
Mining Music Playlogs for Next Song Recommendations

Andre Busche, Artus Krohn-Grimberghe, Lars Schmidt-Thieme
University of Hildesheim, Germany

{busche, artus, schmidt-thieme}@ismll.uni-hildesheim.de

Abstract
Recommender systems are popular social web
tools, as they address the information overload
problem and provide personalization of results
[1]. This paper presents a large-scale collabora-
tive approach to the crucial part in the playlist
recommendation process: next song recommen-
dation. We show that a simple markov-chain
based algorithm improves performance com-
pared to baseline models when neither content,
nor user metadata is available. The lack of
content-based features makes this task particu-
larly hard.

1 Introduction
Nowadays, mobile devices enable ubiquitous access to any
piece of music any time and anywhere. Additionally, on-
line stores offer millions of song tracks to those that want
fresh content. But which of this plethora shall the store
suggest or the user choose? How to cope with the informa-
tion overload problem? Recommender systems come as a
rescue: they aim at providing the user with relevant music
content, based on personal listening preferences.

Given the usage pattern for mobile music devices, in the
extremes two different scenarios emerge that music recom-
mender systems should tackle: on the one hand, there is the
interactive listening scenario, where users actively use the
system and want to influence the next song being played;
on the other hand, there is the passive listening scenario,
where music is just an ambient factor and the users want to
receive full playlists instead of single tracks.

In the interactive listening scenario, e.g., music online
stores aim at increasing their revenue by recommending
tracks to users who did not purchase these songs before.
Another use case may be a music player automatically sug-
gesting candidates for the next song to play.

In the passive listening scenario, portable devices are of-
ten used to listen to one’s own music in a passive way while
doing something else, e.g., sports. Collaborative listen-
ing portals like last.fm1 or Pandora2 automatically generate
music playlists given some seed song or artist, and provide
the user with a sequential but uncontrollable list of tracks
to listen to. One of their aims is to get users in contact to
novel tracks they did not know before, possibly with the
aim to sell those.

‘Automatic playlist generation’ is involved in all of the
cases above as a means of generating a probable sequence

1http://www.last.fm/
2http://www.pandora.com/

or set of songs to play (next) given some fixed but poten-
tially huge set of songs in a library. While all these applica-
tions are of the same kind, the available data for them used
to differ considerably: Online stores and listening portals
usually had no information about the music library of the
user and, traditionally, portable devices were only able to
choose next tracks from the users’ music library for playlist
generation. The availability of nearly ubiquitous internet,
though, changed this picture where services like iTunes or
Zune in combination with the respective devices have ac-
cess to both, the user’s music library and the vast libraries
of online stores.

In this paper, we exploit massive collaborative usage data
gathered on portable devices to recommend songs a user
might want to listen to next. In the recommendation lists,
songs available in the user’s library as well as songs not
yet existing in his library are considered. Thus we allow
for utility maximization of the user’s library and for cross-
selling opportunities for the music store the user is con-
nected to.

We can show that collaborative recommendation tech-
niques can greatly improve performance over baseline
methods in situations where content features are unavail-
able. Furthermore, we demonstrate that for next song rec-
ommendation denser data yields better performance.

2 Related Work
Playlist generation has been studied with great interest for
about the last five years by many researchers, each focus-
ing on different recommendation techniques. A content-
based approach to derive playlists by providing the system
with one start and end song has been introduced in[3].
The authors strive at providing smooth transitions between
genres: Having MFCC coefficients[4] from the start and
end song at hand, they model the songs by a single Gaus-
sian and compute an ’optimal transition playlist’ by means
of a (weighted) sum of ’optimal’ divergence ratios. Fig-
uratively, their approach recommends those songs which
are closest to theλ-weighted ’connection line’ between
the songs. The evaluation in[3] is based on whether the
generated playlists only contain songs from source genre,
target genre, or both. However, it has been shown in[9]
that while experts and social communities commonly agree
when (manually) classifying songs between distinct genres
at a coarse level (e.g. ’Classic’, or ’Rock’ songs), their
agreement decreases when it comes to the classification of
songs to subgenres.

An algorithm for learning possible song transitions from
radio station playlists was introduced in[5]. While their ap-
proach is close to ours on a conceptual level, it is radically

different w.r.t. the features used. They use content fea-
tures such as the MFCC coefficients and others to model
song transition probabilities based on the content, rather
than collaborative play information and available metadata
as in our approach. To this end, they are more concerned
enabling their approach to also work with previously un-
known content, for which no collaborative data yet exists.
This problem, known as the ’new-item’-problem for rec-
ommender systems, as well as the ’new-user’ problem[8],
is not handeled here.

Additionally, [5] incorporate tag information when rec-
ommending playlist items. Tags have become a corner-
stone of the Web 2.0 and, furthermore, they increase rec-
ommender performance for item prediction (e.g. next song
prediction)[6]. A manual way to get ’gold-standard’ tags
is described in[10]. Regrettably, tags are not available in
our dataset.

While there is much related work in the area of movie
recommendation (e.g.[11]), we deem this task to be funda-
mentally different: One the one hand, short video clips and
music tend to be consumed in a session-oriented way. On
the other hand, TV programme length movies are mostly
consumed one at a time.For the former scenario, it can be
assumed that within a session a user’s mood remains in
more or less the same state. For the latter, the time spans
are considered too large for this to be necessarily the case.

3 Methodology
In this section we describe our technique for next song rec-
ommendation based on playlogs. For training data we re-
strict our algorithms to collaborative data. We use the Zune
dataset which was sponsored by Microsoft Zune3. It con-
tains an anonymized sample of multimedia play log entries
from Sep ’08 to Feb ’09 plus additional metadata on the
multimedia items. With 1.3 billion log entries this dataset
is quite large, leveraging information from 1.3 million users
u ∈ U on 44 million song trackst ∈ T . Further does it con-
tain playlists generated by external experts. These playlists
comprise songs grouped by, e.g., themes. However, neither
content-information nor tags are available in our sample.

For the remainder of this work, we only consider a sub-
set of the data: First, we only use songs, ignoring the other
multimedia content. Second, of the songs we restrict our-
selves to those contained in the predefined playlists. Fur-
thermore, we only consider users who have played at least
60 songs, possibly spread over multiple sessionsS. This
filtering reduces the data to a ‘dense’ part, composed of
approx. 500k usersu and 26k trackst. 18.4 million
(1.4% of the original) log entries relate these users to items.
This yields our largest training and sole evaluation dataset,
‘Playlog’.

Our data also contains some hand-made playlists cre-
ated by experts. Since the playlist information is explicitly
given, we can directly transform them into sessions for later
use. From the playlists, we derive two further datasets:

• ‘Playlist (sequential)’: The sequential occurrence
within the playlist, as initially ordered by the expert.

• ‘Playlist (combinatorial)’: The set-based interpreta-
tion of the playlists.

We define the density of our data to be the fraction of
present transitions to the amount of possible transitions

3http://www.zune.net

density(S) :=
| S |

| T |2

with T being the filtered set of tracks (| T |∼ 26k).
Let a ‘transition’ from songti to songti+1 happen iff song
ti is played for its whole duration, and songti+1 directly
follows ti, possibly with some lag (see below).

Table 1 gives an overview of the densities within our de-
rived datasets.

Technique Density
Playlog 2.2%
Playlists (sequential) 0.0001%
Playlists (combinatorial) 0.003%

Table 1: Varying Densities for the derived datasets

3.1 Reconstructing Session Data
We define a session (consecutive plays of trackst by a
useru) as su,m = {t1, . . . , tTs

} ∈ Su with m many
sessions for useru. If the sessionsu,m is obvious from
the context, we omit the subscripts for readability. The
tracks in one session are ordered w.r.t.ti ≺ ti+1 ≡
abs(end(ti)− start(ti+1)) < g ∀i = 1, . . . , Ts − 1, some
g ≥ 0 and start(·) and end(·) being the start and end times-
tamp from the logfile, respectivly.

No explicit session information is available in the data.
To derive session data, we empirically choose someg > 0
based on the lag distribution in the log file.

The lag between two songs is assumed to be (close to)
0, if two songs are enqueued in a playlist and played after
the other. This, however, is not always true, as depicted in
Figure 1.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30

oc
cu

rr
en

ce
s

transition time in seconds

lag distribution

frequency

Figure 1: Gap between consecutive songs

Two effects can easily be seen in the chart: First, there
are several lags close to 0 seconds. Second, there is a small
increase around the lag of 20 seconds. We interpret lags
close to 0 to come from the data collection mechanism, that
is, log entries are rounded to the nearest second, and the de-
vices need some time to (pre)load the next song to play, or
cross-fades are used. Gaps around the duration of 20 sec-
onds are assumed to define ‘end-of-playlist’-markers, that
is, the last song within a playlist ends, the user recognises
‘silence’ after a short amount of time, locates his device,
and loads/starts another playlist. Since there is no indica-
tion that a consecutive playlist is thematically close to the

one before, we assumeg = 10 seconds for session split-
ting.

Doing so we are following standard literature: E.g., in
[5], track transitions are mined from online radio stations
(possibly also containing advertisements). They use lags
of 20 seconds. In[7], it is assumed that a session breaks if
the elapsed time between two songs exceeds 5 minutes.

Using this technique, we yield 8.8 million sessions from
the 18.4 million log entries. As it will become clear in
Section 4, we only use those sessions having at least two
tracks. We also require each user to contribute at least two
sessions. This way we can avoid the ‘new user’ problem.

Figure 2 shows the occurrences of different session
lengths in our data (See the ‘all-pair’ line there).

 10

 100

 1000

 10000

 100000

 1e+006

 10 100

O
cc

ur
re

nc
es

Session Length

test pair distribution
all pair distribution

Figure 2: Distribution of session lengths

3.2 Baselines
For comparison with the later presented algorithms, we use
the following ‘most popular’ (MP) baseline methods for
next song prediction:

• most often downloaded/purchased songs,

• most often played songs

• most popular by user

Our ’most popular by user’ baseline predicts those tracks
to the user that he has listened to most. The baseline meth-
ods are only trained on the playlog, do not consider se-
quence information available in the logfile and always out-
put a constant prediction.

3.3 Markov-based prediction
We use a Markov-Chain model of length 1 to incorporate
sequence information in the prediction task. We define the
probability of the occurrence of the songti+1, given track
ti, as

p̂(ti+1|ti) =
| {(t′i, t

′
i+1) ∈ S|t′i = ti, t

′
i+1 = ti+1} |

| {(t′i, t
′
i+1

) ∈ S|t′i = ti} |

with S = ∪u∈US
u when the algorithm is trained on

‘Playlog’ and When trained on the two playlists variants,
S becomes the union of all transitions derived from the
playlists, in either the sequential, or the combinatorial way
as described in section 3.

Taking Top-N predictions into account, we define our
classifier as

t̂i+1(ti, N) := arg maxNt∈T p̂(ti+1 = t|ti)

with a slight abuse of notation as we let arg max re-
turn a (ranked) list of theN most probable tracks. Ties
in p̂(ti+1|ti) are broken arbitrarily.

4 Evaluation
4.1 Evaluation protocol
We splitted our data using the ’leave-one-session-out’
paradigm. The main idea is to predict either the next or all
following songs, given some start/seed songs in that ses-
sion. In an application scenario, predicting the next song
means that we are able to reconstruct the listening history
of the user under changing conditions (the recommendation
is adjusted each time a next song is played). By predicting
multiple following songs, we aim at measuring whether we
are able to capture the ‘mood’ or ‘style’ of the users’ lis-
tening preferences for the current session.

In both protocols, we average results over each session
sm ∈ S (each havingTs many tracks) by choosing some
’test song’tj with j+1 ∈ [1, Ts−1]. Training is done using
all other sessionsS \ {sm} , and songs{t1, . . . , tj} ∈ sm.

Using this technique yielded 4.5 million training se-
quences (consecutive song plays) and 8.8 million test se-
quences. Please note that we have more test sequences than
training sequences. This necessarily is the case, since we
requiredj to be in[1, Ts − 1], and thus, considering a ses-
sion of length 2 (our minimal required length), we always
use songt1 as a seed for the recommendation algorithm to
predict songt2.

Figure 2 shows that the test set distribution (’test-pair’:
the distribution ofj + 1 plotted onx-axis) reflects the
true session length distribution of the session data extracted
from the log file. The reason for having more test se-
quencesof length 2 than actual sessions of length 2 is that
each session of length greater than2 can possibly be re-
duced to create a test pair forj = 1.

Predicting the next song
The first evaluation focuses on next-song prediction, i.e.
only songtj+1 should be predicted by our algorithm. To
evaluate the performance, we calculate the precision of the
first N recommended tracks

P@N := avgsm∈SI(t
sm
j+1

∈ t̂j+1(tj , N))

with I(·) being 1 if the argument is true, otherwise
0. The precision calculates whether one of then recom-
mended tracks matches the true following track.

Top-N List intersection
When evaluating against all following songs of a session,
we use Top-N List intersection as evaluation measure. It is
able to capture whether our recommendation algorithm cor-
rectly identifies the ‘mood’ of the user. It evaluates whether
t̂j+1(tj) matches for someo ≥ j + 1. Thus, the measure
can also be thought of whether our algorithms are able to
identify songs a user likes, or dislikes, given the current
session/‘mood’. Its definition measures the overlap of the
recommendations with all following songs within a session
and is given by

list(N) :=
∑

sm∈S

| t̂j+1(tj , N) ∩ {to ∈ sm : o ≥ j + 1} |

min(| t̂j+1(tj , N) |, Ts − j,N)
,

again withN = 5.
Please note that both lists in the measure may contain

less than5 tracks. Possible reasons are recommendation of
less than5 tracks (|t̂j+1(tj , N)| < 5), or too few tracks to
the end of the session (Ts − j < 5) in the test data.

4.2 Results
Results for our experiments are given in Table 2.

Algorithm P@5 list(5)
Markovglobal 43.9 61.8
Markovplaylists sequential 11.5 17.6
Markovplaylists combinatorial 14.0 23.9
MPuser 3.2 7.9
MPdownload 1.2 1.8
MPplaycount 1.2 1.8

Table 2: Results for P@5 and list(5) measure in %

A closer look at the predictions for MPdownload and
MPplaycount revealed that the recommended tracks are
identical. We consider our filtering process as described
in Section 3 as being too restrictive. Furthermore, note that
the most popular by user results are not further ranked: A
user having heard each of his tracks only once introduces
ties which can not be broken in a smart fashion.

What is more interesting is a comparison between our
Markov-based recommendations. For next song prediction,
the global variant taking collaborative information into ac-
count clearly exceeds both variants being trained on the
predefined playlists. This is supported from the density es-
timations given in Table 1, since playlists contain much less
sequential information than the log files.

The overall increase of performance for the combinato-
rial playlist variant over the sequential one for both evalu-
ation measures show that playlists within our data are used
to group tracks, rather to reflect sequential transitions.

Having a closer look at the performance of the
Markovglobal recommender broken down by session
lengths gives interesting insights to the data, as shown in
Figure 3.

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

p@
5

Session Length

Markov Chain length 1

Figure 3: Results for different session length (j) for
Markovglobal.

As expected from a collaborative model, performance in-
creases when the available historic data in the sessions also
increases. While we have shown in Figure 2 that the total
amount of test data decreases for increasingj, the over-
all trend is still surprising, since we have not considered
Markov-lengths> 1 here. We assume that the derived ses-
sions being longer than2 are based on random plays of only
a few tracks, i.e. repetitive sequences are present among
different sessions.

5 Conclusion and Future Work
In this work we have presented our initial algorithm to rec-
ommend songs to the user to listen to next. We showed that
simple collaborative information greatly improves perfor-
mance compared to baseline methods.

As it has been shown in literature[2][5], incorporating
actual content data might help in the recommendation task.
However, up to our best knowledge, there is no clear and
obvious way on how to do so.

Furthermore, we currently limited our research to only
use implicit metadata derived from listening history data,
rather than using, e.g., user-defined tags to guide the rec-
ommendation process. Further gathering of metadata, be
it either content or tag data, will result in the need to de-
fine (multiple) similarity measures, which need to be com-
bined in some smart way to improve the recommendation
process. Initial studies in this area have been done, e.g.,
in [5]. However, while their approach shows that learning
and using such similarity measures can help, they also im-
plicitly show that current content-based solutions have lots
of space for further improvements. To this end, we aim at
adding more metadata to our system.

References
[1] Adomavicius G., Tuzhilin, A.: Toward the Next Gener-

ation of Recommender Systems: A Survey of the State-
of-the-Art and Possible Extensions, IEEE Transactions
on Knowledge and Data Engineering, Vol 17, No 6,
June 2005 pp. 734-749

[2] Casey, M. A., et al.: Content-Based Music Information
Retrieval: Current directions and Future Challenges,
Proceedings of the IEEE, Vol 96, No. 4, April 2008,
pp. 668-696.

[3] Flexer, A., et al.: Playlist Generation Using Start and
End Songs, ISMIR 2008, pp. 173-178.

[4] Logan, B.: Mel Frequency Cepstral Coefficients for
Music Modelling, ISMIR 2000.

[5] Maillet, F., et al.: Steerable Playlist Generation by
Learning Song Similarity from Radio Station Playlists,
ISMIR 2009, pp. 345-350.

[6] Nanopoulos A., Krohn-Grimberghe A.: Recommend-
ing in Social Tagging Systems based on Kernelized
Multiway Analysis, IFCS 2009.

[7] Ragno, R., Burges, CJC, Herley, C.: Inferring similar-
ity between music objects with application to playlist
generation, ACM MIR 2005, pp. 73-80.

[8] Schein et al.: Methods and metrics for cold-start rec-
ommendations, SIGIR 2002, pp. 253-260.

[9] Sordo et al.: The Quest for Musical Genres: Do the
Experts and the Wisdom of the Crowds Agree?, ISMIR
2008, pp. 255-260.

[10] Turnbull, D., Barrington, L., Lanckriet, G.: Five Ap-
proaches to Collecting Tags for Music, ISMIR 2008,
pp. 225-230.

[11] Yang, B., et al.: Online video recommendation based
on multimodal fusion and relevance feedback, ACM
CIVR 2007, pp. 73-w80.

