
Modeling, obtaining and storing data from social media tools with
Artefact-Actor-Networks

Wolfgang Reinhardt, Tobias Varlemann, Matthias Moi and Adrian Wilke
University of Paderborn

33102 Paderborn, Germany
{wolle,tobiashv,moisun,wilke}@uni-paderborn.de

Abstract
Social interaction between people has peerlessly
changed with the availability of the Internet and
the World Wide Web. The Internet brought new
ways of communication technologies to live and
enhanced people’s reachability, augmented pos-
sibilities for personal presence and the sharing of
information objects. People are engaging in so-
cial networks in a steadily growing manner and
share information objects within their commu-
nities. The high initial amount of data in such
networks can serve as foundation of serious in-
vestigations towards social interactions of com-
munities of learners. In this paper we introduce
the technological foundation and architecture to
model, obtain and store such user and object in-
formation in so-called Artefact-Actor-Networks.
Artefact-Actor-Networks combine classical so-
cial networks with artefact networks that are con-
structed by the use of the information objects and
their connections.

1 Introduction
The Internet has evolved to be the most frequently used
medium of the 21st century and it is steadily growing.
The so-called Web 2.0 movement [O’Reilly, 2005] en-
gaged people in the active production of content on the
Web and fostered technology-mediated human interactions
in social networks. People are heavily taking part in so-
cial networks for individual learning and knowledge work
as well as for leisure activities. The huge amount of data in
such networks can serve as foundation of serious investiga-
tions towards social interactions in communities of learn-
ers, knowledge workers or people spending their leisure
activities online.

There already is an existing body of knowledge about
the properties of social networks such as Facebook (see
[Ellison et al., 2007]), Twitter (see [Java et al., 2007;
Ebner and Schiefner, 2008; Reinhardt et al., 2009a]), in
Social Bookmarking systems and learning object reposi-
tories [Vuorikari, 2009] but most often this work stay fo-
cused on the relational and structural part of social network
analysis [Granovetter, 1983]. Nevertheless, those studies
are often combined with qualitative data from interviews
or online questionnaires and thus can serve as useful in-
formation source for future research. Despite their un-
doubted usefulness, they do often not consider the arte-
facts resulting from online interactions, their content, struc-
ture and relations. Furthermore, the relations between arte-

facts and their creators, editors or linkers are not consid-
ered for making claims about a community. In [Reinhardt
et al., 2009b] we introduced the model of Artefact-Actor-
Networks (AANs)1 which tries to overcome those limita-
tions by considering both content of artefacts and the rela-
tions to actors interacting with them. As artefact we con-
sider any digital information object that is shared within
a communitiy (examples are simple HTML pages, status
updates in microblogging services, entries in blogs, social
bookmarks, online available documents, photos in picture
sharing services and many more).

In this paper we focus on the technical side of AANs and
introduce the architecture to model, obtain and store such
user and object information.

2 Obtaining and modeling data from social
networks

In this section we describe the concept of Artefact-Actor-
Networks and the ontologies in place to model both actors
in social networks and the artefacts resulting from their in-
teraction. Moreover, we will reference existing standards
and vocabularies for modeling objects and their interac-
tions in online communities as well as metadata describing
the respective properties of such objects.

2.1 Artefact-Actor-Networks
Artefact-Actor-Networks (AANs) are an approach to se-
mantically intertwine social networks with so-called arte-
fact networks. The theoretical model and a first implemen-
tation were first introduced by [Reinhardt et al., 2009b].

To connect artefacts and actors with each other, seman-
tic relations are required. Relations in the network are
connecting objects by a semantic context like isAuthor
or isRightHolder. With the help of Artefact-Actor-Net-
works participation in the life cycle of artefacts as well
as significant connections to involved actors will be out-
lined. Artefact-Actor-Networks consolidate multilayered
social networks and artefact networks in an integrated net-
work. Therefore, we consider the communication and col-
laboration with each communication tool or artefact supply
(e.g. Twitter, chats, e-mail or scientific documents) as a sin-
gle layer of the respective network. We unite these single
layers in both social and artefact networks to consolidated
networks that contain all actors and artefacts respectively
(cf. figure 1). While in the consolidated social network
we can only make statements concerning the relations be-
tween actors and in the consolidated artefact network we

1See http://artefact-actor-networks.net



can only analyze the relations between artefacts, Artefact-
Actor-Networks (cf. figure 2) also contain semantic rela-
tions between actors and artefacts.

artefact network (e-mail)

artefact network (documents)

artefact network (chat)

consolidated artefact network

Figure 1: Consolidated artefact network resulting from
three layers

consolidated social network

consolidated artefact network

Figure 2: Artefact-Actor-Network with semantic relations
between artefacts and actors

In Artefact-Actor-Networks we discern three types of
semantic relations: those between artefacts (ART2 rela-
tions), those between actors (ACT2 relations) and finally
relations that exist between actors and artefacts (AA rela-
tions). Each kind of relation can be used for certain types
of analyses and supports a different type of awareness in
cooperative settings. ACT2 relations describe the nature of
relationships between involved people. They characterize
simple connections, friendships or kinships. Furthermore,
they can show the kind of media people are communicating
with. The Friend of a Friend (FOAF) project [FOAF, 2010]
developed a RDF vocabulary to express interests, connec-
tions and activities of people. ART2 relations on the other
hand provide information on how artefacts are connected.
The Dublin Core metadata standard and the SIOC project
currently provide an expedient starting point [DCMI, 2010;
SIOC, 2010]. Lastly, AA relations describe the seman-
tics of relations between actors and the artefacts they inter-

acted with. Dublin Core and SIOC provide useful relations
to build upon, but the learning objects metadata standard
(LOM) could be taken into account as well.

2.2 Relevant ontologies
During the modeling of the application domain how-
ever, we found out that we needed to extend the before-
mentioned ontologies2 and vocabularies in order to cover
the specifics of interaction with social media in learning
networks. Thus, we created several ontologies for the so-
cial media services we are analyzing (see Section 3.3) and
made our ontologies publicly available3. The relations
build on already existing standards for the modeling and
storage of metadata and are further extended by our ap-
plication. Figure 3 shows a simplified overview of the
ontologies used in Artefact-Actor-Networks, where AAN-
Base defines the basic entities Actor, Artefact and Key-
word. AANMeta is an ontology that allows the aggregation
of multiple actors (online handles) in one real person and
the relationship between so-called groups to real people,
their actors and artefacts related to a group (for example
artefacts that are tagged with one of the groups tags). The
AANOnline ontology is used to differentiate between arte-
facts resulting from online actions and such artefacts that
relate to activities taking place offline. The more specific
tools and the respective ontologies are located towards the
right of Figure 3.

3 The architecture of
Artefact-Actor-Networks

The architecture of Artefact-Actor-Networks is composed
of a backend to which several frontends can be connected.
The backend is responsible for processing and storing data
and exposing this data to the frontends by well-defined in-
terfaces.

The architecture is based on the OSGi Service Platform,
which is a component framework based on the Java plat-
form. Due to the use of a specified component structure
the backend is easily expandable and components can be
deployed during runtime. The communication between the
components is ensured with techniques from OSGi.

It is the backend’s task to examine contents, to analyze,
store and provide the annotated data. These four tasks are
reflected in the according blocks in the AAN architecture
(cf. Figure 4).

The crawling block loads contents and generates (ac-
cording to the ontology) structured data. The datastore
block stores all data generated and serves as the connec-
tion between all the existing blocks. The analyzer block
contains several components with which a further refine-
ment of the generated data is achieved. The fourth block
provides the interfaces for various frontends. These blocks
and the contained components are described in the follow-
ing.

2Ontologies are a common way to model problem domains in
an extensible and open format that is usable in various contexts.
[Lohmann and Riechert, 2010] note the very precise and popu-
lar definition of the term ontology given by [Gruber, 1993] who
notes that an ontology is ”a specification of conceptualization” .
Furthermore [Maalej et al., 2008] prod to the fact that ontologies
normally are valid for a much longer time than conceptual mod-
els for example, as they describe a broader application domain
and some more general knowledge facts.

3See http://artefact-actor-networks.net/
ontologies/2010/03/



Figure 3: Simplified overview of the AAN Ontologies

3.1 Crawling-Block
At the crawling block, requests for content analysis are pro-
cessed. These requests are passed to the crawling block via
OSGi-Services and analyzed by a processing chain. There
are two interfaces: The components Crawler and Crawler-
Manager. The CrawlerManager contains high-level func-
tions by which the Crawler is controlled. The processing
chain is controlled by the crawling component. It consists
of the components Accessor, which is reading the content,
MimeTyper, to identifier the type, and Parser, which ana-
lyzes the content.

Crawler
The Crawler component provides low-level functions to
process tasks. Tasks are committed as URIs of the content.
For such an URI, the Crawler executes the processing chain
by loading, determining the MIME type and analyzing the
content. The selection of the Accessor component depends
on the used protocol and the URI. Accordingly, the MIME
type is determined, what in turn selects the Parser to store
contents in the datastore block. While the Parser is chosen,
it is taken into consideration, if a specialized Parser exists
that is able to handle variations of the detected MIME type.
An example is a request of a web service, which supplies
a MIME type text/xml. The use of a Parser that is able to
handle this special type is more practicable than the use of
a Parser, which can process all XML formats.

The processing of tasks occurs asynchronously by the
use of a thread pool with which several tasks can be exe-
cuted parallel.

CrawlerManager
A superordinate of the Crawler component is the Crawler-
Manager, which is using the services of the Crawler. The

CrawlerManager provides functions of higher levels than
the Crawler. Whereas the Crawler is receiving tasks via an
exact URI, the CrawlerManager is designed to handle more
complex jobs. It is possible to deal with individualities of
web pages or investigate the structure of a page by follow-
ing hyperlinks in HTML documents.

To handle special tasks, there can be various imple-
mentations of the CrawlerManager. Two examples, the
GenericCrawlerManager and the MediaWikiCrawlerMan-
ager, can be seen in the architecture (figure 4). The Gener-
icCrawlerManager is able to process timed tasks, which can
generate follow-up tasks. The MediaWikiCrawlerManager
is specialized to the structure of MediaWiki pages and is
able to crawl contents of an entire wiki.

Accessor
The first element of the processing chain is the Accessor
component. It is responsible for reading content. The com-
ponent is responding to the Crawler, which hands over an
URI of the content to load. The Accessor component ac-
cesses the resource, stores it in a local file, and returns a
reference to the file.

Different types of the Accessor component are conceiv-
able. Those could enable the access to protocols like HTTP,
FTP, SMTP or SVN.

MimeTyper
For further processing of a resource by a Parser the MIME
type of resource is determined. This improves the choice
of an appropriate Parser in the last stage of the processing
chain. The MimeTyper is loading the temporary, local file
of the content to analyze. Then it determines one or more
MIME types of the content and returns it to the Crawler.



Figure 4: The AAN architecture



Parser
The Parser is the last stage of the processing chain. It ex-
tracts relevant information from the resources loaded by the
Accessor, to build up an Artefact-Actor-Network. Different
variations of Parsers are distinguished by the Parser type
and the MIME types which can be processed. Types are
setting in advance the order, in which the Parsers are cho-
sen. Parsers which can handle a specialized MIME type are
preferred to general Parsers. This guarantees the choice of
a Parser which can process contents optimally.

3.2 DataStore block
The DataStore block is responsible for the storage of all
data produced in the application. For this purpose, four
components are available to accommodate the differently
structured data. Other components will be notified of any
changes via an event service. All components in the Data-
Store block send custom events for communication pur-
poses.

DataStore
The Parsers generate RDF data from the analyzed contents
that is stored in the DataStore according to the respective
ontology. RDF data provides several advantages for Arte-
fact-Actor-Networks. In addition to the flexibility of the
data structure and the ability to generate descriptions of the
data at runtime, there is a wide range of storage engines that
are adapted to the processing of RDF data. The backend
uses the Jena Framework4 to store and query the data. With
Jena data can be queried both in source code and via the
RDF data query language SPARQL5. The DataStore stores
the data in a file format defined by the Jena Framework but
one can also use in-memory storage or a RDBMS.

FullTextStore
Some analytical techniques for text-based content – such
as keywords, named entities or related languages – require
the existence of a full text. The texts can be extracted
by a Parser and will be stored in the FullTextStore. The
FullTextStore will notify components in the analysis block
about the existence of a full text that can be retrieved via an
event system.

RelevanceStore
The RelevanceStore holds information about the relevance
of a keyword. This relevances are used during the calcu-
lation of semantic similarity of artefacts. In our architec-
ture the FullTextStore and the RelevanceStore were incor-
porated in one component. We use the Apache Lucene en-
gine to efficiently store the full texts and to query the Full-
TextStore for the relevance of single keywords.

SimilarityStore
The SimilarityStore manages all calculated similarity val-
ues between artefacts, actors, persons and groups. Sim-
ilarity values are created by various similarity analyzers,
which store their results in the SimilarityStore according to
an analyzer-specific order.

3.3 Analysis block
The Analysis block includes all components for analyzing
stored data of components from the DataStore block. Com-
ponents in this block only listen to events fired from Data-
Store components. We distinguish between NetworkAnal-

4http://openjena.org/
5http://www.w3.org/TR/rdf-sparql-query/

ysers, TextAnalysers and RelevanceAnalysers. Network-
Analysers listen to events fired from the DataStore, Text-
analysers listen to events from the FulltextStore and Rele-
vanceAnalysers to events from the RelevanceStore.

NetworkAnalyser
NetworkAnalysers are using the data pool of the DataStore
to analyse network structure. They will be informed to ev-
ery change in the data pool of the DataStore.

TextAnalyser
TextAnalysers start working upon the reception of Full-
TextStore events. Currently we implemented Or-
chestr8Analyser, OpenCalaisAnalyser and CosineAnal-
yser. The Orchestr8Analyser and OpenCalaisAnalyser are
making use of the webservices of Orchestr8 and Open-
Calais respectively to extract keywords and named entities
from a given text. Extracted data will be stored as addi-
tional parts of resources.

RelevanceAnalyser
RelevanceAnalysers are components to determine the simi-
larity of resources. An example for such an algorithm could
be the SemSim algorithm that we developed (see [Rein-
hardt et al., 2009b] for more detail on the algorithm). Sem-
Sim allows the calculation of semantical similarity based
on the keywords and named entities stored for artefacts.
The calculated values are then stored in the SimilarityS-
tore.

3.4 Connection block
The fourth block in our architecture is the Connection
block that encapsulates Webservices and the visualization
component. Both components expose data stored in Arte-
fact-Actor-Networks or API functionalities to external con-
sumers over HTTP interfaces.

Webservices
Internal server components such as the CrawlerManager,
the CrawlerManager or the DataStore are providing their
functionalities via webservice interfaces as an API to ex-
ternal applications. Using the API, crawling jobs can be
placed or data from the DataStore can be requested. The
DataStore provides tailored API functions as well as a
SPARQL interface to the AAN.

Visualization component
The visualization component converts the contents of Arte-
fact-Actor-Networks into a XML-based graphics format
that can be displayed and explored in the appropriate view-
ers. The preparation of those files is costly and will be a
great burden for the AAN server. In order to reduce the ef-
forts we implement a caching strategy that will only keep
those projects up-to-date that are being accessed regularly.

3.5 Technical note
The architecture is based on the OSGi service platform6

a component framework based on the Java platform. The
OSGi service platform is a specification of the OSGi Al-
liance, which has been implemented in various imple-
mentations. Amongst those implementations are Eclipse
Equinox7 and Apache Felix8. The frameworks support the
live deployment of components, which allows to add a new
Parser without the need to restart the server.

6http://www.osgi.org
7http://www.eclipse.org/equinox
8http://felix.apache.org



OSGi also allows the dynamic communication of com-
ponents with each other. For this purpose, a service system
is used that allows components to register services that then
can be used by other components. The AAN architecture
makes heavy use of this approach, as all components pro-
vide specialized services and await use. As an example,
each Parser has to provide a service that can be accessed
via the two methods isParsable and parse of the Crawler
component.

4 Social media tools under investigation
In its current implementation of AANs we store and ana-
lyze data from four different social media tools: (1) Twit-
ter, (2) Delicious, (3) SlideShare and (4) MediaWiki. All
of the tools are used by researchers during their daily work
routines (see for example [Heinze et al., 2010] for an in-
spection of tools used by researchers) and make specific
demands on the respective components in the AAN archi-
tecture. In the following we present the specifics of the
single components.

4.1 The specifics of the Twitter component
Twitter9 is a microblogging service, which allow users to
publish short messages with an length under 140 char-
acters. These messages are typically public and can be
viewed over different channels. The TwitterParser com-
ponent use the answers of the TwitterAPI in XML or JSON
format to parse the information of a single Tweet(Status),
a Twitteruser, a users timeline, the followers of a User or a
search request. The TwitterParser possesses a special com-
ponent for each of this functions which will be described
now.

The StatusComponent parses the XML answer of the
TwitterAPI /show/status request. It extracts the information
about the status and the user who created it. The extracted
information is kept in the DataStore as listed below:

CreationTime the creation time of the status.

Statusid the Twitter id of the status.

Replyid the Twitter id of the status to which the current
status is the reply.

User the information of the creator of this status. This will
use the UserComponent.

WebURL the URL to this status as an HTML page.

Hashtags the hashtags of this status.

ExternalLinks hyperlinks that this status may contain.

Text the full text of the status that will be stored in the
FullTextStore.

TwitterAPI /show/user requests are processed in the
UserComponent which extracts information about the
Twitter user and stores them in the DataStore. The ex-
tracted information are listed below:

UserID the Twitter id of the user.

Screenname the screen name of the user.

Username the real name of the user.

Location the location where the user lives.

Description the description of the user which was entered
in Twitter.

URL the internet address of the user.
9http://www.twitter.com/

CreationTime the date at which the user registered at
Twitter.

Last Status the last status of the user (will passed to the
StatusComponent for analysis).

The TwitterAPI response for a timeline contains a se-
ries of statuses. This series will be separated by the Time-
lineComponent into the single statuses. At the last step the
TimelineComponent will forward each single status to the
StatusComponent which will extract the information.

The /show/followersid API call responds with a list of
TwitteruserIDs which will be parsed and returned to the
Crawler as follow-up links, which can be followed by a
CrawlerManager to parse the user information of the fol-
lowers.

The response from the TwitterSearchAPI is computed
the same way as followers. The StatusID will be extracted
from the response and returned to the Crawler as follow-
up links. This is necessary because Twitter uses a different
data structure in the SearchAPI as in the rest of the Twitter-
API.

4.2 The specifics of the Delicious component
One of the integrated data sources is the social bookmark-
ing service Delicious10. Delicious can be used to store per-
sonal bookmarks on the web and share them with others.
During the creation of bookmarks users have the opportu-
nity to add notes and tags to describe and categorize their
input. By adding this additional data, especially the tags,
artefact-networks are created. On the one hand bookmarks
of different users form networks by relations resulting from
their tags. On the other hand all bookmarks of a user
are connected to the user himself. Besides these artefact-
networks, actor-networks can also be found at Delicious.
These are formed while users add other Delicious users to
their personal network. By these relations, some users are
connected indirectly, as well as their bookmarks are con-
nected additionally. In summary, Delicious provides both
types of networks that form the base of Artefact-Actor-
Networks. What is the most practicable way of proceeding
to get it?

Data access
Delicious offers a huge amount of possibilities for develop-
ers to access the available data11. Depending on the desired
outcome, one can choose from different interfaces, e.g. an
API, feeds or link-rolls. Generally, one of the most applied
ways to access data is by the use of an API. We also tested
this way for applicability to our system. The offered API-
methods are custom-made for the access and use of a users
personal data. A user can create, edit and receive personal
bookmarks, tags and tag bundles. As the idea of AAN is
the extraction and analysis of public data, and the need of
a user-authentication by the API is a hindrance, there was
a need for more useful data access.

A more utilizable approach to get data is the use of De-
licious feeds12. Feeds are offered in JSON and RSS for-
mat and provide an access to public data. It is possible to
get the latest bookmarks, tags and network members of a
specified user. Furthermore, requests for bookmarks can be
refined by combining a specific username and tags. More-
over, recent bookmarks for an URL can also be accessed
what forms an extensive base for information retrieval.

10http://delicious.com/
11http://delicious.com/help/tools
12http://delicious.com/help/feeds



As feeds are mainly used for receiving the latest informa-
tion, most of the feeds are provided as a list of recent book-
marks. Furthermore, the Delicious feeds are limited to 100
entries per request and as there is also a limitation of one re-
quest per second we encountered a restriction for crawling
the entire bookmarks of a user. This fact was partly solved
by multiple recursive requests. If a user has described his
bookmarks with the tags A, B and C, first the bookmarks
described with tag A are requested. If the returned set of
bookmarks amounts to 100 entires, a combined request of
tag A and B is sent. If the result of this request amounts
to 100 entries again, a refinement by an additional tag is
used. Otherwise, the bookmarks of the tags A and C are
requested to get a result that is as complete as possible.

Within our system, the DeliciousParser is setting prop-
erties for contents of specific feed calls. With these prop-
erties, extracted tags and the count of returned artefact en-
tries are stored. This forms the basis, by which the Deli-
ciousCrawlerManager is generating feed URLs to follow
up crawling a complete set of bookmarks.

Finally, the received feed-data is mapped to the defined
ontology and added to the AAN model.

4.3 The specifics of the SlideShare component
SlideShare13 is a Web 2.0 platform which offers users the
possibility to share presentations and documents. A user
can upload files in PDF and common office formats and
is able to define metadata like tags, category and visibility
information. Published slides can be favored, rated, com-
mented on, downloaded and shared with others.

For developers, SlideShare provides an API14 with
which public and private data can be accessed. Public API
methods require an optional user authorization. By using
public methods, developers can request documents related
to users or tags. Additionally, a user’s tags or contacts can
be requested as well.

For accessing data of the SlideShare network, the ex-
pandability of the AAN framework is used. Here we took
advantage of the clear URL scheme of the API methods and
thus the existing components CrawlerManager and Zentral-
CrawlerManager work together with the SlideShareParser,
a specialized parser to analyze the incoming SlideShare
data. New crawling tasks are added to one of the Crawler-
Managers. If such a task consists of a SlideShare URI, the
specialized SlideShareParser determines that it is able to
handle the given input. If the parser is chosen it firstly
analyzes the URI scheme. In the following, artefacts, ac-
tors and metadata are extracted and stored accordingly to
the specified ontology. Finally, API URLs of related ac-
tors, artefacts and keywords are generated and added to the
crawling queue.

4.4 The specifics of the MediaWiki component
The MediaWiki component was designed to receive as
much information as possible from a MediaWiki installa-
tions such as WikiPedia. First we designed a specialized
MediaWikiCrawlerManager, which is able to control the
crawling process to crawl and observe a complete Medi-
aWiki or just a single page. Furthermore, we implemented
the MediaWikiParser, who’s task it is to parse input that
was received by the Crawler (see Section 3.1). The Medi-
aWikiParser stores extracted information like internal and
external links or information about the author within the

13http://www.slideshare.net/
14http://www.slideshare.net/developers/documentation/

DataStore component. The full text will be stored with the
FullTextStore component. We distinguish between three
different types of jobs handled by the MediaWikiCrawler-
Manager, which will be discussed below.

Crawling single pages
In this case, the MediaWikiCrawlerManager handles the
job in four steps. First a unique URL as a permalink15

will be generated. As discussed before every object, like
a MediaWiki article is represented as a unique artefact
in the Artefact-Actor-Network. Secondly the MediaWik-
iCrawlerManager generates an MediaWiki API-Query of
the type ’parse’. The required information is initially re-
ceived from the MediaWiki server of the article. Note, that
this the query is not executed by the MediaWikiCrawler-
Manager but only the appropriate URL will be created.
In the third step the MediaWikiCrawlerManager calls the
Crawler to add a new crawl task. The resource will be
fetched by one of the accessor components. If the Medi-
aWikiParser is registered and started, the MediaWikiParser
parses the resource because of the distinction between spe-
cial and general parsers.

Further Properties By adding a new job to crawl only
a single page one is able to define the properties to resolve
internal and external links by specifying a depth value. If a
the depth for internal link is 1 for example, the MediaWiki-
CrawlerManager will add new jobs for all received internal
links.

Crawling a full MediaWiki
The MediaWikiCrawler can crawl a complete MediaWiki
with all its articles in the latest revision or with all its arti-
cles with a specifiable number of revisions. By adding a job
to crawl a complete MediaWiki, the MediaWikiCrawler-
Manager executes an API query to receive a list of all arti-
cles, including the latest revision information about an ar-
ticle. If one wants to get more then the current revision of
an article, the MediaWikiCrawlerManager executes queries
to get basically needed information about each revision.
With this information, the MediaWikiCrawlerManager fi-
nally generates MediaWiki API queries of the type parse to
add new single page jobs. Each of the generated jobs will
be handled like described in the section about crawling sin-
gle pages. Another important note is the limitation on the
MediaWiki API. Only 500 article or revision entries can be
received with one query. This is solved by executing serial
queries.

Further properties For this job type the properties re-
vision count and the depth of external links can be speci-
fied. The property revision count can be a positive integer
values or -1 to crawl all revisions of all pages. The pa-
rameter about the depth of the external links is the same as
described in the section about crawling single pages. It will
be propagated to each created single page job.

Observing a MediaWiki
To keep AAN data up to date, the MediaWikiCrawlerMan-
ager supports the observation of a MediaWiki. After crawl-
ing a full MediaWiki initially, it regularly checks the Medi-
aWiki about changes. This means that you must not always

15Permalink is the unique URL of a MediaWiki page; e.g.
http://en.wikipedia.org/w/index.php?title=
Java&oldid=366545644



crawl and parse the complete MediaWiki, which would
consume to much time. Only changes since the last suc-
cessful crawling will be considered in a new crawling job.

General handling of jobs
All generated jobs will be stored in a threaded queue by
scheduling first-come-first-serve. Each job is represented
as a single thread, which allows to handle more than one
job in parallel.

5 Outlook and further R&D opportunities
Artefact-Actor-Networks are analyzing interactions of
learners with artefacts that are used for individual and or-
ganisational learning. The semantically enriched data is
then exposes via an open API to be included in various user
interfaces.

In [Reinhardt, 2010] we introduce the AANalyzer as the
first awareness dashboard that build on the AAN model
and will be applied to several learning communities in the
course of the year 2010, which will help us to gain user
feedback on the awareness support the tool offers. At the
same time we are extending both the number of social me-
dia tools available for analysis in AANs as well as the qual-
ity of the AAN backend implementation. First functional
tests with more than 400.000 nodes in an Artefact-Actor-
Network revealed the need for improvements regarding the
inferring of semantical data stored. Besides the long run-
times to calculate the inferred models, any changes in the
data model require a rebuilding of the inferred model. Fur-
thermore, the calculation of semantic similarity between
artefacts, actors and groups in AANs is a challenging en-
deavor to overcome. At the moment the calculations are
done in an online algorithm whose runtime is exponen-
tial to the number of artefacts in the DataStore. We strive
for implementing an offline algorithm that makes use of
caching strategies and a the data in the SimilarityStore.

Regarding the variety of awareness widgets for the users
of the AANalyzer, we will extend the choice with statistics
widgets and an advanced word cloud implementation that
will allow for the visualisation of timely changes in the im-
portance and use of certain terms.

References
[DCMI, 2010] DCMI. Dublin Core Metadata Initiative.
http://dublincore.org/, 2010.

[Ebner and Schiefner, 2008] Martin Ebner and Mandy
Schiefner. Microblogging - more than fun? In Proceed-
ings of the IADIS Mobile Learning Conference, pages
155–159, 2008.

[Ellison et al., 2007] N.B. Ellison, C. Steinfield, and
C. Lampe. The benefits of Facebook” friends:” social
capital and college students’ use of online social net-
work sites. Journal of Computer Mediated Communica-
tion (Electronic Edition), 12(4):1143, 2007.

[FOAF, 2010] FOAF. The Friend of a Friend (FOAF)
project. http://www.foaf-project.org/,
2010.

[Granovetter, 1983] M. Granovetter. The strength of weak
ties: A network theory revisited. Sociological theory,
1:201–233, 1983.

[Gruber, 1993] T.R. Gruber. A Translation Approach to
Portable Ontology Specifications. Knowledge Acquisi-
tion, 5(2):199–220, 1993.

[Heinze et al., 2010] N. Heinze, P. Bauer, U. Hofmann,
and J. Ehle. Kollaboration und Kooperation in verteil-
ten Forschungsnetzwerken durch Web-basierte Medien
– Web 2.0 Tools in der Wissenschaft. In Forthcoming
Proceedings of the GMW 2010 conference, 2010.

[Java et al., 2007] Akshay Java, Xiaodan Song, Tim Finin,
and Belle Tseng. Why we twitter: Understanding mi-
croblogging usage and communities. In Procedings of
the Joint 9th WEBKDD and 1st SNA-KDD Workshop
2007, August 2007.

[Lohmann and Riechert, 2010] S. Lohmann and
T. Riechert. Adding Semantics to Social Software
Engineering: (Re-)Using Ontologies in a Community-
oriented Requirements Engineering Environment. In
Workshop-Proceedings of Software Engineering 2010,
pages 485–494, 2010.

[Maalej et al., 2008] W. Maalej, D. Panagiotou, and H.-J.
Happel. Towards Effective Management of Software
Knowledge Exploiting the Semantic Web Paradigm. In
Proceedings of Software Engineering 2008, pages 183–
197, 2008.

[O’Reilly, 2005] T. O’Reilly. What is Web 2.0 – Design
Patterns and Business Models for the Next Genera-
tion of Software. http://oreilly.com/pub/
a/web2/archive/what-is-web-20.html,
September 2005.

[Reinhardt et al., 2009a] Wolfgang Reinhardt, Martin
Ebner, Guenter Beham, and Cristina Costa. How people
are using Twitter during conferences. In V. Hornung-
Prähauser and M. Luckmann, editors, Creativity and
Innovation Competencies on the Web. Proceedings of
the 5th EduMedia 2009, Salzburg, pages 145–156,
2009.

[Reinhardt et al., 2009b] Wolfgang Reinhardt, Matthias
Moi, and Tobias Varlemann. Artefact-Actor-Networks
as tie between social networks and artefact networks. In
Proceedings of the 5th International ICST Conference
on Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom 2009), November
2009.

[Reinhardt, 2010] Wolfgang Reinhardt. A widget-based
dashboard approach for awareness and reflection in
online learning communities based on Artefact-Actor-
Networks. In Forthcoming Proceedings of the First PLE
Conference 2010, 2010.

[SIOC, 2010] SIOC. The semantically-interlinked
online communities (sioc) project. http:
//sioc-project.org/, 2010.

[Vuorikari, 2009] Riina Vuorikari. Tags and self-
organisation: a metadata ecology for learning re-
sources in a multilingual context. PhD thesis, Open Uni-
versity of the Netherlands, 2009.


