
An Evaluation of Multilabel Classification for the
Automatic Annotation of Texts

Eneldo Loza Mencı́a
Knowledge Engineering Group

Technische Universität Darmstadt
eneldo@ke.tu-darmstadt.de

Abstract
This article presents the formulation of an in-
formation extraction as a multilabel classifica-
tion problem. This representation allows for
exploiting annotation overlappings and correla-
tions. The standard multiclass approach is com-
pared to different multilabel classification algo-
rithms.

1 Introduction
In recent years, more and more approaches have appeared
that translate the IE task into a classical classification prob-
lem, which is nowadays considered the most popular ap-
proach. The most common approach is to transform each
text position, i.e. usually each text token in the document,
into a classification example. This is often called boundary
classification or sequential tagging/labeling. The class in-
formation of the instance depends on whether the underly-
ing text token is a part or boundary of the target annotation
or not. Figure 1 shows an example tagged sentence. The to-
ken The is marked as the beginning of a noun phrase ([NP)
that ends at fox with NP]. The standard approach is to train
one separate classifier for each annotation type, i.e. one for
noun phrases, one for verb phrases etc. This subproblems
can be solved using a multiclass classification algorithm
that is trained to predict for each token exactly one class.
We can often observe an overlapping of the annotations of
the different types in real world applications, such as in
chunking, syntactic parsing or ontology based information
extraction (OBIE). The token The e.g. is at the same time
a determiner and the beginning of a noun phrase, which is
indeed linguistically a reasonable coincidence. The tradi-
tional approach ignores this co-occurrence and is therefore
not able to exploit the additional information, namely that
determiner are often also noun phrases beginnings.

The approach presented in this work therefore reformu-
lates the many individual multiclass problems into only one
multilabel classification problem. In contrast to multiclass,
multilabel classification allows an instance to be associated
to several classes, in this context often called labels. This
means that a token is now allowed to have simultaneously
several classes assigned. The purpose of this representa-
tion is twofold: on the one hand we obtain a more natu-
ral, compact and consistent representation of the extraction
problem. On the other hand, the main purpose of this for-
mulation is to allow an underlying multilabel algorithm to
exploit relations in the labels such as co-occurrence, exclu-
sions and implications and hence improve the prediction
quality. This work evaluates several multilabel learning al-
gorithms and compares them on a dense annotation dataset.

Only few attempts have been made on this subject so
far. McDonald et al. [2005] were able to improve ac-
curacy in extracting non-contiguous and overlapping seg-
ments of different types using an adapted multilabel algo-
rithm. However, their algorithm is not directly comparable
since it is centered and adapted to sentences whereas the
approach presented here is token based and usable with any
multilabel algorithm.

2 Preliminaries
The transformation of an information extraction task into a
classification problem was already sketched in Section 1.
The next two paragraphs give a more detailed descrip-
tion of the two main processing steps (mainly based on
[Loza Mencı́a, 2009]), continued by the introduction of
the employed multilabel classification algorithms (a recent
overview can be found in [Tsoumakas et al., 2009]).

Boundary classification In this work we employ the
simple but effective Begin/End approach. The start and
the end of each annotation, i.e. only the boundaries, are
marked with the tag BEGIN or END, the rest is marked as
negative examples with NEG. The bottom two rows in Fig-
ure 1 shows for each type DT (determiner), JJ (adjective),
NN (noun) etc. the beginning and ending of an annotation.1

In the standard approach, a problem appears when an
annotation only includes one token, such as for DT. This
would make it necessary to tag a token as BEGIN and END
simultaneously. As this would require a multilabel capable
underlying classifier, the common approach is to include an
additional class UNIQUE which represents both classes at
the same time (see also Section 3).

We chose a pragmatic way for solving inconsistencies
during the reconstruction of the annotations on the test set:
we search for the first appearing of an opening tag and con-
tinue the extraction until the first matching closing tag is
found, the remaining tags are ignored.

Feature Generation The boundary classification step
generates the class information for each training instance,
but up to now these instances are empty. The simplest fea-
tures which can be added are the occurrences of the dif-
ferent tokens themselves. Since the focus of this work lies
on the comparison of the classification algorithms, we use
only these simple features and refrain from using sophisti-
cated linguistic features. For the same reason we ignore the
classification history.

1The negative class is omitted since this is the multilabel rep-
resentation.

eneldo@ke.tu-darmstadt.de


token The quick brown fox jumps over the lazy dog
token the=1 quick=1 brown=1 fox=1 jumps=1 over=1 the=1 lazy=1 dog=1
features +1.quick=1 +1.brown=1 +1.fox=1 +1.jumps=1 +1.over=1 +1.the=1 +1.lazy=1 +1.dog=1

-1.the=1 -1.quick=1 -1.brown=1 -1.fox=1 -1.jumps=1 -1.over=1 -1.the=1 -1.lazy=1
POS [DT, DT] [JJ, JJ] [JJ, JJ] [NN, NN] [VBZ, VBZ] [IN, IN] [DT, DT] [JJ, JJ] [NN, NN]
syntactic [NP NP] [VP [PP [NP NP], PP], VP]

Figure 1: Transformation of a text sentence into a classification problem. Each column shows a token and exemplarily
the generated features with a context of one word and the class information of the corresponding generated classification
instance. The first row of the class information ’POS’ shows the part-of-speech annotations, the second the syntactic
annotations given to the token. Abbreviations according to [Marcus et al., 1993]. A ’[’ denotes the BEGIN and ’]’ the END
of the corresponding annotation type.

The token features row in Figure 1 shows the type of
windowing we used.

2.1 Multilabel Classification

We represent an instance or text position as a vector x̄ =
(x1, . . . , xM ) in a feature space X ⊆ {0, 1}N . In multil-
abel problems, each instance x̄i is assigned to a set of rel-
evant labels Y i, a subset of the K possible classes Y =
{c1, . . . , cK}, in contrast to multiclass problems, where
each instance is mapped to exactly one class, i.e. ‖Y i‖ = 1.

Binary Relevance In the binary relevance (BR) or one-
against-all (OAA) method, a multilabel problem with K
possible classes is decomposed into K binary problems.
For each subproblem, a binary classifier is trained to predict
the relevance of the corresponding class.

QWeighted Calibrated Label Ranking QCLR is a re-
cently proposed algorithm, which is an efficient approach
for multilabel classification. This algorithms combines
three aspects: the pairwise decomposition of multilabel
problems, calibrated label ranking for determining multi-
label result and an adaption of the QWEIGHTED algorithm
for efficient prediction Loza Mencı́a et al. [2009]. In the
pairwise decomposition approach, one classifier is trained
for each pair of classes, i.e., a problem with K different
classes is decomposed into K(K−1)

2 smaller subproblems.
An example is added to the training set cuvs.cv if cu is a
relevant class and cv is an irrelevant class or vice versa,
i.e., (cu, cv) ∈ Y × Y ∪ Y × Y with Y = Y\Y as neg-
ative label set. During classification, each base classifier
is queried and the prediction is interpreted as a vote for
one of its two classes. The resulting ranking of classes is
split into relevant and irrelevant classes via calibration. The
QWEIGHTED approach allows to reduce the classification
costs from quadratic to log-linear time.

Label Powerset In the label powerset approach (LP), a
meta multiclass problem is constructed where each ap-
pearing label combination Y i is interpreted as one sepa-
rate class. The meta problem is then solved with a nor-
mal multiclass algorithm or with the previously presented
decomposition methods. In the worse case, the resulting
multiclass problem has an increased amount of classes of
min(M, 2K) where M is the number of training examples,
however the number tends to be much smaller due to class
correlations.

3 Multilabel Classification for Information
Extraction

As already outlined, one of the advantages of multilabel
classification is the more natural representation since we
do not have to work with tricks. Note e.g. that in the
BEGIN/END/UNIQUE scheme the learning algorithm is
forced to learn to distinguish between UNIQUE and BE-
GIN resp. END though UNIQUE is actually a subset of
these two classes. This makes this tagging scheme espe-
cially interesting for the usage of multilabel classification.
Furthermore, the traditional methods do not permit to ex-
ploit relations between several annotation types since each
type is by design necessarily learned separately. We present
therefore in the following the standard approach together
with the multilabel alternatives.

Traditional multiclass approach A multiclass clas-
sifier is trained for each annotation type, the BE-
GIN/END/UNIQUE/NEG scheme is used. I.e. for each
annotation type a ∈ A a classifier is trained with instances
mapped to exactly one class c in Ya = {BEGIN, END,
UNIQUE, NEG}. The multiclass problem is solved via
one-against-all decomposition in our case.

Binary Relevance and QCLR The extraction task is
transformed into one multilabel problem where each token
is assigned to a subset Y of Y = A×{BEGIN, END}, with
A as the set of annotation types. Note that it is not neces-
sary to include the NEG as the algorithm is able to predict
the empty set.

In the binary relevance setting, the algorithm is not ex-
pected to improve from label co-occurrences since each
base classifier is trained separately. However, the pair-
wise approach is at least potentially able to detect non co-
occurrences, since we train for each pair of classes a base
classifier with instances where the one class is positive and
the other negative, i.e. the base classifier is trained with
cases where both classes are mutually exclusive. There-
fore this approach may be able detect that a co-prediction
of two classes is wrong for a determined instance, in con-
trast to BR, where a base classifier cannot state anything
else than relevant or non-relevant. Recently, promising ad-
vances were made in enhancing the pairwise approach by
the detection and exploitation of present constraints on the
labels, such as co-occurrences [Park and Fürnkranz, 2008].
We are currently working on incorporating these ideas.

Label Powerset The multilabel problem is re-
transformed into a multiclass problem, i.e. the possible
classes of a token are in Y = 2A×{BEGIN,END}. Note
that for only one annotation type this corresponds to the



traditional multiclass approach, since we would obtain
c ∈ Y = {{}, {BEGIN}, {END}, {BEGIN,END}}, which
corresponds to {BEGIN, END, UNIQUE, NEG}. But
for more than one annotation type, co-occurrence and
implications can effectively be exploited and detected
since these co-occurrences are explicitly used as training
information. However, the granularity of this information
is limited, since the approach is only able to abstract from
the co-occurrence of two classes if there is no other class
appearing since this would not generate the desired meta
co-occurrence class anymore.

4 Evaluation
Since it is difficult to obtain densely annotated (free) cor-
pora e.g. from the field of OBIE, we decided to generate
our own dense dataset with the help of the Stanford Parser,
which returns the syntactic structure of a sentence.2 The
result of the parser was considered to be the true and cor-
rect labeling of the corpus. The first six (scientific) texts
from the Learned category of the Brown Corpus [Francis
and Kucera, 1979] were annotated with this tool, taking the
first three documents for training and the remaining for test-
ing. The resulting training set contains 6790 instances and
48 different annotations types, 7091 instances remained for
testing. Since each annotation type leads to two tags denot-
ing the BEGIN and the END, we obtain 96 different labels
for the multilabel problem. In average there are 3.34 labels
associated per token. For the label powerset representation,
334 classes were retrieved. A window size of 5 resulted in
less than 7000 different features. We used the well known
LibSVM library with linear kernel and standard settings as
our base learner [Chang and Lin, 2001].

The results are shown in Table 4. The first observation
is that the multilabel approaches (QCLR and BR) seem to
slightly outperform the traditional multiclass approach in
terms of F1, and that ML has a slight advantage over LP.
A closer look reveals that recall and precision highly de-
pend on the used transformation approaches. LP seems to
boost recall while ML and especially the classical multi-
class approach improve precision, always at the expense of
the opposite measure. The MC setting appears to generate
quite conservative classifiers, since the MC extractor pre-
dicts 18% less annotations than ML-QCLR and even 28%
less than LP-PC.

Note that the absolute values may seem generally low,
but remind that these results were produced without lin-
guistic or any other intelligent preprocessing. Moreover,
only exact annotation matches were taken into account,
counting token matches improves the rates to around 70%.

5 Conclusions
We have presented the approach of presenting an infor-
mation extraction problem as one multilabel classification
problem rather than several independent multiclass prob-
lems. This view is more natural to the extraction problem
and furthermore potentially allows the exploitation of rela-
tions and correlations between overlapping annotations.

Although all multilabel approaches achieve higher F1
scores in the experiments than the standard approach, a di-
rect comparison of both approaches shows up to be diffi-
cult, since the traditional approach is focused on precision
while the multilabel approaches obtained higher recall to
the extend of the precision. Evaluations on more corpora

2http://www-nlp.stanford.edu/software/lex-parser.shtml

Algorihm Precision Recall F1
MC 74.21 34.32 46.93
ML-BR 72.49 40.52 51.98
ML-QCLR 71.49 40.18 51.44
LP-BR 59.67 43.46 50.29
LP-PC 65.12 41.73 50.87

Table 1: Prediction quality of the different algorithms
based on exact annotation matches, micro-averaged over
all annotation types. MC for the traditional multiclass al-
gorithm, ML for the multilabel transformation and LP for
label powerset. PC denotes the pairwise decomposition ap-
proach for multiclass problems.

and perhaps with a more extensive also linguistic prepro-
cessing are planned in order to obtain a clearer picture.
Nevertheless, it has been demonstrated that the formula-
tion as multilabel problem is at least comparable, particu-
larly considering that the employed algorithms are not es-
pecially adapted or designed in order to exploit class cor-
relations. Recent advantages in the relatively new field of
multilabel classification let us expect substantial improve-
ments (cf. [Tsoumakas et al., 2009]). Furthermore, we
are currently investigating an adaption of the pairwise ap-
proach that benefits from restrictions and constraints on the
possible class constellations [Park and Fürnkranz, 2008].
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