Mining Music Playlogs for Next Song Recommendations

Andre Busche, Artus Krohn-Grimberghe, Lars Schmidt-Thieme
University of Hildesheim, Germany
{busche, artus, schmidt-thiegr@ismll.uni-hildesheim.de

1

Abstract

Recommender systems are popular social web
tools, as they address the information overload
problem and provide personalization of results
[1]. This paper presents a large-scale collabora-
tive approach to the crucial part in the playlist
recommendation process: next song recommen-
dation. We show that a simple markov-chain
based algorithm improves performance com-
pared to baseline models when neither content,
nor user metadata is available. The lack of
content-based features makes this task particu-
larly hard.

I ntroduction

or set of songs to play (next) given some fixed but poten-
tially huge set of songs in a library. While all these applica
tions are of the same kind, the available data for them used
to differ considerably: Online stores and listening partal
usually had no information about the music library of the
user and, traditionally, portable devices were only able to
choose next tracks from the users’ music library for playlis
generation. The availability of nearly ubiquitous interne
though, changed this picture where services like iTunes or
Zune in combination with the respective devices have ac-
cess to both, the user’'s music library and the vast libraries
of online stores.

In this paper, we exploit massive collaborative usage data
gathered on portable devices to recommend songs a user
might want to listen to next. In the recommendation lists,
songs available in the user’s library as well as songs not

Nowadays, mobile devices enable ubiquitous access to ar§ft €Xisting in his library are considered. Thus we allow
piece of music any time and anywhere. Additionally, on-for utility maximization of the user’s library and for cross
line stores offer millions of song tracks to those that wantS€lling opportunities for the music store the user is con-
fresh content. But which of this plethora shall the storeNected to. _ _

suggest or the user choose? How to cope with the informa-_ Ve can show that collaborative recommendation tech-
tion overload problem? Recommender systems come asdques can greatly improve performance over baseline
rescue: they aim at providing the user with relevant musidn€thods in situations where content features are unavail-
content, based on personal listening preferences. able. Furthermore, we demonstrate that for next song rec-

Given the usage pattern for mobile music devices, in th&@mmendation denser data yields better performance.

extremes two different scenarios emerge that music recom-
mender systems should tackle: on the one hand, thereis ttf® Rdated Work
interactive listening scenario, where users actively hse t

-gbout the last five years by many researchers, each focus-

where music is just an ambient factor and the users want tf}9 On different recommendation techniques. A content-
receive full playlists instead of single tracks. ased approach to derive playlists by providing the system
In the interactive listening scenario, e.g., music onIineWr':g ;&ﬁoiagtrﬂ/gdafgfo\?%?ﬁgk‘sﬁ’og‘fﬁg;ﬂgﬁgﬂ?&m cen
stores aim at increasing their revenue by recommendin ; 9

g y éenres: Having MFCC coefficielitd from the start and

tracks to users who did not purchase these songs before: d t hand. th del th b inale G
Another use case may be a music player automatically sug"® SONg at nand, they mocel the songs Dy a single aus-
ian and compute an 'optimal transition playlist’ by means

gesting candidates for the next song to play. . SR) ;
In the passive listening scenario, portable devices are o2 @ (weighted) sum of "optimal’ divergence ratios. Fig-

ten used to listen to one’s own music in a passive way whilé”ativlely* their aﬁgroaghhregoymmends. th()lse ,sgngs which
doing something else, e.g., sports. Collaborative Iistenf"hre closest _}%t -v;/e|g. te chntr:ectlgn meh ﬁtweﬁn
ing portals like last frhor Pandoraautomatically generate e SONgs. The evaluation [8] is based on whether the

music playlists given some seed song or artist, and provigdenerated playlists only contain songs from source genre,

the user with a sequential but uncontrollable list of tracksla'get genre, or both. However, it has been showfgin

to listen to. One of their aims is to get users in contact to1at While experts and social communities commonly agree

novel tracks they did not know before, possibly with the When (manually) classifying songs between distinct genres
aim to sell those. at a coarse level (e.g. 'Classic’, or 'Rock’ songs), their

‘Automatic playlist generation’ is involved in all of the agreement decreases when it comes to the classification of
cases above as a means of generating a probable sequeffe89S to subgenres. . y
An algorithm for learning possible song transitions from
radio station playlists was introducedB]. While their ap-
proach is close to ours on a conceptual level, it is radically

http://www.last.fm/
2http://www.pandora.com/

different w.r.t. the features used. They use content fea-
tures such as the MFCC coefficients and others to model
song transition probabilities based on the content, rather T2

than collaborative play information and available metadat . : ,

as in our approach. To this end, they are more concerned W'trf T b.e.mg, the filtered set of tracks (|N. 26F).
enabling their approach to also work with previously un- L€t & ‘transition’ from song; to songt;+1 happen iff song
known content, for which no collaborative data yet exists.? IIIS played for_|t|s Whﬂe duraltlon, and s?n,gl directly
This problem, known as the 'new-item’-problem for rec- ollows ;, ppssmlet some 'ag (see b.elow)._ .
ommender systems, as well as the 'new-user’ proiglm Table 1 gives an overview of the densities within our de-
is not handeled here. rived datasets.

Additionally, [5] incorporate tag information when rec-
ommending playlist items. Tags have become a corner-
stone of the Web 2.0 and, furthermore, they increase rec-
ommender performance for item prediction (e.g. next song
prediction)[6]. A manual way to get 'gold-standard’ tags
is described if10]. Regrettably, tags are not available in
our dataset.

While there is much related work in the area of movie
recommendation (e.§11]), we deem this task to be funda- . :
mentally different:(Ogri;e tr)1e one hand, short video clips an03'1 Reconstructing Session Data
music tend to be consumed in a session-oriented way. OWe define a session (consecutive plays of tracky a
the other hand, TV programme length movies are mostlyseru) as sy, = {ti,...,tr,} € S with m many
consumed one at a time.For the former scenario, it can beessions for usex. If the sessiors,, ., is obvious from
assumed that within a session a user's mood remains ifie context, we omit the subscripts for readability. The
more or less the same state. For the latter, the time spaf&cks in one session are ordered w.rf; < t;y; =

density(S) := 1s]

Technique | Density
Playlog 2.2%
Playlists (sequential) 0.0001%
Playlists (combinatorial] 0.003%

Table 1: Varying Densities for the derived datasets

are considered too large for this to be necessarily the cas@bsendt;) — star(t;11)) <g Vi=1,...,T, — 1, some
g > 0 and start() and end{) being the start and end times-
3 Methodology tamp from the logfile, respectivly.

No explicit session information is available in the data.

In this section we describe our technique for next song recTo derive session data, we empirically choose sgme0
ommendation based on playlogs. For training data we rebased on the lag distribution in the log file.
strict our algorithms to collaborative data. We use the Zune The lag between two songs is assumed to be (close to)
dataset which was sponsored by Microsoft Zunkcon- 0, if two songs are enqueued in a playlist and played after
tains an anonymized sample of multimedia play log entrieghe other. This, however, is not always true, as depicted in
from Sep '08 to Feb '09 plus additional metadata on theFigure 1.
multimedia items. With 1.3 billion log entries this dataset
is quite large, leveraging information from 1.3 million use lag disribution
u € U on 44 million song tracks € 7. Further does it con- 16000 ‘ ‘ ‘ ‘ reaeny
tain playlists generated by external experts. These glayli —L
comprise songs grouped by, e.g., themes. However, neither
content-information nor tags are available in our sample. 12000 |- 1

For the remainder of this work, we only consider a sub- .|
set of the data: First, we only use songs, ignoring the other
multimedia content. Second, of the songs we restrict our-
selves to those contained in the predefined playlists. Fur-
thermore, we only consider users who have played at least
60 songs, possibly spread over multiple sessi®nshis 4000
filtering reduces the data to a ‘dense’ part, composed of
approx. 500k users and 26k tracks. 18.4 million

14000

8000 - —

occurrences

6000 —

2000

(1.4% of the original) log entries relate these users tostem o5 s 0 15 P P %
This yields our largest training and sole evaluation ddtase wansition dme in seconds
‘Playlog’.

Our data also contains some hand-made playlists cre- Figure 1. Gap between consecutive songs

ated by experts. Since the playlist information is exgdicit
given, we can directly transform them into sessions forlate
use. From the playlists, we derive two further datasets:

Two effects can easily be seen in the chart: First, there
are several lags close to 0 seconds. Second, there is a small
increase around the lag of 20 seconds. We interpret lags
e ‘Playlist (sequential): The sequential occurrenceclose to 0to come from the data collection mechanism, that

within the playlist, as initially ordered by the expert. is, log entries are rounded to the nearest second, and the de-
vices need some time to (pre)load the next song to play, or
cross-fades are used. Gaps around the duration of 20 sec-
onds are assumed to define ‘end-of-playlist'-markers, that

We define the density of our data to be the fraction ofis, the last song within a playlist ends, the user recognises
present transitions to the amount of possible transitions ‘silence’ after a short amount of time, locates his device,

and loads/starts another playlist. Since there is no indica
3http:/www.zune.net tion that a consecutive playlist is thematically close te th

¢ ‘Playlist (combinatorial)’: The set-based interpreta-
tion of the playlists.

one before, we assume= 10 seconds for session split-

ting. _ _ _ tipa(ti, N) := arg maxfl p(tiyr = tlt:)

o e o, i Sight buse of notaon as e lt &g max re
P = X turn a (ranked) list of theV most probable tracks. Ties

(possibly also containing advertisements). They use Iagﬁ] 3(t:41|t:) are broken arbitrari

of 20 seconds. 17, it is assumed that a session breaks if 2\ i+11% Y-

the elapsed time between two songs exceeds 5 minutes. .
Using this technique, we yield 8.8 million sessions from4 Evaluation

the 18.4 million log entries. As it will become clear in 41 Evaluation protocol

Section 4, we only use those sessions having at least

tracks. We also require each user to contribute at least

sessions. This way we can avoid the ‘new user’ problem.
Figure 2 shows the occurrences of different sessio

lengths in our data (See the ‘all-pair’ line there).

t[\\,’vvgle splitted our data using the ’'leave-one-session-out’
paradigm. The main idea is to predict either the next or all
rgollowing songs, given some start/seed songs in that ses-
sion. In an application scenario, predicting the next song
means that we are able to reconstruct the listening history
of the user under changing conditions (the recommendation
is adjusted each time a next song is played). By predicting
multiple following songs, we aim at measuring whether we
are able to capture the ‘mood’ or ‘style’ of the users’ lis-
tening preferences for the current session.

In both protocols, we average results over each session
sm € S (each havindl; many tracks) by choosing some
testsong’t; with j+1 € [1,T,—1]. Training is done using
all other session§ \ {s,,} , and songgti,...,t;} € sp,.

Using this technique yielded 4.5 million training se-
guences (consecutive song plays) and 8.8 million test se-
guences. Please note that we have more test sequences than
training sequences. This necessarily is the case, since we
required; to be in[1, Ty — 1], and thus, considering a ses-

test pair distribution

all pair distribution -------

1e+006

100000 [

10000

Occurrences

1000

100

10

" esson Length 10 sion of length 2 (our minimal required length), we always
use song; as a seed for the recommendation algorithm to
Figure 2: Distribution of session lengths predict song-.

Figure 2 shows that the test set distribution (‘test-pair’:
the distribution of; + 1 plotted onz-axis) reflects the
3.2 Basdines true session length distribution of the session data eetlac
gom the log file. The reason for having more test se-
guence®f length 2 than actual sessions of length 2 is that
each session of length greater tHaean possibly be re-
duced to create a test pair fpe= 1.

For comparison with the later presented algorithms, we us
the following ‘most popular’ (MP) baseline methods for
next song prediction:

e most often downloaded/purchased songs, -
Predicting the next song

* most often played songs The first evaluation focuses on next-song prediction, i.e.
e most popular by user only songt;41 should be predicted by our algorithm. To

, , . . evaluate the performance, we calculate the precision of the
Our 'most popular by user’ baseline predicts those traCkﬁirstN recommended tracks

to the user that he has listened to most. The baseline meth-
ods are only trained on the playlog, do not consider se-

quence information available in the logfile and always out- PAN :=avg, csI(tj1 € tiva(ty, N))

put a constant prediction. with I(-) being 1 if the argument is true, otherwise
o 0. The precision calculates whether one of theecom-
3.3 Markov-based prediction mended tracks matches the true following track.

We use a Markov-Chain model of length 1 to incorporateT
sequence information in the prediction task. We define th
probability of the occurrence of the song ;, given track

op-N List intersection
?Nhen evaluating against all following songs of a session,
we use Top-N List intersection as evaluation measure. Itis

ti as able to capture whether our recommendation algorithm cor-
rectly identifies the ‘mood’ of the user. It evaluates whethe
(i [ti) = | {(ti, ti 1) € S|t =ti, ti g =tig1} | t;j+1(t;) matches for some > j + 1. Thus_, the measure
Ptit1lts) = {1t ,) €S[t, =t} | can also be thought of whether our algorithms are able to
177 K3

identify songs a user likes, or dislikes, given the current
with § = U,cyS* when the algorithm is trained on session/'mood’. Its definition measures the overlap of the

‘Playlog’ and When trained on the two playlists variants, recommendations with all following songs within a session

S becomes the union of all transitions derived from theand is given by

playlists, in either the sequential, or the combinatoriayw

as described in section 3. .
Taking Top4V predictions into account, we define our list(N) := Z |4

classifier as

41, N)YN {to € sm:0>j+1} |
mm(| tj+1(tj7N> |,T5 7‘77N>

Sm€ES

again withV = 5.

Please note that both lists in the measure may contai
less tharb tracks. Possible reasons are recommendation
less tharb tracks (i1 (t;, N)| < 5), or too few tracks to
the end of the sessiofl{ — j < 5) in the test data.

4.2 Results

Results for our experiments are given in Table 2.
Algorithm P@5 | list(5)
Markovglobal 43.9 61.8
Markovplaylists-sequential 115 17.6
Markovplaylists_co’rnbinatorial 14.0 23.9
MPyser 3.2 7.9
MPiownioad 1.2 1.8
MPplaycount 1.2 1.8

Table 2: Results for P@5 and list(5) measure in %

A closer look at the predictions for MBwnioea @nd
MPpiaycount revealed that the recommended tracks ar
identical. We consider our filtering process as describe
in Section 3 as being too restrictive. Furthermore, note th
the most popular by user results are not further ranked:

user having heard each of his tracks only once introduce

ties which can not be broken in a smart fashion.

What is more interesting is a comparison between our
Markov-based recommendations. For next song prediction,

the global variant taking collaborative information into- a

count clearly exceeds both variants being trained on the

predefined playlists. This is supported from the density es
timations given in Table 1, since playlists contain muck les
sequential information than the log files.

The overall increase of performance for the combinato-

rial playlist variant over the sequential one for both evalu
ation measures show that playlists within our data are use
to group tracks, rather to reflect sequential transitions.

Having a closer look at the performance of the
Markovyee recommender broken down by session
lengths gives interesting insights to the data, as shown i
Figure 3.

" Markov Chain length 1

p@s

1 1 .
6 8 10
Session Length

L L
2 a 12

Figure 3: Results for different session lengtf) for
Markovglobal.

As expected from a collaborative model, performance in-

creases when the available historic data in the sessioms al
increases. While we have shown in Figure 2 that the tot
amount of test data decreases for increaginthe over-

a

]

5 Conclusion and Future Work

this work we have presented our initial algorithm to rec-
mmend songs to the user to listen to next. We showed that
simple collaborative information greatly improves peffor
mance compared to baseline methods.

As it has been shown in literatufg][5], incorporating
actual content data might help in the recommendation task.
However, up to our best knowledge, there is no clear and
obvious way on how to do so.

Furthermore, we currently limited our research to only
use implicit metadata derived from listening history data,
rather than using, e.g., user-defined tags to guide the rec-
ommendation process. Further gathering of metadata, be
it either content or tag data, will result in the need to de-
fine (multiple) similarity measures, which need to be com-
bined in some smart way to improve the recommendation
process. Initial studies in this area have been done, e.g.,
in [5]. However, while their approach shows that learning
and using such similarity measures can help, they also im-

é)licitly show that current content-based solutions hate lo
é)f space for further improvements. To this end, we aim at

adding more metadata to our system.

eferences

[1] Adomavicius G., Tuzhilin, A.: Toward the Next Gener-
ation of Recommender Systems: A Survey of the State-
of-the-Art and Possible Extensions, IEEE Transactions
on Knowledge and Data Engineering, Vol 17, No 6,
June 2005 pp. 734-749

Casey, M. A,, et al.: Content-Based Music Information
Retrieval: Current directions and Future Challenges,
Proceedings of the IEEE, Vol 96, No. 4, April 2008,

pp. 668-696.

Flexer, A., et al.: Playlist Generation Using Start and
End Songs, ISMIR 2008, pp. 173-178.

Logan, B.: Mel Frequency Cepstral Coefficients for
Music Modelling, ISMIR 2000.

Maillet, F., et al.: Steerable Playlist Generation by
Learning Song Similarity from Radio Station Playlists,
ISMIR 2009, pp. 345-350.

Nanopoulos A., Krohn-Grimberghe A.: Recommend-
ing in Social Tagging Systems based on Kernelized
Multiway Analysis, IFCS 2009.

Ragno, R., Burges, CJC, Herley, C.: Inferring similar-
ity between music objects with application to playlist
generation, ACM MIR 2005, pp. 73-80.

Schein et al.: Methods and metrics for cold-start rec-
ommendations, SIGIR 2002, pp. 253-260.

Sordo et al.: The Quest for Musical Genres: Do the
Experts and the Wisdom of the Crowds Agree?, ISMIR
2008, pp. 255-260.

[10 Turnbull, D., Barrington, L., Lanckriet, G.: Five Ap-
proaches to Collecting Tags for Music, ISMIR 2008,
pp. 225-230.

(2]

8l
[4]
5]

(6]

[7]

(8]
(9]

afll] Yang, B., et al.: Online video recommendation based

on multimodal fusion and relevance feedback, ACM
CIVR 2007, pp. 73-w80.

all trend is still surprising, since we have not considered
Markov-lengths> 1 here. We assume that the derived ses-
sions being longer thahare based on random plays of only

a few tracks, i.e. repetitive sequences are present among
different sessions.

