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Abstract

A learning problem that has only recently gained
attention in the machine learning community is
that of learning a classifier from group probabil- ®
ities. It is a learning task that lies somewhere

between the well-known tasks of supervised and

unsupervised learning, in the sense that for a set

of observations we do not know the labels, but

for some groups of observations, the frequency @

distribution of the label is known. This learning

problem has important practical applications, for ®
example in privacy-preserving data mining. This
paper presents an approach to learn a classifier
from group probabilities based on support vec- Figure 1: Classifier estimation from group probabilities
tor regression and the idea of inverting a classi-
fier calibration process. A detailed analysis will
show that this new approach outperforms exist-

ing approachés tant task, but revealing which patient actually got infecte

with the new virus may be viewed as information that is
_ confidential between him and his treating physician. How-
1 Introduction ever, outbreak frequencies in certain risk groups are lysual

A learning problem that has only recently gained attentiorNonymous data, such that they are not sensitive informa-

in the machine learning community is that of learning alion:

classifier from group probabilitielikueck and de Freitas, To give another example, in fraud detection it is com-
2005; Quadriantet al, 2008; 2009. It is a learning task  mon practice to apply machine learning to fraud / non-fraud
that lies somewhere between the well-known tasks of sudata. While this seems to be straight-forward, in practice
pervised and unsupervised learning, in the sense that forjabeling some person as a fraudster has serious legal im-
set of observations we do not know the labels, but for some|ications, in particular when this data is given to a third
groups of observations, the frequency distribution of &he | person for analysis. Even if it is clear that a person has not
bel in the groups is known (see Figure 1). The goal is, frompaid for some merchandise or service he received, there
this information alone, to estimate a classifier that worksmay be perfectly legal reasons not to do so. Hence, it may
well on the labeled data. only be legally safe to label someone as a fraudster if he

As noted infQuadriantcet al, 2009, this learning prob-  was convicted by a court of law.

lem has received surprisingly little attention so far, even : . e
though it has many interesting applications. One of the In the end, storing only risk probabilities over small

most natural applications comes in analyzing the outcomed'°UPS '(I)'f people may ble _thle Iehgagyﬁadvisablbe way in ]Ehesde
of political elections, where the population of all votens i ¢&S€s. To put it more plainly, the difierence between frau

an electoral district is known, but only the total number of labels for observr_;ltlons and group probabilities n thiscas

votes per party in each district is revealed. However, fronfranslate to the difference between the statemiiigsper-

an analysis of this data, e.g. the dependence of votes nis afraudstes_md the mu.c_h I‘.ESS aoggressmehls group

variables such as income or household types, can show 5 people the risk probability is 20%

interesting connections, and may be used to uncover elec- In this paper, we will present an algorithm for learning a

tion fraud when outliers from this model are uncovered.  classifier from group probabilities, which is based on ideas
Another interesting application comes from privacy- from support vector regression and classifier calibration.

preserving data mining. In some settings, revealing the The remainder of this paper is structured as follows: in

label of the observations may imply serious privacy con- ; . 20

cerns. For example, in medical research following the out-:.he fgllp\;vmé; sectl?hn relatedlworllfr:s dls%gsr?ed_,”bt()efore"S%c

break patterns of a new type of influenza virus is an impor-1o"! © [Nroduces the new algorithm, which will be calle
Inverse Calibration. Section 4 empirically compares the

1This paper also appears in the Proceedings of the 27th Intefiéw algorithm to existing approaches. Finally, Section 5
national Conference on Machine Learning (ICML 2010) concludes.



2 Related Work Platt Calibration  [Platt, 1999 was originally introduced

In this section, we will first present related work for learn- for scaling Support Vector Machine (SVM) outputs, but
ing a classifier from group probabilities. We will also Nas been shown to be efficient for many other numerical

present existing work on the related task of estimating cond€cision functions as welNiculescu-Mizil and Caruana,
ditional probabilities from a given classifier, which wilkb 2009. Based on an empirical analysis of the distribution

relevant later on. of SVM decision function values, Platt suggests to use a
scaling function of the form
2.1 Estimation of a Classifier from Group 1
Probabilities opiatt(f())

The task of estimating a classifier from set probabilities de L+ eap(=Af(x) + B)

scribes the setting, where groups of unlabeled obsengtionthe parameters and B are optimized using gradient de-
are given and the only information about the distribution ofscent to minimize the cross-entropy error

the labels comes from the frequencies of the labels in each

group. Isotonic Regression [Zadrozny and Elkan, 2002as-

A method for estimating a classifier from group prob- sumes a monotonic dependency between the decision func-
abilities, the Mean Map method, has been proposed ifion and the conditional class probabilities and finds a
[Quadriantoet al, 2009. The method is based on mod- piecewise constant, monotonic scaling function that mini-
eling the conditional class probabilipfy|x, §) using con-  mizes the quadratic loss by making use of the pair-adjacent
ditional exponential models: violators algorithnAyer et al,, 1954.

p(y|x, 0) = exp((®(z,y)0) — g(0|z)) Other probabilistic calibration techniques have also been
proposed in the literature, for example Softmax Scaling,

with a normalizing functiory. The parametep of the inning, or calibration by Gaussian modeling of the deci-
model is estimated by taking the known observation meangion fu?]’ction y 9

of the groups and inferring from them and the known class A finding that holds particular significance for our ap-
frequencies per group the example means given classes. proach is that often even very trivial calibration techrégu

[Quadriantoet al, 2009 defines the learning problem without an elaborate parameter estimation procedure can

with a transductive component as well, where the distribu roduce reasonably good probability estimaiBsipin
tion of the labels in the test set is known. However, in thisgoo4] y9 P y pIng,

paper we do not assume that this information is known.
Algorithmically, the Mean Map method boils down .

to solving a convex optimization problem. While the 3 The Algorithm

method is defined for joint kernels oX x Y, a spe- Problem formulation: Let P(X,Y) be a fixed,

cial case exists for the case of binary classification wherdut unknown probability distribution and let

k((x,y), («',y") = yy'k'(z,2'). Since in this paper we (z1,41),..., (Tn,yn) C X x {—1,1} be drawn

are only interested in binary classification, this variant i i.i.d. from P. Assume we are givenn subsets of

used in the experiments. (z1,...,zn), Where we identify the k-th subset by
The paper[Quadriantoet al, 2009 also gives a de- the set of its indicesS, = {ix1,...,ix,s,}. Let
tailed overview of other related techniques, such as methp, = |{i € S; : v; = 1}|/|Sk| be the estimate of the

ods based on kernel density estimation, discriminative sor conditional class probability’(Y = 1|S;). The goal is
ing, or generative models and MCM&ueck and de Fre- to find a classifierf : X — {—1,1} with minimal error
itas, 200%. However, it was found that none of these meth-according toP, given only thexy, ..., z,, theS;,....S,,

ods can outperform their Mean Map method, and hencend thep,, ..., p,, are known.

they are not investigated in detail in this paper.

2.2 Esumat'ng Condr“onal Probab”'t'es Inversion of Class Probablhty Estimation: Our ap-

Given a binary classification task described by an unknowrli)roaCh Is to invert the process of estimating conditional

e ; class probabilities from Section 2.2. In conditional class
grggfgf'l'gb?g,”@t?ff(ﬁ’ Sa/)p?gb?ark])ill?sgilj: t;gzgﬁe??g a probability estimation a classifigris trained first, and then

function fp-o, : X — [0,1] that returns an estimate of the a scaling functiom is fitted such that (f(x)) is a good es-

o e timate of P(Y = 1|x).
conditional class probability, i.e. We instead start with given probability estimatedix a

forov(z) = P(Y = 1|z). scaling functions, apply this inverse scaling function and
A standard approach to probabilistic classification is totrain an SVM to predict the values ' (p). This approach

calibrate a numerical classifier. That is, for a numericalis partly motivated by[Ruping, 2004 which shows that
classification function even very trivial probabilistic scaling functions withcarn

. elaborate parameter fitting procedure can give reasonable
cl(z) = sign{frum()) estimates gfo. P ’

the task is to find an appropriate scaling functionR — In our algorithm, we use the scaling function
[0, 1] such that 1
holds.

A comparative study bjNiculescu-Mizil and Caruana, Which can be seen as a special case of Platt scEflagt,
2009 revealed that Platt CalibratidPlatt, 1999 and Iso- 1999 with A = 1 andB = 0. In particular, we will make
tonic Regressiofizadrozny and Elkan, 2002re the most  use of its inverse
effective probabilistic calibration techniques for a wide _ 1
range of classifiers. y=o0 (p)=- log(;) —1).



Usually in Support Vector Regression one would use a
Classifier Calibration constant value for the required precision, W&.: ¢, =
¢. However, in this case the goal is not to estimgtéut
pi, such that instead of setting a precision limit grwe

®e I actually require
(] e _ —
® fixed learn pi—e<o(y)<pite

L4 classifier scalin 1
g
& p—e<————<pi+e
Pt T eap(—y)
Classifier Estimation from Probabilities < —log( —1) <y; < —log( -1)
pi—¢€ pit+e¢
[ 2P A Taylor expansion of order 1 of the functign —
o ® jl — log(zﬁ — 1) around the poinp = p; yields
.‘ learn fixed Jog ) Jogt 1 1 c
classifier scalin —lo - ~ —log(——-1)+ ——
J S pite 5 pi(1 —pi)
g
Figure 2: Classifier estimation from group probabilities by = y + =)
inverting the classifier calibration process. Pilt—pi
and hence we set
To simplify notation, in the following, we usg andy, or €

p; andy;, interchangeably and always imply= o(y). In 5T pi(1—pi)

order to avoid undefined values gfwe clipp to the inter-

val [e, 1 — €], wheres is a parameter defining the minimum Dpual Problem: It is straightforward to prove that the pri-
required precision of the estimate. A reasonable choice ifal problem can be efficiently solved in its dual form,

to takes = 1/#examples. which is
Our goal is to estimate a linear classification function (ri—a)(@;—a)
f(x) = wx + b. In order to classify well, we require it to 32 ie1 TS ives.jes; K (@i, )

predicty well, which in turn implies that o f is a good
estimate ofp. However, in our problem we are not given
estimates op for every observation, but only for setsS of 5t
observations. In particular, depending on the constractio (i —af)=0

of S, the_optlr_nal class probability estimates of th_e single VL0 < apal < O

observations iS5 may very much vary around their aver- ¢ ¢

agep. To circumvent this problem, we only require thfat where K is a kernel function. The minimization can be

+ >y (cilei —wi) + o (€5 + i) — min

predictsy well on average: carried out by a standard solver for quadratic optimization
problems.
Vi N Z (wz; + b) = y;. In the following, this approach will be called Inverse
1Sil = Calibration.

We can now formally define the learning task formally 4 Experiments
in the spirit of Support Vector Regressifvapnik, 1998,

which will in particular allow a kernelization later. We compared the new approach, called Inverse Calibra-

tion, to learning classifiers from set probabilities empiri
cally on 12 data sets from the UCI machine learning repos-

Primal Problem: itory [Asuncion and Newman, 20Q7Table 1 lists the data
m sets that were used. To construct probability examples,
1||w||2 + CZ(’Ei +€) — min we picked different set size/s and randomly partitioned
2 = ‘ the original data sets into sets of sizg(plus one set of
st size< k, if necessary). Values df = 2,4,8,16,32 and
mo . 64 were chosen in the experiments. We performed tests
iz 06,8 =20 with linear kernels, radial basis kernels with parameters
1 = 0.01,0.1 and1 and polynomial kernels with degrees
m . , > oy —e — & Y 0L, 0. _ poly aeg
Vizi |S;] _z;(wm] I 2 and3. Hence, in totall2 * 6 x 6 = 432 experiments
I€5 were performed. A 10-fold cross-validation was executed
mo 1 Z (wa; +b) < yite+& in each experiment. For tuning the parameters of the meth-
S ics, ! - ! ods, an internal cross-validation loop was applied in each

training phase.
The formulation requires to both minimize the complexity As performance measure, we want to use the accuracy of
of the model and to try to keep the class probability esti-predicting the labels in the test set. That is, we assume that
mate ofS; close top;, where the maximum tolerable error while set probabilities are given in the training examples,
is defined bye;. Note that to keep the optimization prob- the ultimate goal is to induce a classifier that accurately
lem in the form of a quadratic problem, the error is definedpredicts the labels. In order for the analysis to be indepen-
with respect tay; and notp;, which is the true target. We dent of the default error rate in each data §&tsve use the
will fix this inconsistency in the following. accuracy of a method relative to the accuracy that can



To show up an interesting structure in the results, trials
with low values ofk, namelyk = 2,4, 8, were plotted as
blue triangles, while trials with high values &f namely

Table 1: Datasets used in the Experiments.

EQZQTS_(E:T 2'5; D'MEst,S'ON k = 16,32, 64, are plotted as r_ed circles. For lawi.e. for
PRIMARY-TUMOR 339 on many sets with few obseryaplons per set, both approaches
|ONOSPHERE 351 34 seem to perform roughly similar (see below for detailed sta-
coLic 368 61 tistical tests), and also often not much worse than the stan-
VOTE 435 17 dard SVM. On the other hand, for highi.e. in a situation
SOYBEAN 683 84 with less information, it can be seen that Inverse Calibra-
CREDIT-A 690 43 tion frequently outperforms the Mean Map method.
BREAST-W 699 10
DIABETES 768 9
VEHICLE 846 19
ANNEAL 898 64
CREDIT-G 1000 60

be achieved by a standard classification SVM that has full s _

access to the labels on the training set as our performance 4

measure of choice:

accuracy(M, D) o
accuracyra (M, D) = accuracy(full SVM |, D) E ° N
We compared the Inverse Calibration algorithm with the &

Mean Map method which has been proven to perform su-§ 2 -

perior to all competing approaches [i@uadriantoet al,, -

2009. In order to find out how much of the performance of

the Inverse Calibration method is due to the general prop-

erties of SVMs, we compare our method against simpler < 7

approaches of applying SVMs to the problem of learning

from probabilities. The following trivial variants are in-

cluded in our tests:

Reg: directly predicting the transformed probabilities of
each example using a regression SVM. The same label
y was used for each element of a set.

Reg$S: directly predicting the transformed probabilities Figure 3: Relative Accuracy of Inverse Calibration (veatic
using a regression SVM, but using only the mean of@Xis) vs. Relative Accuracy of Mean Map (horizontal axis)

the vectors in each set as an example (i.e., one exanfver all tests. Blue triangles depict test with low values of
ple per set). k, while red circle depict trials with high.

Quadrianto et al.

Class : directly predicting the label of each example, us-
ing the labell for every example in a sef iff the
probability of S is higher than the default probability
in the complete data set.

To investigate the dependency énn detail, Figure 4
shows boxplots of the relative accuracy of Inverse Calibra-
tion minus the relative accuracy of the Mean Map method
over all trials for eaclk. It can be seen that while generally

ClassS :same aflass , buttaking only the mean of the Inverse Calibration performs better for &l((mean values
vectors in each set as an example (i.e., one examplare positive), the difference become especially pronodince
per set). the larger thék.

Table 2 list the number of wins of each method in the TNe same effect can be seen in Figure 5, which plots the
columns against each method in the row, and against afictual refative accuracies of the two methods ovet alh
other methods in total, over all trials. It can be seen tha@ddition, the relative accuracy of the best trivial method,
Inverse Calibration and the Mean Map method are clearh?'aSSS , is also plotted. Again, while the relative accura-
superior to the trivial methods: in a direct comparison, theties decrease with increasihgthe gap between the differ-
trivial methods lose against the more advanced ones in &Nt methods widens.
least85% of all trials. In only 6% of all cases, a trivial

method outperforms the other methods. Hence, in the fol#-2 Dependency of the Performance on the

lowing, only those two methods will be compared in more Kernel

detail. Finally, we are interested in the effect of the kernel func-
tion. Figure 6 shows boxplots of the relative accuracy of

4.1 Dependency of the Performance oh the Inverse Calibration method minus the relative accuracy

Figure 3 shows the relative accuracies of the Inverse Calef the Mean Map method over all trials for each kernel. It
ibration versus the Mean Map method over all 432 testscan be seen that the results are quite stable, with a slightly
Both approaches generally achieve high relative accisaciebetter performance for the linear kernel. However, the RBF
it can be seen that in most of the trials at lez&# of the  kernel with parametey = 1 shows a high variance.
accuracy of a classification SVM with full informationwas  The explanation of the erratic performance of this kernel
achieved. can be found in Figure 7, which shows the actual accuracies



Table 2: Comparison of methods over 432 trials. Table lisesrtumber of wins of the method in a column against the
method in a row. Last row compares the method in column apaihsther methods.

METHOD INV. CALIBRATION MEAN MAP REG. CLASS. REG. SETS CLASS. SETS
INVERSE CALIBRATION - 139 8 13 10 33
MEAN MAP 292 - 13 52 15 62
REGRESSION 423 419 - 331 150 369
CLASSIFICATION 416 380 101 - 111 277
REGRESSION OVERSETS 422 417 36 321 - 360
CLASSIFICATION OVER SETS 395 370 58 149 66 -
ALL METHODS 268 132 0 6 1 19
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Figure 4: Boxplot of Difference in Relative Accuracy of Figure 5: Relative Accuracy of Inverse Calibration (left,ba

Inverse Calibration vs. Mean Map over all k. Higher valuesred) vs. Mean Map (middle bar, green) vs. Classification

imply better performance of Inverse Calibration. on Sets (right bar, blue) over all k. Horizontal lines show
averages over all k.

of the methods. It can be seen that this kernel on the aver-
age shows a worse performance than the other ones, whigarly high importance compared to the other kernels.
is possibly due to overfitting the training data. As a con-
sequence, random variations have a much higher influen ;
on the performance of the learners in this case. 5 Conclusions and Future Work
Estimating classifiers from group probabilities is an impor

4.3 Overall Results tant learning task with many practical applications. How-
Table 3 shows a detailed comparison of Inverse Calibratiomver, it has only recently begun to receive attention in the
with the Mean Map method over all kernels and all valuesresearch community.
of k. In total, the Inverse Calibration method outperforms In this paper, we have presented a new algorithm for
Mean Map in 28 of the experiments, performs equally wellestimating a classifier from group probabilities based on
on 4 and is worse on another 4 experiments (note thasupport vector regression and inverse classifier calibra-
each experiment is a test over 12 data sets). A Wilcoxottion. A detailed comparison of the new Inverse Calibra-
signed rank test, as suggested Bgmsar, 200F confirms  tion algorithm with the best previously known approach of
the statistical significance of the results. Over all trials [Quadriantoet al, 2009 has revealed that the new algo-
a p-value of6.91e — 07 is achieved, which confirms that rithm performs significantly better, in particular in thesea
the new Inverse Calibration method outperforms the Mearof linear kernels and high compression factors, i.e. high
Map method. Further, the Inverse Calibration method perhumberk of observations per group. In all other cases, both
forms particularly well for the linear kernel and RBF ker- approaches have been shown to exhibit comparable perfor-
nels with low~y. mance. Algorithmically, the Inverse Calibration method

Vice versa, it can be seen that the new approach is onlis a quadratic optimization problem, for which efficient
significantly outperformed for the RBF kernel with param- solvers exists, while the Mean Map method has to be opti-
etery = 1 andk = 2,4. However, as has been already mized with more general solvers.
discussed in Section 4.2, this kernel function exhibitssa lo  While the new method works only for binary classifica-
performance on the average and hence is not of a particaion, Quadrianto’s approach is also defined for an arbitrary



Table 3: Comparison of Inverse Calibration vs. Mean Map &mtek and kernel. Table list the number of wins/ties/losses
and the p-value of a Wilcoxon signed rank test of the hypasiteat the Inverse Calibration method is better than Mean
Map. Results that are significant at th& level are printed in bold.

K DOT RBF(0.01) RBF(0.1) RBF(1) POLY(2) POLY(3) ALL

2 11/0/1 71213 5/0/7 3/0/9 8/0/4 6/0/6 40/2/30
p=0005 p=0130 p=0.782 p=0989 p=0.118 p=0535 p=0.351

4 10/0/2 9/0/3 8/0/4 4/0/8 6/0/6 7/0/5 44/0/28
p=0015 p=0.156 p=0.143 p=0.893 p=0.333 p=0.465 p=0.083

8 10/0/2 9/0/3 9/0/3 7/0/5 9/0/3 5/0/7 49/0/23
p=0034 p=0130 p=0143 p=0.602 p=0.130 p=0.688 p=0.072

16 9/0/3 10/0/2 9/0/3 7/0/5 6/1/5 6/0/6 47/1/24
p=005 p=0.056 p=0.070 p=0050 p=0.302 p=0.512 p=0.002

32 11/0/1 11/0/1 9/0/3 10/0/2 9/1/2 8/0/4 58/1/13
p=0.018 p=0.027 p=0.079 p=0004 p=0092 p=0.235 p<le3

64 10/0/2 9/0/3 9/0/3 10/0/2 8/0/4 9/0/3 55/0/17

p=0015 p=0.143 p=0070 p=0003 p=0.087 p=0.044 p<le3
61/0/11 55/2/15 49/0/23 41/0/31 46/2/24 41/0/31 293/4/135
p<le3 p=0.027 p=0020 p=004 p=0.037 p=0.275 p<le3
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Figure 6: Difference in Relative Accuracy of Inverse Cali- Figure 7: Comparison of the accuracy of Inverse Calibra-

bration vs. Mean Map over all kernels. Higher values implytion (left bar, red) vs. Mean Map (right bar, green) over all

better performance of Inverse Calibration. kernels. Higher values imply better performance of Inverse
Calibration.
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