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Abstract

A learning problem that has only recently gained
attention in the machine learning community is
that of learning a classifier from group probabil-
ities. It is a learning task that lies somewhere
between the well-known tasks of supervised and
unsupervised learning, in the sense that for a set
of observations we do not know the labels, but
for some groups of observations, the frequency
distribution of the label is known. This learning
problem has important practical applications, for
example in privacy-preserving data mining. This
paper presents an approach to learn a classifier
from group probabilities based on support vec-
tor regression and the idea of inverting a classi-
fier calibration process. A detailed analysis will
show that this new approach outperforms exist-
ing approaches1

1 Introduction
A learning problem that has only recently gained attention
in the machine learning community is that of learning a
classifier from group probabilities[Kueck and de Freitas,
2005; Quadriantoet al., 2008; 2009]. It is a learning task
that lies somewhere between the well-known tasks of su-
pervised and unsupervised learning, in the sense that for a
set of observations we do not know the labels, but for some
groups of observations, the frequency distribution of the la-
bel in the groups is known (see Figure 1). The goal is, from
this information alone, to estimate a classifier that works
well on the labeled data.

As noted in[Quadriantoet al., 2009], this learning prob-
lem has received surprisingly little attention so far, even
though it has many interesting applications. One of the
most natural applications comes in analyzing the outcomes
of political elections, where the population of all voters in
an electoral district is known, but only the total number of
votes per party in each district is revealed. However, from
an analysis of this data, e.g. the dependence of votes on
variables such as income or household types, can show up
interesting connections, and may be used to uncover elec-
tion fraud when outliers from this model are uncovered.

Another interesting application comes from privacy-
preserving data mining. In some settings, revealing the
label of the observations may imply serious privacy con-
cerns. For example, in medical research following the out-
break patterns of a new type of influenza virus is an impor-

1This paper also appears in the Proceedings of the 27th Inter-
national Conference on Machine Learning (ICML 2010)

Figure 1: Classifier estimation from group probabilities

tant task, but revealing which patient actually got infected
with the new virus may be viewed as information that is
confidential between him and his treating physician. How-
ever, outbreak frequencies in certain risk groups are usually
anonymous data, such that they are not sensitive informa-
tion.

To give another example, in fraud detection it is com-
mon practice to apply machine learning to fraud / non-fraud
data. While this seems to be straight-forward, in practice
labeling some person as a fraudster has serious legal im-
plications, in particular when this data is given to a third
person for analysis. Even if it is clear that a person has not
paid for some merchandise or service he received, there
may be perfectly legal reasons not to do so. Hence, it may
only be legally safe to label someone as a fraudster if he
was convicted by a court of law.

In the end, storing only risk probabilities over small
groups of people may be the legally advisable way in these
cases. To put it more plainly, the difference between fraud
labels for observations and group probabilities in this case
translate to the difference between the statementsthis per-
son is a fraudsterand the much less aggressivein this group
of 5 people the risk probability is 20%.

In this paper, we will present an algorithm for learning a
classifier from group probabilities, which is based on ideas
from support vector regression and classifier calibration.

The remainder of this paper is structured as follows: in
the following section related work is discussed, before Sec-
tion 3 introduces the new algorithm, which will be called
Inverse Calibration. Section 4 empirically compares the
new algorithm to existing approaches. Finally, Section 5
concludes.



2 Related Work
In this section, we will first present related work for learn-
ing a classifier from group probabilities. We will also
present existing work on the related task of estimating con-
ditional probabilities from a given classifier, which will be
relevant later on.

2.1 Estimation of a Classifier from Group
Probabilities

The task of estimating a classifier from set probabilities de-
scribes the setting, where groups of unlabeled observations
are given and the only information about the distribution of
the labels comes from the frequencies of the labels in each
group.

A method for estimating a classifier from group prob-
abilities, the Mean Map method, has been proposed in
[Quadriantoet al., 2009]. The method is based on mod-
eling the conditional class probabilityp(y|x, θ) using con-
ditional exponential models:

p(y|x, θ) = exp((Φ(x, y)θ) − g(θ|x))

with a normalizing functiong. The parameterθ of the
model is estimated by taking the known observation means
of the groups and inferring from them and the known class
frequencies per group the example means given classes.

[Quadriantoet al., 2009] defines the learning problem
with a transductive component as well, where the distribu-
tion of the labels in the test set is known. However, in this
paper we do not assume that this information is known.

Algorithmically, the Mean Map method boils down
to solving a convex optimization problem. While the
method is defined for joint kernels onX × Y , a spe-
cial case exists for the case of binary classification where
k((x, y), (x′, y′)) = yy′k′(x, x′). Since in this paper we
are only interested in binary classification, this variant is
used in the experiments.

The paper[Quadriantoet al., 2009] also gives a de-
tailed overview of other related techniques, such as meth-
ods based on kernel density estimation, discriminative sort-
ing, or generative models and MCMC[Kueck and de Fre-
itas, 2005]. However, it was found that none of these meth-
ods can outperform their Mean Map method, and hence
they are not investigated in detail in this paper.

2.2 Estimating Conditional Probabilities
Given a binary classification task described by an unknown
probability distributionP (X,Y ) on an input spaceX and
a set of labelsY = {−1, 1}, a probabilistic classifier is a
functionfprob : X → [0, 1] that returns an estimate of the
conditional class probability, i.e.

fprob(x) ≈ P (Y = 1|x).

A standard approach to probabilistic classification is to
calibrate a numerical classifier. That is, for a numerical
classification function

cl(x) = sign(fnum(x))

the task is to find an appropriate scaling functionσ : R →
[0, 1] such that

σ(fnum(x)) ≈ P (Y = 1|x)

holds.
A comparative study by[Niculescu-Mizil and Caruana,

2005] revealed that Platt Calibration[Platt, 1999] and Iso-
tonic Regression[Zadrozny and Elkan, 2002] are the most
effective probabilistic calibration techniques for a wide
range of classifiers.

Platt Calibration [Platt, 1999] was originally introduced
for scaling Support Vector Machine (SVM) outputs, but
has been shown to be efficient for many other numerical
decision functions as well[Niculescu-Mizil and Caruana,
2005]. Based on an empirical analysis of the distribution
of SVM decision function values, Platt suggests to use a
scaling function of the form

σPlatt(f(x)) =
1

1 + exp(−Af(x) +B)
.

The parametersA andB are optimized using gradient de-
scent to minimize the cross-entropy error

Isotonic Regression [Zadrozny and Elkan, 2002] as-
sumes a monotonic dependency between the decision func-
tion and the conditional class probabilities and finds a
piecewise constant, monotonic scaling function that mini-
mizes the quadratic loss by making use of the pair-adjacent
violators algorithm[Ayer et al., 1955].

Other probabilistic calibration techniques have also been
proposed in the literature, for example Softmax Scaling,
Binning, or calibration by Gaussian modeling of the deci-
sion function.

A finding that holds particular significance for our ap-
proach is that often even very trivial calibration techniques
without an elaborate parameter estimation procedure can
produce reasonably good probability estimates[Rüping,
2004].

3 The Algorithm
Problem formulation: Let P (X,Y ) be a fixed,
but unknown probability distribution and let
(x1, y1), . . . , (xn, yn) ⊂ X × {−1, 1} be drawn
i.i.d. from P . Assume we are givenm subsets of
(x1, . . . , xn), where we identify the k-th subset by
the set of its indicesSk = {ik,1, . . . , ik,|Sk|}. Let
pk = |{i ∈ Sk : yi = 1}|/|Sk| be the estimate of the
conditional class probabilityP (Y = 1|Sk). The goal is
to find a classifierf : X → {−1, 1} with minimal error
according toP , given only thex1, . . . , xn, theS1, . . . , Sm

and thep1, . . . , pm are known.

Inversion of Class Probability Estimation: Our ap-
proach is to invert the process of estimating conditional
class probabilities from Section 2.2. In conditional class
probability estimation a classifierf is trained first, and then
a scaling functionσ is fitted such thatσ(f(x)) is a good es-
timate ofP (Y = 1|x).

We instead start with given probability estimatesp, fix a
scaling functionσ, apply this inverse scaling function and
train an SVM to predict the valuesσ−1(p). This approach
is partly motivated by[Rüping, 2004], which shows that
even very trivial probabilistic scaling functions withoutan
elaborate parameter fitting procedure can give reasonable
estimates ofp.

In our algorithm, we use the scaling function

p = σ(y) =
1

1 + exp(−y)

which can be seen as a special case of Platt scaling[Platt,
1999] with A = 1 andB = 0. In particular, we will make
use of its inverse

y = σ−1(p) = − log(
1

p
− 1).
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Figure 2: Classifier estimation from group probabilities by
inverting the classifier calibration process.

To simplify notation, in the following, we usep andy, or
pi andyi, interchangeably and always implyp = σ(y). In
order to avoid undefined values ofy, we clipp to the inter-
val [ε, 1− ε], whereε is a parameter defining the minimum
required precision of the estimate. A reasonable choice is
to takeε = 1/#examples.

Our goal is to estimate a linear classification function
f(x) = wx + b. In order to classify well, we require it to
predicty well, which in turn implies thatσ ◦ f is a good
estimate ofp. However, in our problem we are not given
estimates ofp for every observationx, but only for setsS of
observations. In particular, depending on the construction
of S, the optimal class probability estimates of the single
observations inS may very much vary around their aver-
agep. To circumvent this problem, we only require thatf
predictsy well on average:

∀i :
1

|Si|

∑

j∈Si

(wxj + b) ≈ yi.

We can now formally define the learning task formally
in the spirit of Support Vector Regression[Vapnik, 1998],
which will in particular allow a kernelization later.

Primal Problem:

1

2
||w||2 + C

m∑

i=1

(ξi + ξ∗i ) → min

s.t.

∀mi=1 : ξi, ξ
∗
i ≥ 0

∀mi=1 :
1

|Si|

∑

j∈Si

(wxj + b) ≥ yi − εi − ξi

∀mi=1 :
1

|Si|

∑

j∈Si

(wxj + b) ≤ yi + εi + ξ∗i

The formulation requires to both minimize the complexity
of the model and to try to keep the class probability esti-
mate ofSi close topi, where the maximum tolerable error
is defined byεi. Note that to keep the optimization prob-
lem in the form of a quadratic problem, the error is defined
with respect toyi and notpi, which is the true target. We
will fix this inconsistency in the following.

Usually in Support Vector Regression one would use a
constant value for the required precision, i.e.∀i : εi =
ε. However, in this case the goal is not to estimateyi but
pi, such that instead of setting a precision limit ony we
actually require

pi − ε ≤ σ(yi) ≤ pi + ε

⇔ pi − ε ≤
1

1 + exp(−yi)
≤ pi + ε

⇔ − log(
1

pi − ε
− 1) ≤ yi ≤ − log(

1

pi + ε
− 1)

A Taylor expansion of order 1 of the functionp 7→
− log( 1

p+ε
− 1) around the pointp = pi yields

− log(
1

pi + ε
− 1) ≈ − log(

1

pi
− 1) +

ε

pi(1− pi)

= yi +
ε

pi(1− pi)
.

and hence we set

εi =
ε

pi(1− pi)
.

Dual Problem: It is straightforward to prove that the pri-
mal problem can be efficiently solved in its dual form,
which is

1
2

∑m

i,j=1

(αi−α∗

i )(αj−α∗

j )

|Si||Sj|

∑
i′∈Si,j′∈Sj

K(xi′ , xj′ )

+
∑m

i=1 (αi(εi − yi) + α∗
i (εi + yi)) → min

s.t. ∑m

i=1(αi − α∗
i ) = 0

∀mi=1 : 0 ≤ αi, α
∗
i ≤ C.

whereK is a kernel function. The minimization can be
carried out by a standard solver for quadratic optimization
problems.

In the following, this approach will be called Inverse
Calibration.

4 Experiments
We compared the new approach, called Inverse Calibra-
tion, to learning classifiers from set probabilities empiri-
cally on 12 data sets from the UCI machine learning repos-
itory [Asuncion and Newman, 2007]. Table 1 lists the data
sets that were used. To construct probability examples,
we picked different set sizesk and randomly partitioned
the original data sets into sets of sizek (plus one set of
size< k, if necessary). Values ofk = 2, 4, 8, 16, 32 and
64 were chosen in the experiments. We performed tests
with linear kernels, radial basis kernels with parameters
γ = 0.01, 0.1 and1 and polynomial kernels with degrees
2 and3. Hence, in total12 ∗ 6 ∗ 6 = 432 experiments
were performed. A 10-fold cross-validation was executed
in each experiment. For tuning the parameters of the meth-
ods, an internal cross-validation loop was applied in each
training phase.

As performance measure, we want to use the accuracy of
predicting the labels in the test set. That is, we assume that
while set probabilities are given in the training examples,
the ultimate goal is to induce a classifier that accurately
predicts the labels. In order for the analysis to be indepen-
dent of the default error rate in each data setsD, we use the
accuracy of a methodM relative to the accuracy that can



Table 1: Datasets used in the Experiments.

DATA SET SIZE DIMENSION

HEART-C 303 23
PRIMARY-TUMOR 339 24
IONOSPHERE 351 34
COLIC 368 61
VOTE 435 17
SOYBEAN 683 84
CREDIT-A 690 43
BREAST-W 699 10
DIABETES 768 9
VEHICLE 846 19
ANNEAL 898 64
CREDIT-G 1000 60

be achieved by a standard classification SVM that has full
access to the labels on the training set as our performance
measure of choice:

accuracyrel(M,D) :=
accuracy(M,D)

accuracy(full SVM ,D)

We compared the Inverse Calibration algorithm with the
Mean Map method which has been proven to perform su-
perior to all competing approaches in[Quadriantoet al.,
2009]. In order to find out how much of the performance of
the Inverse Calibration method is due to the general prop-
erties of SVMs, we compare our method against simpler
approaches of applying SVMs to the problem of learning
from probabilities. The following trivial variants are in-
cluded in our tests:

Reg: directly predicting the transformed probabilities of
each example using a regression SVM. The same label
y was used for each element of a set.

RegS: directly predicting the transformed probabilities
using a regression SVM, but using only the mean of
the vectors in each set as an example (i.e., one exam-
ple per set).

Class : directly predicting the label of each example, us-
ing the label1 for every example in a setS iff the
probability ofS is higher than the default probability
in the complete data set.

ClassS : same asClass , but taking only the mean of the
vectors in each set as an example (i.e., one example
per set).

Table 2 list the number of wins of each method in the
columns against each method in the row, and against all
other methods in total, over all trials. It can be seen that
Inverse Calibration and the Mean Map method are clearly
superior to the trivial methods: in a direct comparison, the
trivial methods lose against the more advanced ones in at
least85% of all trials. In only 6% of all cases, a trivial
method outperforms the other methods. Hence, in the fol-
lowing, only those two methods will be compared in more
detail.

4.1 Dependency of the Performance onk
Figure 3 shows the relative accuracies of the Inverse Cal-
ibration versus the Mean Map method over all 432 tests.
Both approaches generally achieve high relative accuracies,
it can be seen that in most of the trials at least70% of the
accuracy of a classification SVM with full information was
achieved.

To show up an interesting structure in the results, trials
with low values ofk, namelyk = 2, 4, 8, were plotted as
blue triangles, while trials with high values ofk, namely
k = 16, 32, 64, are plotted as red circles. For lowk, i.e. for
many sets with few observations per set, both approaches
seem to perform roughly similar (see below for detailed sta-
tistical tests), and also often not much worse than the stan-
dard SVM. On the other hand, for highk, i.e. in a situation
with less information, it can be seen that Inverse Calibra-
tion frequently outperforms the Mean Map method.
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Figure 3: Relative Accuracy of Inverse Calibration (vertical
axis) vs. Relative Accuracy of Mean Map (horizontal axis)
over all tests. Blue triangles depict test with low values of
k, while red circle depict trials with highk.

To investigate the dependency onk in detail, Figure 4
shows boxplots of the relative accuracy of Inverse Calibra-
tion minus the relative accuracy of the Mean Map method
over all trials for eachk. It can be seen that while generally
Inverse Calibration performs better for allk (mean values
are positive), the difference become especially pronounced
the larger thek.

The same effect can be seen in Figure 5, which plots the
actual relative accuracies of the two methods over allk. In
addition, the relative accuracy of the best trivial method,
classS , is also plotted. Again, while the relative accura-
cies decrease with increasingk, the gap between the differ-
ent methods widens.

4.2 Dependency of the Performance on the
Kernel

Finally, we are interested in the effect of the kernel func-
tion. Figure 6 shows boxplots of the relative accuracy of
the Inverse Calibration method minus the relative accuracy
of the Mean Map method over all trials for each kernel. It
can be seen that the results are quite stable, with a slightly
better performance for the linear kernel. However, the RBF
kernel with parameterγ = 1 shows a high variance.

The explanation of the erratic performance of this kernel
can be found in Figure 7, which shows the actual accuracies



Table 2: Comparison of methods over 432 trials. Table lists the number of wins of the method in a column against the
method in a row. Last row compares the method in column against all other methods.

METHOD INV. CALIBRATION MEAN MAP REG. CLASS. REG. SETS CLASS. SETS

INVERSECALIBRATION - 139 8 13 10 33
MEAN MAP 292 - 13 52 15 62
REGRESSION 423 419 - 331 150 369
CLASSIFICATION 416 380 101 - 111 277
REGRESSION OVERSETS 422 417 36 321 - 360
CLASSIFICATION OVER SETS 395 370 58 149 66 -
ALL METHODS 268 132 0 6 1 19
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Figure 4: Boxplot of Difference in Relative Accuracy of
Inverse Calibration vs. Mean Map over all k. Higher values
imply better performance of Inverse Calibration.

of the methods. It can be seen that this kernel on the aver-
age shows a worse performance than the other ones, which
is possibly due to overfitting the training data. As a con-
sequence, random variations have a much higher influence
on the performance of the learners in this case.

4.3 Overall Results
Table 3 shows a detailed comparison of Inverse Calibration
with the Mean Map method over all kernels and all values
of k. In total, the Inverse Calibration method outperforms
Mean Map in 28 of the experiments, performs equally well
on 4 and is worse on another 4 experiments (note that
each experiment is a test over 12 data sets). A Wilcoxon
signed rank test, as suggested by[Demsar, 2006], confirms
the statistical significance of the results. Over all trials,
a p-value of6.91e − 07 is achieved, which confirms that
the new Inverse Calibration method outperforms the Mean
Map method. Further, the Inverse Calibration method per-
forms particularly well for the linear kernel and RBF ker-
nels with lowγ.

Vice versa, it can be seen that the new approach is only
significantly outperformed for the RBF kernel with param-
eterγ = 1 andk = 2, 4. However, as has been already
discussed in Section 4.2, this kernel function exhibits a low
performance on the average and hence is not of a particu-
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Figure 5: Relative Accuracy of Inverse Calibration (left bar,
red) vs. Mean Map (middle bar, green) vs. Classification
on Sets (right bar, blue) over all k. Horizontal lines show
averages over all k.

larly high importance compared to the other kernels.

5 Conclusions and Future Work
Estimating classifiers from group probabilities is an impor-
tant learning task with many practical applications. How-
ever, it has only recently begun to receive attention in the
research community.

In this paper, we have presented a new algorithm for
estimating a classifier from group probabilities based on
support vector regression and inverse classifier calibra-
tion. A detailed comparison of the new Inverse Calibra-
tion algorithm with the best previously known approach of
[Quadriantoet al., 2009] has revealed that the new algo-
rithm performs significantly better, in particular in the case
of linear kernels and high compression factors, i.e. high
numberk of observations per group. In all other cases, both
approaches have been shown to exhibit comparable perfor-
mance. Algorithmically, the Inverse Calibration method
is a quadratic optimization problem, for which efficient
solvers exists, while the Mean Map method has to be opti-
mized with more general solvers.

While the new method works only for binary classifica-
tion, Quadrianto’s approach is also defined for an arbitrary



Table 3: Comparison of Inverse Calibration vs. Mean Map for each k and kernel. Table list the number of wins/ties/losses
and the p-value of a Wilcoxon signed rank test of the hypothesis that the Inverse Calibration method is better than Mean
Map. Results that are significant at the10% level are printed in bold.

K DOT RBF(0.01) RBF(0.1) RBF(1) POLY(2) POLY(3) ALL

2 11/0/1 7/2/3 5/0/7 3/0/9 8/0/4 6/0/6 40/2/30
p = 0.005 p = 0.130 p = 0.782 p = 0.989 p = 0.118 p = 0.535 p = 0.351

4 10/0/2 9/0/3 8/0/4 4/0/8 6/0/6 7/0/5 44/0/28
p = 0.015 p = 0.156 p = 0.143 p = 0.893 p = 0.333 p = 0.465 p = 0.083

8 10/0/2 9/0/3 9/0/3 7/0/5 9/0/3 5/0/7 49/0/23
p = 0.034 p = 0.130 p = 0.143 p = 0.602 p = 0.130 p = 0.688 p = 0.072

16 9/0/3 10/0/2 9/0/3 7/0/5 6/1/5 6/0/6 47/1/24
p = 0.056 p = 0.056 p = 0.070 p = 0.050 p = 0.302 p = 0.512 p = 0.002

32 11/0/1 11/0/1 9/0/3 10/0/2 9/1/2 8/0/4 58/1/13
p = 0.018 p = 0.027 p = 0.079 p = 0.004 p = 0.092 p = 0.235 p < 1e-3

64 10/0/2 9/0/3 9/0/3 10/0/2 8/0/4 9/0/3 55/0/17
p = 0.015 p = 0.143 p = 0.070 p = 0.003 p = 0.087 p = 0.044 p < 1e-3
61/0/11 55/2/15 49/0/23 41/0/31 46/2/24 41/0/31 293/4/135

p < 1e-3 p = 0.027 p = 0.020 p = 0.044 p = 0.037 p = 0.275 p < 1e-3

dot rbf(0.01) rbf(0.1) rbf(1) poly(2) poly(3)

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

kernel

D
iff

er
en

ce
 in

 r
el

at
iv

e 
ac

cu
ra

cy

Figure 6: Difference in Relative Accuracy of Inverse Cali-
bration vs. Mean Map over all kernels. Higher values imply
better performance of Inverse Calibration.

number of classes. It would be interesting to see if it is
possible to extend the new approach to multiple classes,
for example by making use of ideas from algorithms for
multiclass SVMs[Duan and Keerthi, 2005].

A practically very interesting direction for future work
lies in taking the construction process of groups into ac-
count. In this paper, we have taken an i.i.d. assumption,
which is reasonable when one does not know otherwise.
However, in situations like privacy-preserving data mining,
where full information is available to one party, but not the
second party that is analyzing the data, both parties could
still agree on a process that tries to set up the groups in a
way to both guarantees data privacy and allow for an ef-
fective classifier estimation under these constraints. Such
a process could, for example, be built up upon ideas from
active learning[Tong and Koller, 2000].
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Figure 7: Comparison of the accuracy of Inverse Calibra-
tion (left bar, red) vs. Mean Map (right bar, green) over all
kernels. Higher values imply better performance of Inverse
Calibration.
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