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Abstract
Tags are intensively used in social platforms to
annotate resources: Tagging is a social phe-
nomenon, because users do not only annotate
to organize their resources but also to associate
semantics to resources contributed by third par-
ties. This leads often to semantic ambiguities:
Popular tags are associated with very disparate
meanings, even to the extend that some tags (e.g.
”beautiful” or ”toread”) are irrelevant to the se-
mantics of the resources they annotate. We pro-
pose a method that learns a topic model for doc-
uments under a tag and visualizes the different
meanings associated with the tag.
Our approach deals with the following prob-
lems. First, tag miscellany is a temporal phe-
nomenon: tags acquire multiple semantics gradu-
ally, as users apply them to disparate documents.
Hence, our method must capture and visualize
the evolution of the topics in a stream of doc-
uments. Second, the meanings associated to a
tag must be presented in a human-understandable
way; This concerns both the choice of words and
the visualization of all meanings. Our method
uses AdaptivePLSA, a variation of Probabilistic
Latent Semantic Analysis for streams, to learn
and adapt topics on a stream of documents an-
notated with a specific tag. We propose a vi-
sualization technique called Topic Table to vi-
sualize document prototypes derived from top-
ics and their evolution over time. We show by
a case study how our method captures the evolu-
tion of tags selected as frequent and ambiguous,
and visualizes their semantics in a comprehensi-
ble way. Additionally, we show the effectiveness
by adding alien resources under a tag. Our ap-
proach indeed visualizes hints to the added doc-
uments.

1 INTRODUCTION
Collaborative tagging systems provide a popular way to
share and organize various resources including biblio-
graphic entries describing academic articles. Examples
are Bibsonomy1, CiteYouLike2 and Connotea3. Quoting
Golder and Huberman (Golder and Huberman, 2006, pp.

1http://www.bibsonomy.org
2http://www.citeulike.org
3http://www.connotea.org

200 and 203) ”tagging is fundamentally about sensemak-
ing”, it is ”an act of organizing through labeling, a way of
making sense of many discrete, varied items [resources] ac-
cording to their meaning.” Aiming at organizing resources,
collaborative tagging systems assist users at two levels.
First, at user level, they help users to organize their own
documents. Second, at community level, such systems al-
low users to find interesting resources contributed by other
users through searching by tags. To work effectively at
community level, two assumptions must hold: (i) users as-
sign tags in a coherent way and (ii) users are capable to
deduce the meanings of resources from tags. In real life,
often both assumptions are violated because collaborative
tagging systems are not centrally managed.

We identify two situations that might be unsatisfying
for particular users: (i) tags with multiple semantics and
(ii) unfamiliar tags without clear meaning. Widely used
tags might have multiple semantics [Suchanek et al., 2008],
some of which a particular user might not be aware of. That
ambiguity of tags is likely to be promoted by the very fact
that tagging is a social activity: if a ”leader” user [Goyal
et al., 2008] favors a specific tag for a document, other users
may decide to use the same tag for documents even when
those documents diverge in content. Second, tags that are
unfamiliar to a user cannot be effectively used for organiz-
ing and searching resources. If a user wants to learn about
the meanings of an ambiguous or unknown tag, the user
might inspect a sample of the resources annotated with that
tag. But inspecting whole documents is time consuming
especially when the tag is frequently used.

Therefore, we propose a new method, comprised of an
unsupervised learner and a visualization technique. The
unsupervised learner is based on probabilistic topic model-
ing and discovers topics associated with a given tag on the
foundation of documents annotated with it. From the top-
ics we derive document prototypes that are presented by
the proposed visualization technique. Thereby, the visu-
alization summarizes the documents’ contents at a glance
allowing a user to get an overview about the meanings of
the tag itself.

The appearance of ambiguous meanings of a tag can be
also a temporal process, e.g. methods developed for so-
cial network analysis are later applied and modified to an-
alyze gene regulatory networks and documents from both
research areas are annotated with the tag network. Conse-
quently, our method summarizes the evolution of document
prototypes under a tag through time.

We integrate two kinds of information into the visual-
ization, namely the document prototypes as well as their
evolution and relative strength over time. The challenges
of the design of a new visualization technique are (i) to



use the canvas efficiently and (ii) display the dominant in-
formation (main document prototypes) while retaining less
dominant information.

Document prototypes are derived from topics learned by
probabilistic latent semantic analysis (PLSA) [Hofmann,
2001]. We capture the evolution of topics by Adaptive-
PLSA [Gohr et al., 2009], an extension of PLSA for dy-
namic topic modeling. AdaptivePLSA learns a series of
PLSA topic models over time and effectively prevents la-
bel switching meaning the kth topic at the (i + 1)th time
point evolves from the topic k at the previous time point
i. This makes AdaptivePLSA especially useful to extract
topics over time in an intuitive manner.

We introduce document prototypes for document collec-
tion summarization, explain how collaborative tagging sys-
tems capture user interactions and describe how we con-
struct a stream of documents under a tag in Section 3.
These streams are used to learn topics over time as we
briefly review in Section 4. In Section 5, we introduce our
new visualization technique and explain its features in de-
tail. In Section 6, we present a case study using data from
the collaborative tagging system Bibsonomy and show the
effectiveness of our approach.

2 RELATED WORK
In topic modeling literature [Hofmann, 2001; Blei et al.,
2003], topics, which are not predefined but learned from
documents and represented as discrete probability distri-
butions over the vocabulary, are often presented by list-
ing most likely words. Additional pieces of information
like the relative strength of topics are neglected. Research
[Boyd-Graber et al., 2009; Mei et al., 2007] to enhance pre-
sentation of topics for human inspection suggests to present
words that not necessarily have to be the most likely words
but the most descriptive words for a topic. To report top-
ics learned by dynamic topic modeling, [Blei and Lafferty,
2006] list the most likely words for topics at several time
points. Additionally, they plot the probability of certain
words for a topic at different time points to give hints about
how this topic changes through time. We propose Topic
Table that deals with any type of word lists for topics and
visualizes all topics and their relative strength through time
at a glance.

ThemeRiver [Havre et al., 2002] uses a river metaphor
to visualize changes in document contents over time but
it relies on manually predefined words for which it visu-
alizes their document frequencies4 at several time points.
Curved flows to whose widths the frequencies are mapped
visualize their change through time. Space of the canvas
is wasted whenever the width of the ThemeRiver is small
and integration of text into narrow curved flows is difficult.
Applying ThemeRiver to report topics over time with ad-
ditional pieces of information as Topic Table does is not
straight forward because ThemeRiver aims at presenting
other kinds of information changing over time.

We apply Topic Table and AdaptivePLSA to summarize
document contents of a social tagging system under tags.
Tags reflect user interests and can be exploited to assist
users A common assumption is that tags are representative
of resource semantics. Recently, this assumption started
being questioned. Quoting Zanardi and Capra ”. . . as
tags are informally defined, continually changing, and un-
governed , social tagging has often been criticized for low-

4number of documents containing the word

ering, rather than increasing, the efficiency of searching
. . .” (Zanardi and Capra, 2008, p. 51). Hence, it seems
reasonable to use tags, especially popular ones, with cau-
tion. Nonetheless, we believe that visually summarizing
contents of documents that people associate with such tags
helps users to learn the multiple meanings of a tag or to
understand for what resources a yet unknown tag is used.
Summarization and visualization of document contents is a
way of knowledge generation in collaborative tagging sys-
tems which subsumes perspectives on a tag of many dif-
ferent users. The study of content to assess tag semantics
is not by itself new. For example, [Moxley et al., 2009]
derive semantics of tags assigned to Flickr pictures by an-
alyzing geographical coordinates of the depicted locations.
However, we also account for the fact that the meaning(s)
associated with a tag may change over time.

Beside AdaptivePLSA [Gohr et al., 2009] that extends
PLSA [Hofmann, 2001] to streaming document collections
and that is used in this study, other approaches [Mei and
Zhai, 2005; Blei and Lafferty, 2006; Wang and McCallum,
2006] model dynamic document collections, too. Some al-
low for words to become obsolete and irrelevant while oth-
ers emerge [AlSumait et al., 2008; Chou and Chen, 2008].
Capturing terminological evolution is indispensable for vi-
sualizing the semantic evolution of tags, because that evo-
lution is inevitably associated with the increased impor-
tance of some words that were irrelevant or unknown in
the past.

3 SUMMARIZING DOCUMENTS
The aim is to provide users of collaborative tagging sys-
tems with a summary of contents under tags by document
prototypes so that these users, if in doubt about the mean-
ing and usage of a certain tag, might inspect this summary
to clarify its meaning.

3.1 Document Prototypes
The contents of a document collection ~D can be summa-
rized by prototypes of documents in ~D. Document proto-
types abstract from the documents and thereby describe the
whole set of documents in a condensed way. Thus, inspect-
ing them allows to get an overview about the contents of
the documents. Because their number is much smaller than
the number of documents, inspecting prototypes is more ef-
ficient than reading single documents. We denote the col-
lection of documents by the vector ~D of document IDs to
allow for multiple occurrences of documents.

We use probabilistic topic modeling of documents to de-
rive document prototypes. Topic modeling often assumes
topics to be represented by multinomial distributions over
words of the vocabulary [Hofmann, 2001; Blei et al., 2003].
Topics capture patterns of words that often co-occur in dif-
ferent documents.

Because topics are distributions over words they are less
suitable to summarize document collections. But being a
word distribution a topic allows to rank words according to
their probability. The top ranked words are most strongly
associated to that topic. Inspecting these words allows to
deduce what the topic’s meaning. Consequently, we define
for each learned topic a document prototype consisting of
the Ntop top ranked words for that topic.

Many collections change over time, because, for exam-
ple, new documents are added. As an example of such a
collection, consider the documents associated with a cer-
tain tag in a collaborative tagging system. As users inter-



act with such systems, they contribute new documents over
time and tag these documents. To provide a summary of
contents of documents annotated with a tag, we determine
document prototypes over time. In contrast to summarizing
static collection, we would also have to derive how these
prototypes change over time to capture the dynamic nature
of these collections.

We adapt the approach of summarizing a static docu-
ment collection by examining the collection as it evolves
over time. Therefore, we define a stream of documents and
learn topics for successive parts of the stream using an ex-
tension of probabilistic latent semantic analysis [Hofmann,
2001] described in Section 4. From the topics over time we
derive document prototypes over time to be visualized for
studying how the contents of documents change through
time. But first, we elaborate on how collaborative tagging
systems are used for managing annotations of documents
with tags. Next, we explain how we construct a stream of
documents under a tag to study how that content changes
over time.

3.2 Tagging Events in Collaborative Tagging
Systems

Collaborative tagging systems for academic articles man-
age bibliographic entries that are contributed by users. Bib-
liographic entries contain author information, the title and
the abstract. We use the abstract substitutional for the con-
tent of the corresponding full article because articles are
often not available due to copyrights. In the sequel, we
term these abstracts documents. In addition, collaborative
tagging systems manage tagging events. Tags are short de-
scriptors defined by users and can be arbitrarily assigned to
documents. A tagging event is an annotation of a biblio-
graphic entry – and hence of the corresponding document
– with a certain tag by a particular user at some time point.

In this study, we neglect the information about which
particular user has assigned a tag to a document. Thus, a
tagging event is a triple (t, d, τ) of a tag t, a document with
ID d and a time stamp τ .

3.3 Document Stream under a Tag
Time stamps of tagging events induce an ordering on doc-
uments ~Dt = 〈d1, . . . , dNt

〉 annotated with a tag t. We call
all documents of ~Dt documents under tag t. The stream
~Dt may include identical documents if these have been an-
notated multiple times by different users with tag t. Doc-
ument contents of the sequence ~Dt reflect how users un-
derstand tag t and, if it changes, how that understanding
changes through time.

To study the stream of documents ~Dt we define a slid-
ing window covering l successive documents [Guha et al.,
2003] that comprise a partial document collection under tag
t. Typically, that window shifts by one document at a time,
i.e. the least recent document within the sliding window
is forgotten when a new tagging event is recorded for tag
t. But such a fine-grained analysis is impractical for our
purposes, because tag semantics do not change by one as-
signment of a tag to a single document. We rather slide
the window by lnew documents, i.e. the window slides to
a new position after lnew new documents have been an-
notated with tag t. Hence, the sliding window at posi-
tion i covers the following partial sequence of documents
~Di
t = 〈dr(i), . . . , dr(i)+l〉 of ~Dt with r(i) = 1+(i−1)lnew.

Figure 1 shows an example with 22 tagging events. The

sliding window covers l = 7 documents and it slides by
lnew = 5 documents. The figure depicts four sequential
positions of that sliding window, each covering a certain
subsequence ~D1

t ,
~D2
t ,
~D3
t and ~D4

t of the stream ~Dt of doc-
uments.

As a result of applying the sliding window to the stream
of documents under tag t, we get a sequence of N̄t subse-
quences of document IDs 〈 ~D1

t , . . . , ~D
N̄t
t 〉.

4 LEARNING DOCUMENT
PROTOTYPES

We use AdaptivePLSA [Gohr et al., 2009], which is an
extension of probabilistic latent semantic analysis (PLSA)
for topic modeling over streaming document collections.
We review PLSA and briefly explain how AdaptivePLSA
evolves a sequence of PLSA models from which we ex-
tract topics over times. These are used to derive document
prototypes for summarizing of evolving document contents
over time.

4.1 Topic Modeling
We use PLSA to extractK hidden topics for each sequence
of documents ~Di

t under tag t. We denote the set of all words
(vocabulary) seen in documents of ~Di

t as V it . Topics are
denoted by the unobserved variable z which takes values
1 ≤ z ≤ K. Each topic is represented by a multinomial
distribution p(w|z) over word IDs 1 ≤ w ≤ |V it |. The data
Di
t used to learn topics is a set of triples (d,w, n) meaning

that word with ID w is seen n > 0 times in document with
ID d. If document d occursm times in ~Di

t then we increase
all corresponding word counts by the factor m: (d,w, n ∗
m).

PLSA models word distributions of documents
as mixtures of the determined topics: p(w|d) =∑K
z=1 p(z|d)p(w|z). The probabilities p(z|d) are

mixture weights for document d.
The parameters of a PLSA model ζit are:

• document probabilities which form a vector ~δ with
elements δd = p(d), d ∈ ~Di

t,

• mixture weights which form a matrix ~θ with elements
~θd = (θ1d, . . . , θKd) and
θkd = p(z = k|d), d ∈ ~Di

t, 1 ≤ k ≤ K, and

• topics which form a second matrix ~ω with elements
ωkw = p(w|z = k), 1 ≤ w ≤ |V it |, 1 ≤ k ≤ K.

Usually K is much smaller than the number of documents
in ~Di

t but greater than one to capture the dominant word
correlations.

Because PLSA is a probabilistic model it defines the
probability of some data given the trained model:

p(Di
t|ζit) =

|Di
t|∏

j=1

p((d,w)j |ζit)ni

p((d,w)j |ζit) = p(dj)p(wj |dj)

= p(dj)
K∑
z=1

p(wj , z|dj)

= p(dj)
K∑
z=1

p(wj |z)p(z|dj)
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Figure 1: Stream of tagging events (small black dots) according to tag t. Each tagging event assigns tag t to one document. Positions
of the sliding window of length l = 7 are represented by horizontal lines. The sliding window shifts forward by lnew = 5 new tagging
events (tagged documents) and it covers at its four positions the following document subsequences ~D1

t , ~D2
t , ~D3

t and ~D4
t .

The last line follows because words and documents are as-
sumed to be conditionally independent if the hidden topic
from which the word comes is known.

Informally, estimating the parameters of a PLSA model
for some given data means to find topics and mixture
weights such that the word distributions p(w|d) for the
training documents are as best as possible approximated.
The expectation maximization algorithm (EM) [Dempster
et al., 1977] is used for parameter estimated because it al-
lows to estimate model parameters even in presence of hid-
den (unobserved) variables like variable z.

4.2 Topic Modeling over a Stream of Documents
So far we had a closer look on how topics are learned for
each subsequence of documents ~Di

t under a tag t. The con-
tents of documents of these subsequences 〈 ~D1

t , . . . ,
~DN̄t
t 〉

indicate emerging or abandoned meanings of tag t. Study-
ing document prototypes derived from topics over time
might reveal such changing meanings of the tag.

A problem of modeling resources under a tag over time is
that these may introduce new words. Consequently, Adap-
tivePLSA evolves PLSA models under a tag over time by
taking account for this volatility in vocabulary of the grow-
ing document collection. In addition, because Adaptive-
PLSA evolves the later PLSA model from the former one,
the kth topic of the later model evolves from the kth topic
of the former model.

The sliding window at a certain position i covers the
sequence ~Di

t of documents which partially overlaps with
~Di+1
t (see Figure 1). We denote by new ~Di

t the latest lnew
documents of ~Di

t covered by the ith sliding window. Adap-
tivePLSA adaptively learns a sequence of PLSA models
ζ1
t , . . . , ζ

N̄t
t for the stream of documents under tag t; i.e. it

evolves the later PLSA models from the former ones. The
PLSA model learned for the ith position of the window ( ~Di

t)
is denoted by ζit .

To evolve model ζit into ζi+1
t AdaptivePLSA adapts ζit

first to new documents and then to new words by five steps.

Estimating mixture weights for new documents
Mixture weights of new documents new ~Di+1

t are estimated
by folding-in [Hofmann, 2001] these documents into ζit .
Therefore, topics p(w|z) 1 ≤ z ≤ K are fixed and the EM
algorithm estimates mixture weights p(z|d) for new docu-
ments. Only that part of the new documents is considered
that consists of words which are already known by model
ζit .

Removing mixture weights of old documents
The first l − lnew documents of window i are “out-dated”.
Their mixture weights ~θd are removed from ~θ.

Integrating new words
New words are folded-in, which is not straight forward

because words are connected by the word distributions
p(w|z). To allow folding-in of new words AdaptivePLSA
converts the current model

p(w, d) = p(d)
K∑
z=1

p(w|z)p(z|d) (1)

into the equivalent model by Bayesian Calculus

p(d,w) = p(w)
K∑
z=1

p(d|z)p(z|w)

Informally, documents and words have changed their roles.
Thus, folding-in words is done analogously as we have
previously folded-in new documents. We fix parameters
p(d|z) and use the EM algorithm to estimate p(z|w) for
the new words. The EM uses data which consists of occur-
rences of these words in the new documents.

Removing old words
Words that are not seen in documents of ~Di+1

t are removed
by deleting the corresponding parameters p(z|w) for all
1 ≤ z ≤ K.

Consolidation
To allow adaption to new words and new documents Adap-
tivePLSA converts back the PLSA model (Eq. 1) and runs
the EM algorithm a few iterations using all data Di+1

t .
Thereby, it adapts mixture weights and topics.

5 VISUALIZING DOCUMENT
PROTOTYPES

The goal of our proposed visualization technique, called
Topic Table, is to present K comprehensible document pro-
totypes and their evolution over time. The document proto-
types are derived from topics of PLSA models ζ1

t , . . . , ζ
N̄t
t

– each model learns K topics– learned for documents
〈 ~D1

t , . . . , ~D
N̄t
t 〉.

Topic Table arranges pieces of information in a table.
For tag t, Topic Table has K rows and N̄t columns. The
cell (k, i) in row k and column i corresponds to the kth

prototype derived from the kth topic of the PLSA model ζit .
Hence, the rows correspond to document prototypes and
the columns correspond to snapshots of these prototypes
over time. By arranging the kth document prototypes in
one row, Topic Table establishes a correspondence among
them. This correspondence stems from the fact that Adap-
tivePLSA evolves model ζi+1

t from the former model ζit for
all 1 ≤ i ≤ N̄t − 1. Hence, the kth topic of model ζi+1

t
evolved from the kth topic of model ζit . Inspecting the se-
quence of the prototypes along the kth row allows to better
deduce how they change over time.

The Topic Table arranges three pieces of information for
each document prototype and time point in different layers.
From background to foreground, these pieces are i) how



fast does a topic change between successive time periods,
ii) how prominent a topic and the derived prototype are in
documents under tag t during a certain period of time, and
iii) the corresponding document prototypes. Figure 2 de-
picts how these pieces of information are visually presented
by Topic Table.

First, we must visually depict how the learned topics
change between two successive time points. To achieve
this, we propose the metaphor of a river that “flows through
time” and associate each evolving topic with a river. Nar-
row parts of the river represent watergates that strongly sep-
arate what comes before and what afterward. These water-
gates indicate time points at which the corresponding topic
changes much. Topic Table visualizes the rivers as gray
straps along each row, which correspond to the evolution
of one topic over time. The width of each river changes be-
tween successive cells to indicate watergates. Successive
cells, say (k, i) and (k, i+1), correspond to the kth topic of
model ζit and ζi+1

t , respectively. These topics are multino-
mial distributions, which can be represented by two vectors
~ωik and ~ωi+1

k . The entries are probabilities of words of the
respective vocabularies of documents of ~Di

t and ~Di+1
t . The

more similar these two vectors are the more stable the cor-
responding topic is. We use the cosine similarity which
is equal to 1 if both vectors point into the same direction
and equal to 0 if the vectors are orthogonal to each other.
Hence, the width of the river at the border between cells
(k, i) and (k, i + 1) is proportional to the determined sim-
ilarity between ~ωik and ~ωi+1

k such that when the similarity
is equal to one the width of the river would be equal to the
height of the cells. Vocabularies of ~Di

t and ~Di+1
t are likely

to be different. To compute cosine similarity between the
vectors ~ωik and ~ωi+1

k which might be defined in different
spaces, we embed them into the joint space defined by the
union of both vocabularies.

Another useful information is the relative strength of the
learned topics and corresponding document prototypes in
the data over time. This kind of information is helpful in
two respects. First, a user might want to study only the
strongest document prototypes at each time point. Sec-
ond, a user wants to inspect at a glance temporal patterns of
strong prototypes; how the strength of them changes over
time. Each PLSA model allows to derive the probabilities
of each extracted topic p(z=k). All these probabilities sum
to one 1 =

∑K
k=1 p(z=k) for each studied time period. A

large probability indicates a topic that is prevalent in the
data. Topic Table visualizes these probabilities by circles
in the center of each cell (see (c) in Figure 2); The proba-
bility is mapped to the area of the circle. We follow [W. S.
Cleveland, 1994] and map the strength of a topic to the cir-
cle area in a nonlinear way to enhance human perception of
differences in the quantity; The radius of the circle visual-
izing the probability of a topic k is equal to p(z=k)5/7

/
√

2π.
The circles are depicted in the background of the cell on
top of the background river. Studying all circles of a col-
umn top-down gives a fast impression about what topics are
the most dominant ones at a certain time period. Inspecting
the circles along a row allows to deduce how the relative
strength of the corresponding topic changes over time.

Last, Topic Table shows the document prototypes for
each topic consisting of the most likely words. Topic Ta-
ble lists these words in the foreground of the correspond-
ing cells. The number of words that constitute a document
prototype is not fixed. Common choices are ten to twenty

word1 word2
word3 . . .

i+1 i+2Column i

k
R

ow
k+

1

a

c

b

Figure 2: The cell in row k and column (i + 1) of Topic Table
corresponds to the kth topic extracted from the documents ~Di+1

t

under tag t. Features of Topic Table are (a) the Ntop most likely
words per topic that define the corresponding document prototype
(bold face words are new and not part of the previous prototype),
and (b) the river in the background of each row has a width at each
border between the (i+1)th and (i+2)th that is proportional to the
similarity between the kth topic at (i + 1)th and (i + 2)th position
of the sliding window, and (c) the radius of the background cir-
cle is non-linearly proportional to the probability/strength of the
corresponding topic/derived prototype.

words. An experienced user may need only ten-word pro-
totypes (Ntop = 10) to deduce what they are about. New
users or users who study resources under unknown tags
might need more words. Consequently, Topic Table lets
the user decide how many words should constitute the doc-
ument prototypes. To assist users who want to find new
words Topic Table highlights words of the kth prototypes at
time point i+1 that are not part of the kth prototype at time
point i.

To enhance perception which visual elements of Topic
Table belong to the same layer, Topic Table uses differ-
ent gray shades. All background rivers are shown in light
gray. Light gray elements are often strongly assigned to the
background. Because the rivers are drawn along a row they
combine cells of one row and thereby strengthen the per-
ception of rows and hence conveys the evolution of the doc-
ument prototypes through time. The circles belong to an-
other layer on top of the background layer. Consequently,
they are all drawn in a darker gray shade. The darker the
elements, the more important they are assumed to be. Be-
cause the circles are positioned in the center of the cells
they enhance the perception of the structure of Topic Table.
Last, the document prototypes are listed in the foreground.
Words are written in black what enhances perception as im-
portant foreground elements.

By displaying the different kinds of information in layers
on top of each other, Topic Table uses the canvas efficiently.
In addition, because Topic Table uses always one cell per
document prototype less dominant prototypes are visually
retained and not suppressed.

6 Bibsonomy CASE STUDY
To show how our visualization technique helps in clarifying
the semantics of ambiguous tags, we run experiments on
the Bibsonomy social platform.

6.1 Data Preparation and Parameter Setting
Resources in Bibsonomy are bibliographic entries in Bib-
tex format which were contributed by the users between
2005-12-31 and 2008-12-31. We use the cleaned dump of



the Bibsonomy 5. We enriched some Bibsonomy entries by
retrieving abstracts from the ACM Digital Library6. En-
tries are omitted when they contain an insufficient abstract
being shorter than 400 characters. German and French ab-
stracts were pruned by a simple heuristics that checks for
German articles7 and “sociaux”. The remaining English
abstracts, which we call documents, are subjected to stan-
dard preprocessing techniques, i.e. stopword removal and
Porter stemming.

Three parameters influence the visualization and Adap-
tivePLSA. First, the length l of the sliding window deter-
mines the number of documents a particular PLSA model
is trained on. It also specifies implicitly with respect to
what time scale a PLSA model is computed, meaning the
difference in time between the last and least covered doc-
ument. The parameter l might be adapted to the amount
of available documents under a tag. The parameter lnew
controls how fast the sliding window moves over the docu-
ment stream under a tag. Without making further assump-
tions it can be meaningfully varied between 1 and l. We set
lnew = 0.75 · l to force some overlap while analyzing the
streams under tags in a rough manner. The number of hid-
den topics K learned by a PLSA model affects the rough-
ness of the summary of resources. A reasonable choice is
K � l if a rough summary of the contents of documents is
desired. Consequently, we set K equal to 5.

6.2 Topic Table for Tag network
The tag network(s), having many meanings as we will see,
stands for the two tags network and networks. That tag
was assigned to 1218 documents from 2006-01-24 until
2008-12-27. The sliding window covers 350 documents
and moves by 75% (260 documents) of its length. This set-
ting results in four positions of the sliding window covering
350 documents. Hence, Topic Table summarizes the con-
tents of documents covered by the four window positions
in four columns as shown in Figure 3.

The bottom row shows prototypes over time derived
from one of the five topics under tag network. At the
first time point, 2007-06, it is associated with the stemmed
words cell, natur and simul which might stand for research
about biological networks or simulation of biological pro-
cesses using networks. At the next time point that topic
changes and the prototype consists of words like genet and
program which might stand for aspects of genetic program-
ming. One time point later, the prototype uncovers aspects
of neural networks and learning approaches using genetic
programming.

The second derived prototype emphasizes until 2008-06
aspects of social networks, their analysis, ontologies and
usage of social networks to organize data. Later, the role
of networking among firms but also among research com-
munities to enhance the process of innovation seems to
emerge. Perception of that change is visually supported
by the river in the background of the second row: Its width
decreases at the transition from 2008-06 to 2008-11.

The third prototype focuses first on collaborative tagging
systems used to manage shared and distributed resources,
e.g. bookmarks. At 2008-01 that prototype gets more di-
verse: It is enriched by aspects of sensor and communica-

5www.kde.cs.uni-kassel.de/ws/dc09/dataset
It was part of the data mining contest of the ECML/PKDD
conference 2009.
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Figure 3: Topic Table for tag network(s). The sliding window
covers 350 documents. The window moves by 75% of its length
(262 documents). Document prototypes consist of the top 15 most
likely words (stemmed by Porter stemmer) for each extracted
topic. Time stamps at the top are those of the last document cov-
ered by the sliding windows. Numbers at the bottom indicate the
number of summarized documents.
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Figure 4: Part of Topic Table for tag network(s). Same param-
eter setting as for Figure 3. 25 documents annotated with tag
immunoassay have been mixed in so that they will be covered by
sliding window at its second position (second cell).

tion networks, their design and analysis of frequent patters
in those networks. Then, at 2008-06, stemmed words like
school, languag and learn give hints that some content un-
der tag network(s) is about networks of schools to improve
learning of pupils. At 2008-11 words develop, applicat and
softwar bring aspects of software development, e.g. for net-
work applications into play. The liveliness of the underly-
ing topic is also indicated by the river in the background of
the third row: It is relatively narrow over the whole period
of time.

Topic Table lists for the fourth prototype at the begin-
ning words dynam, degre, process and time which might
stand for the analysis of network features like node degree.
Further inspecting the fourth row, we see that the prototype
seems to evolve through 2008-11 toward neural networks,
while the word biolog may refer to biological networks or
to life-inspired networks.

Prototype five, at the top of Figure 3, is at first about
scale-free networks. At the next time point we see that the
aspect of social networks arises, associated with the word
visu that indicates documents on network visualization. At
the last time point this topic seems to have drifted toward
literature on networks (e.g. books and reviews), while the
words behavior and individu may refer to individual behav-
ior in social networks.

At two points in time the background rivers are espe-
cially narrow. The river corresponding to the first topic
has a watergate at the transition from the second to the
third cell. We indeed find that the corresponding derived
prototype changes drastically; The accentuation on bio-
logical networks disappears, and genetic programming ap-
pears. Second, the river that indicates how the second topic
changes over time is especially narrow at the transition
from the third to the last cell. Again, at this transition we
find an obvious change from accentuation on social net-
works to the issue of networking among (or in) technology
firms.

Inspecting the circles along the Topic Table, we find that
the second topic, and hence its derived prototype, domi-
nates especially during the time period covered by the sec-
ond and third position of the sliding window, meaning that
social networks are a prevalent topic under tag network(s).
The dominance of the second topic disappears in the last
period of time while the first topic becomes the most domi-
nant one indicating that neural networks are another impor-
tant topic under tag network(s).

6.3 Effectiveness
To show that reported prototypes are not only artifacts but
indeed summarize contents of documents under tags we
did the following experiment. We added 25 documents
annotated with the tag immunoassay to the stream of doc-
uments under the tag network(s). These documents have

been added such that all of them are covered by the sliding
window at its second position. Because this sliding window
covers 350 documents in total, documents annotated with
immunoassay are a fraction of only about 7% of all covered
documents. Figure 4 shows the fourth topic of Topic Table,
which is the only one that has changed dramatically. We
find three words antibody, assay and enzyme among listed
words in the second cell that corresponds to the time period
with alien documents. The emergence of three stemmed
words corresponding to documents annotated with the tag
immunoassay within the 15 most likely words demonstrates
the effectiveness of AdaptivePLSA and the proposed visu-
alization technique to summarize document contents and
capture their evolution over time.

7 CONCLUSIONS
We propose Topic Table, a new visualization technique for
studying the evolution of contents in a stream of docu-
ments. Topic Table visualizes document prototypes learned
in an unsupervised manner by topic models like PLSA.

We apply Topic Table and PLSA to analyze the docu-
ment content over time under a tag of the collaborative tag-
ging system Bibsonomy that aims at sharing bibliographic
entries. By inspecting the ambiguous tag network(s) and
by finding a bunch of of themes tag network(s) is associ-
ated with (e.g. social, neural and biological networks), we
show that Topic Table summarizes document contents over
time in a clear and apprehensive fashion. With respect to
time, Topic Table indicates that social networks are preva-
lent from 2007-06 to 2008-06 and that later neural networks
become the strongest single aspect. We demonstrate the
effectiveness of our approach by adding some alien docu-
ments to the documents under tag network(s). Re-learning
topics over time and visualizing them by Topic Table, we
indeed find one prototype that indicates the existence of the
alien documents although their minor abundance.

Because of Topic Table’s general applicability to visual-
ize topics over time learned by any available topic model-
ing method, we believe Topic Table has the potential to be-
come a general tool for visualizing and summarizing docu-
ment contents changing over time.
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