order to describe this phenomenon we defined a stochastic transformation to

reproduce the APD distribution for phase 3 starting from the APD distribution of phase

1. This transformation should reproduce the effect of the hints received by our volun-

teers on the initial distribution of their errors. Based on the empiric observation, the

transformation takes into account two main effects: the possibility of complete trust in

the hint, so that the opinion is reset near the hint, and the possibility of incomplete trust,

so that the opinion is just shifted closer to the hint. The mathematical definition can be

found in the supplementary material. The left part of Figure 5 shows, for each location,

how the transformed phase 1 data (black squares) matches phase 3 distributions, and

this has also been confirmed with statistical procedures described in Methods and in the

supplementary material S1. This provides an indirect proof of the assumptions of our

model on the effect of objective data (complete and incomplete trust). Also, we were

able to measure the ‘trust’ in the hints for the three cities, by fitting the model to data.
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We obtained the lowest trust values in London and the highest ones in Turin (full results

are reported in the supplementary material S1).

Discussion

Volunteer participation is crucial for the success of bottom-up monitoring campaigns,

however most projects concerned with air pollution monitoring concentrate only on the

development of the technical tools necessary. Here, we give a different user-centric

perspective, using the experience from the EveryAware project, through its large scale

international challenge, APIC. The tools developed by the project are described in more

detail in the supplementary material. During the challenge both objective and subjective

data were collected, and used here to analyze participatory patterns and possible changes

in behavior or perception.

Objective measurements allowed for analysis of user interests during the chal-

lenge and activity patterns. A large number of measurements was obtained, however,

coverage varied from location to location, with higher values when monitoring areas

were restricted. Both coverage and pollution levels measured indicated a volunteer ten-

dency to monitor familiar areas when there was no restriction, with a search for highly

polluted spots.

Subjective data, on the other hand, allowed for analysis of perceived pollution lev-
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els and learning mechanisms. We observed, by analyzing differences between perceived

and real pollution levels, that users are able to reduce the ‘errors’ in the annotations, by

learning the true values. However, some inertia in changing the old opinion structure

was also observed, since asymmetric tails and slow shifts of old peaks are present. We

also looked at differences between AirAmbassadors (volunteers with sensor boxes that

played the web game) and AirGuardians (only web game players). In phase 1 there

is no clear distinction between them, as it is expected. In phase 2 Ambassadors, who

begin to learn real pollution levels from the sensor boxes, start to shift their opinions,

reducing the errors, while Guardians change less. Finally, in phase 3 we observe Am-

bassadors continuing to shift their opinions in a smooth way, with a certain inertia, while

Guardians change radically showing a prominent primary peak at zero estimation error

with a secondary peak in the position of the old peak. We can argue that the personal

experience of the Ambassadors produces a smoother transition (which begins in phase

2), while the in-game information produces radical changes. But still both approaches

shows the inertia we described earlier, even if in different forms.

In general, we can conclude that all our evidence shows that involving volunteers

in monitoring campaigns can result in large amounts of data collected. These data show

that participation can help learning, to create a more accurate perception of air quality.

Thanks to our case study, it has also been possible to outline some of the mechanisms

behind the resistance of subjective opinions to objective results.
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Methods

The study presented here is based on data collected by volunteers during a large scale

test case (AirProbe International Challenge - APIC) organized in four European cities

(Antwerp, Kassel, London and Turin) in from October 2013 to November 2013. It

required volunteers to measure air quality as well as provide their opinion on air pollu-

tion, using the EveryAware platform. This consists of a sensing device (Sensor Box),

measuring air pollution, a mobile application (AirProbe), allowing for data visualiza-

tion and upload to servers, a set of web services and websites, handling data storage

and visualization and a web game developed on the XTribe platform23, allowing to col-

lect individual perceptions of pollution. In the following we provide a brief description

of each of the components and of the tools used for data analysis, with further details

included in the supplementary file S1.

Sensing device: the sensor box The sensor box contains a sensor array of 8 commer-

cially available gas sensors and two meteorological sensors (temperature and humidity).

The gas sensor array consists of low-cost continuous sensors of CO, NOx, O3 and VOC,

which are important pollutants in the urban outdoor environments. These pollutants are

either directly emitted by vehicles or other combustion processes, or formed from emit-

ted precursors in the vehicle exhaust. The main criteria for sensor selection were the

specific requirements posed by the mobile use of the sensor box for air quality monitor-

ing as well as the hardware compatibility with the box. The gas sensors were examined
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by a range of performance tests under laboratory and outdoor conditions. These tests

showed that none of the individual sensors can be used on its own. The observed se-

lectivity, stability and response times of the different sensors introduced the need for a

multivariate calibration procedure for the sensor boxes. Performance tests and calibra-

tion are described in more detail in the Supplementary material.

The sensor box electronic system has been designed with the purpose of being a

low-cost, open and scalable platform. It is composed of two main boards (Fig. 6). The

first is a general purpose one that includes basic storage (micro SD card), positioning

(GPS) and communication (Bluetooth) capabilities, while the second is a sensor shield

able to host all gas sensors. The design is based on Arduino components and it is

completely open source, so that anyone can reproduce and modify the hardware or even

use the original hardware and develop different software to be run on it.

The AirProbe mobile application AirProbe is an Android application designed to

connect to the sensor box via Bluetooth, acquire sensor readings and transit them to

the EveryAware servers as soon as a working connection to the Internet becomes avail-

able. In addition, the application allows users to visualize the data they collect. Specif-

ically, they can see their tracks on a map, calculate an estimated black carbon exposure

and follow sensor output in real time plots. While collecting data, users can make free

annotations (tags) that will be attached to the recordings and sent to the servers.
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Web platform The case study web platform24 is designed for collecting, storing, re-

trieving, analysing and visualizing large amounts of data data from different data sources.

It provides endpoints for application like the AirProbe mobile application to upload data

to. These data are then processed and cleaned, with several statistics and visualizations

available on a public as well as a personal level. This facilitates further analysis and

deeper understanding of the data by the user.

A collection of statistics pages provides overall information about the data, such

as graphs showing currently active sensor boxes, the overall black carbon average per

day, or the overall number of collected measurements per day. Also, information on

separate sessions corresponding to different tracks (defined both by the Sensor Box and

by the user) is available. This allows users to compare routes and locations. A world

map gives a visual overview on the collected data. This includes cluster and grid views

as well as a heatmap representation of the collected data on a personal as well as a

global level providing visual information about areas with good measurement coverage

and their average pollution levels. Users also have the possibility of downloading their

own data, in case they want to compile any further personal statistics.

During the APIC challenge, the platform was specifically tuned for the needs of

the game. Even though the platform supports several statistics and visualization of

the data, most of this functionality has been disabled during the second stage of the

challenge, in order to make opinions on air quality during the web game as unbiased as
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possible. The goal was for the AirAmbassadors and their sensor boxes to be the sole

source of information regarding real measurements in order to limit information flow

and facilitate a more controlled environment for the experiment. All visualisations were

back online in the third phase of the challenge.

The web platform has been also providing a ranking page for the AirAmbassadors

to be motivated throughout the challenge. Points were issued for space and time cover-

age during each collection phase. The ranking page showed which city and which team

was ranked first globally as well as per city. In addition, the AirAmbassadors and their

teams were able to access several statistics about their measurement behavior and the

data collection process, including a coverage heatmap, the amount of covered squares

and their points.

The web game The AirProbe web game is a simplified map management game. Play-

ers are called to fulfil their role of Air Guardians by annotating the map with so-called

AirPins: geo-localized flags tagged with an estimated or perceived pollution level (black

carbon concentration in µg/m3, on a scale from 0 to 10). The game area of each city

is divided into tiles. At the beginning of the game, users are asked to create a profile

(by choosing an avatar and a name) and to choose a city and a team. Then the volunteer

starts from a given tile of the map of the chosen city. Users can interact by placing

(or editing or removing) AirPins or by expanding their territory, i.e., buying more tiles.

Each day, the AirPins placed generate a revenue based on the precision of the annota-
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tion (precision depends on what other users think of the same area). In order to collect

the revenue generated every day by each AirPin, the user has to access the game daily,

otherwise the revenue will be lost. The collected revenue will be added to the user

balance, allowing them to buy more AirPins and more tiles. In this way, players can

build their air pollution perception map. At the beginning of phase 3, a new feature was

made available in the web game: the AirSquare map. This consisted in an alternative

map on which players could buy AirSquares, i.e., information about measured pollution

levels aggregated on a small area. This data spreading stimulated the learning process

described earlier.

Case study In order to set up the APIC study, volunteers were recruited in each of the

four cities and they comprised two types of participants: Air Ambassadors, who were

tasked with collecting air quality measurements with the sensor box, playing the online

game, and recruiting Air Guardians, and Air Guardians, whose central focus was to

play the online game and who were linked to a team of Air Ambassadors. Volunteers

were recruited using a range of approaches in each city. These included a designated

Facebook page, the EveryAware project website, posters, newspaper articles and either

university mailing lists or those of local interests groups and environmental agencies

(see supplementary material S1 for further details).

Incentives were offered during the initial call to participate in the study with the

aim to encourage participation and maintain engagement. Prizes were given out to the
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team of Air Ambassadors with the best temporal/spatial air quality measurement cov-

erage and the most active Air Guardians in each city over the different phases. Various

strategies were incorporated into the online game to encourage ongoing play and the

prizes related to the number of days played and the total revenue gained for each day

of play. The rewards offered varied slightly across the four cities and are detailed in the

supplement.

Data analysis To model the evolution between the phases of the APD distribution rep-

resented in the left part of Figure 5 (Phase 1 trans.), we implemented a simple modeling

approach rearranging the opinions depending on their distances from the hint which

is defined in the supplementary material. The transformation introduces 4 parameters,

quantifying the inertia effects in the opinions shift. To check the quality of our model

and to determine the values of parameters introduced we used a Kolmogorov-Smirnov

test applied to the phase 3 dataset and to the phase 1 transformed dataset. Since it is a

stochastic model, we performed several applications and found a convincing result for

the pval of 20%, which means that the hypothesis is consistent with observations. More

details are provided in the supplementary material.
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Figure 1 Volunteer activity patterns. The subplots in the top row show daily

(weekends shown in red) and hourly measurements by volunteers. The distri-

bution of the web game activity among players is shown in the bottom-right sub-

plot, while the distribution of the number of measurements performed per team

is depicted at the bottom-left (the distributions are displayed by ranking the vol-

unteers by activity and then displaying the number of measurements/AirPins in

descending order, using a rank-frequency plot) .

Figure 2 General space coverage data. Left panel: growth of the number of

squares covered for the entire challenge. Right panel: growth of the number of

squares covered per phase, in a log - log plot.

Figure 3 General time coverage data. Time coverage per phase and overall.

The inset shows an enlarged view of the leftmost part of the plot (top ranked

squares).

Figure 4 Overall pollution levels compared between the two phases. The distri-

bution of BC levels are shown for the two measuring phases of the challenge.

The inset shows the same plot but with a logarithmic vertical axis, to emphasize

the tail of the distribution.
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Figure 5 Web game data: APD distributions. APD is the deviation between the

air quality level annotated (the AirPin value) and the aggregated measurements

from sensor boxes (the AirSquare). The left part shows the distributions of

the deviations in each phase for Turin, Kassel and London. An estimation of

phase 3 distribution elaborated from phase 1 data with our model is also shown

(Phase 1 trans.). The right part shows the distributions for Turin in each phase

for AirAmbassadors (volunteers with sensor box that played the web game) and

AirGuardians (only web game players).

Figure 6 Sensing device. The two electronics boards of the sensor box with

the gas sensors mounted on top of the sensor shield.
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