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Attributed Graphs 
■ Additional information (on nodes, edges) 
■ E.g., "knowledge graph" 
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Homophily (i.e. "Love of the same") 
■ Sociology:"Birds of a feather 

flock together" [Lazarsfield & 
Merton 1954] 

■ Social Networks: "Similarity 
breeds connection": A 
connection between similar 
people occurs at a higher rate 
than between dissimilar ones. 
[Mc Pherson et al. 2001] 
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Attributed Network/Graph 
■ Examples 

■Citation Attributes 
■(Co-)Authors 
■Affiliation 
■Country 
■Gender 
■… 

■WWW 
■Links 
■Content (BoW) 
■… 

(Newman 2003) 4 



Real-World System I: BibSonomy 
                                    http://www.bibsonomy.org 

Resource 

Tag 

User 

Users assign tags 
to resources 

Organize 
 Share 
Categorize 
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Real-World System II: Conferator 
■ Social Conference 

Guidance System 
■ GI: Lernen – Wissen – Adaptivität  

(LWA)  2010 + 2011 + 2012 
■ ACM Hypertext 2011 
■ INFORMATIK 2013 
■ UIS 2015 

■ Based on RFID-Technology 
(smart badges) 

■ Management of social contacts, 
personalization of conference 
schedule 

■ Localization 
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Conferator - Live Interaction 
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Conferator 
■ Social interaction 

networks: 
■ Friend network 
■ Contact network 
■ Picked/Visited talks 
■ Co-location  network 
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[Atzmueller et al. 2012, 
Atzmueller & Hilgenberg 2013] 
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Terminology 
Network  Graphs 
■ Set of atomic entities (actors) 
nodes, vertices 

■ Set of links/edges between nodes ("ties") 
■ Edges model pairwise relationships 
■ Edges: Directed or undirected 
■ Social network [Wassermann & Faust 1994] 

■ Social structure  capturing actor relations 
■ Actors, links given by dyadic ties between actors 

(friendship, kinship, organizational position, …) 
 Set of nodes and edges 

■ Abstract object – independent of representation 
10 



Variables [Wassermann & Faust 1994] 

■ Structural 
■ Measure ties between actors ( links) 
■ Specific relation 
■ Make up connections in graph/network 

■ Compositional 
■ Measure actor attributes 

■Age 
■Gender 
■Ethnicity 
■Affiliation 
■… 

■ Describe actors 
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Attributed Graphs 
■ Graph: edge attributes and/or node attributes 

■ Structure: ties/links (of respective relations) 
■ Attributes - additional information 

■ Actor attributes (node labels) 
■ Link attributes (information about connections) 
■ Attribute vectors for actors and/or links 
■ … can be mapped from/to each other 

■ Integration of heterogenous data (networks + 
vectors) 

■ Enables simultaneous analysis of relational + 
attribute data 
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Subgroups & Cohesive subgroups 
■ Subgroup 

■Subset of actors (and all their ties) 
■ Define subgroups using specific criteria 

(homogeneity among members) 
■Compositional – actor attributes 
■Structural – using tie structures 

■ Detection of cohesive subgroups & 
communities  structural aspects 

■ Subgroup discovery  actor attributes 
■ … attributed graph  can combine both 
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[Wasserman & Faust 1994] 



Cohesive Subgroups 
■ Components: Simple, detect "isolated" 

island 
■ Based on (complete) mutuality 

■Cliques 
■n-Cliques 
■Quasi-cliques 

■ Based on nodal degree 
■K-plex 
■K-core 
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[Wasserman & Faust 1994] 



Compositional Subgroups 
■ Detect subgroups according to specific 

compositional criteria 
■Focus on actor attributes 
■Describe actor subset using attributes 

■ Often hypothesis-driven approaches: Test 
specific attribute combinations 

■ In contrast: Subgroup discovery 
■Hypothesis-generating approach 
■Exploratory data mining method 
■Local pattern detection 
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[Atzmueller 2015] 
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Subgroup Discovery & Analytics 
 Task:  

„Find descriptions of subsets in the data, 
 that differ significantly for the total 
population with respect to a target concept.“ 

 Examples: 
 "45% of all men aged between 35 and 45 have a high 

income  in contrast to only 20% in total." 
 "66% all all woman aged between 50 and 60 have a 

high centrality value in the corporate network" 
■ Descriptive patterns for subgroup 

■  Gender= Female ∧ Age = [50; 60]   Centrality = high 
■ {flickr, delicious}, {library, android}, {php, web}  Centrality = high 
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[Kloesgen 1996, Wrobel 1997] 



Pattern 
■ Merriam Webster: "A repeated form or design 

especially that is used to decorate something" 
 
 
 
 

■ Oxford: "An arrangement or design regularly 
found in comparable objects" 

■ Pattern in data mining [Bringmann et al. 2011] 
■ Captures regularity in the data 
■ Describes part of the data 
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Subgroup Discovery 
• Given – INPUT:  

– Data as set of cases (records) in tabular form 
– Target concept (e.g. „high centrality“) 
– Quality function (interesting measure) 

• OUTPUT - Result: Set of the best k Subgroups: 
– Description, e.g., sex=female ∧ age= 50-60 
 Conjunction of selectors 

– Size n, e.g., in 180 of 1000 cases 
– Deviation 

(p = 60% in the subgroup vs. p0=10% in all cases) 
 "Quality" of the subgroup: weight size and 

deviation 
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Subgroup Quality Functions 
- Consider size and deviation in the target concept 

 
 
 
 

- Weighted Relative Accuracy (a = 1) 
- Simple Binomial (a = 0.5) 
- Added Value (a = 0) 

- Continous: Mean value (m, m0) of target variable 

 

n:Size of subgroup  
(number of cases) 

p:  share of cases with target = true in the subgroup 
p0: share of cases with target = true in the total population 

a: weight size against deviation (parameter) 

[Atzmueller 2015] 
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Efficient Search 
■ Heuristic: Beam Search 
■ Exhaustive Approaches: 

■Basic idea: Efficient data 
structures + pruning 

■SD-Map – based on FP-
Growth    [Atzmueller & 
Puppe 2006] 

■SD-Map* – Utilizing 
optimistic estimates 
(branch & bound) 
[Atzmueller & Lemmerich 
2009] 
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[Atzmueller et al. 2004, 
Atzmueller 2007] 



Pruning 
■ Optimistic Estimate 

Pruning – Branch & 
Bound 

■ Optimistic Estimate: 
Upper bound for the 
quality of a pattern and 
all its specializations 
Top-K Pruning 

■ Remove path starting at 
current pattern, if 
optimistic estimate for 
current pattern (and all 
its specializations) is 
below quality of worst 
result of top-k results 
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Extensions 
■ Numeric features 
■ Very large data 

■Distributed Algorithms: 
Local (several cores) vs. network 

■  Sampling 

■ Non tabular data 
■Text 
■Sequences 
■Networks/Graphs ( community detection) 
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Example: Binary target 

Income Sex Age Education 
level 

Married Has 
Chidren 

High M >50 High Y Y 

High M >50 Medium Y Y 

High F 40-50 Medium Y Y 

Medium M >50 High Y N 

Medium M 30-40 Medium Y Y 

High M 40-50 Low N Y 

Low M <30 High Y N 

Medium F <30 Medium Y N 

Low F 40-50 Low Y N 

Low M 40-50 Medium N N 

Medium F >50 Medium N N 

Low F <30 Low N N 

Low F 30-40 Medium N N 

Low F 40-50 Low N N 

Low M <30 Low N N 

Medium F 30-40 Medium N N 

SG 1: ‚Married‘ = ‚Y‘  
n = 8; p = 0.375  q = 0.0625 

Target concept: ‚Income‘ = 
‚High‘ 
Quality function: q = n * (p - p0) 
N = 16 ; p0 = 0.25  
 

SG 2: ‚Sex‘ = ‚M‘∧ Age = ‚ < 30‘ 
n = 2; p = 0  q = - 0.03125 
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Numeric Features 
• Discretization: 
 "While only 20% of the total population have an 

degree centrality > 3, in subgroup X it can be 
observed in more than 90% of all cases." 

 
• Considering the mean value directly: 

"While the average degree centrality in the total 
population is 3.3, it is more than 10.5 in subgroup Y. " 
 

  Both can be useful,  
  Mean value does not require threshold,  
  However, is it easier to understand? 
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Local Exceptionality Detection 
■ Exceptional Model Mining 

■ Identification of Patterns 
■ showing an "interesting behavior" for a certain 

"model" 
■Mean test (e.g., influence factors for increased centrality) 
■Linear regression (e.g., different centrality measures) 
■Correlation Coefficient (e.g., factors for role analysis) 
■Variance (e.g., degree, clustering coefficient, …) 
■… 

■ Algorithms: 
■ Beam-Search: Heuristic (!) [Duivestein et al. 2015] 
■ GP-Growth [Lemmerich et al. 2012] 

■Faster by multiple orders of magnitude compared to 
standard methods 

■Fastest exhaustive algorithm so far 
 26 



EMM  - Example Linear 
Regression 

[Leman et al. 2008] 

Total population 
Subgroup:  

drive = 1 ∧ nbath > 2 
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Exploratory Analysis 
■ Semi-automatic & Interactive 
■ Hypothesis generating 
■ Detect local models for 

description & prediction 
■Subgroup discovery 
■Local exceptionality detection 
■Exceptional model mining 

■ Applicable also for big data 
(with Map/Reduce, …) 
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Subgroup & Pattern Analytics 
■ VIKAMINE  [Atzmueller & Lemmerich 2012] 

Open-source tools for pattern mining and 
subgroup analytics 

 
www.vikamine.org 

 
■ R package: Algorithms of VIKAMINE 

       
                   www.rsubgroup.org 
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Cohesive Subgroups 
■ Identify cohesive subgroups of actors 
■ Cohesive subgroup 

(Wassermann & Faust, p. 249): 
■Subsets of actors 
■Relatively strong, direct, intense , frequent or 

positive ties 

■ Social cohesion – primary criterion based on 
internal ties 

■ Extension: Social structure 
( communities!) 
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Subgroups – Local Definitions 
■ Clique: Subset of nodes of a graph, such that 

all nodes are adjacent to each other 
■Triangles 
■Clique detection in graphs NP-Complete 
■Definition: 

■Usually too conservative/strict 
■Usually not found in sparse networks 
■May not reflect real social groups 
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Extension – K-Clique 
■ K-Clique: 

■Maximal subgroup, where 
■ largest geodesic distance 

between any pair of nodes 
is not greater than k 

■ 1-Clique is a clique 
■ 2-Clique: Subgraph, where all pairs of actors 

are connected with a path not longer than 2 
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Extension  – Quasi-Clique 
■ Generalize clique to dense subgraph 
■ Different definitions (degree, density) 
■ Subset of nodes is quasi-clique, if 

■Nodal degree: every node in induced subgraph is 
adjacent to at least γ(n - 1) other nodes in 
the subgraph 

■Edge density: Number of edges in subgraph is at 
least λn(n - 1)/2 
 
 (with n :  number of nodes in subgraph) 
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K-Core 
■ Maximal subgraph 
■ Each node has at least degree k 
■ Hierarchy of cores 

■ Iteratively, eliminate lower-order cores 
■Until: Relatively dense subgroups remain 
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K-Plex 
■ Maximal subgraph 
■ No more than k direct connections are 

missing between pairs of actors 
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[Wasserman & Faust 1994] 



Communities 
■ Cohesive subgroups – structure within group 
■ Basic idea of communities 

■Tightly-knit groups 
■Consider both internal and external ties in 

network 
■ In general: 

■High number of internal ties (high density within) 
■Low number of external ties (lower density between) 
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Zachary's Karate Club [Zachary, 1977] 

■ Members of 
university 
karate club 

■ Conflict 
between club 
president (34) 
and karate 
instructor (1) 

■ Result: Split-
up of the 
network 
according to 
friendship ties 
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Karate Club – 2 Factions 
 

39 



Finding Communities 
■ Given a network/graph, find "modules" 

■ Single network [Newman 2002] 
■ Multiplex networks [Bothorel 2015] 

■ Community structures [Fortunato 2010] 

■ Graph Clustering  disjoint communities 
■ Hierarchical organization [Lancichinetti 2009]  
■ Overlapping communities [Xie et al. 2013] 

■ Questions: 
■ What is "a community"? 
■ What are "good" communities? 
■ How do we evaluate these? 
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Community: Definition & Properties 
■ No universally accepted definition 
■ Informally: 

■ Intuition: Densely connected group of nodes 
■Subset of nodes such that there are more edges 

inside the community than edges linking the 
nodes with the rest of the graph 

■ Intra Cluster Density 
■ Inter Cluster Density 
■ Connectedness 
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Global View 
■ Communities can also be defined with respect 

to the whole graph 
■ Graph has community structure, if it is different 

from random graph 
■ Random graph: Not expected to have 

community structure 
■ Here: Any two vertices have the same probability to 

be adjacent 
■ Define null model; use it for investigating if we can 

observe community structure in a graph 
■ Evidence networks – relative community 

comparison  [Mitzlaff et al. 2011, Mitzlaff et al. 2013] 
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Community Evaluation Measures 
 Modularity [Newman 2006] 

  
 

Compares the number of edges within a community with 
the expected such number in a corresponding null model 
 
 
 
 Conductance [Kannan et al. 2004] 

  
 
Compares the number of edges within a community 
and the number of edges leaving the community 

 
 

 
43 



Community Evaluation Measures 
■ Inverse Average Out-Degree Fraction (IAODF) 

[Leskovec et al. 2010] 

 
compares the number of inter-edges to the number of all edges 
of a community, and averages this for the whole community by 
considering the fraction for each individual node 

■ Segregation Index (SIDX) [Freeman 1978] 

 
 
compares the number of expected interedges to the number of 
observed inter-edges, normalized by the expectation 
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Community Criteria   [Tang & Liu 2010] 

■ Several possible community criteria 
■ Node-Centric Community: Each node in a group satisfies 

certain properties, e.g., reachability, clique-based 
■ Group-Centric Community: Consider the connections 

within a group as a whole. Group has to satisfy certain 
properties, e.g., minimal density, Quasi-clique … 

■ Network-Centric Community: Partition the whole 
network into several disjoint sets, e.g., graph 
clustering, modularity maximization 

■ Hierarchy-Centric Community: Construct a hierarchical 
structure of communities 

■ Descriptive Community Detection: Identifies 
communities and description at the same time 
 Especially for exploratory community detection 
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Clique Percolation Method (CPM) 
■ Clique is a very strict definition, unstable 
■ Normally use cliques as a core or a seed to 

find larger communities 
■ CPM: Detect overlapping communities 

■ Input 
■ A parameter k, and a network  

■Procedure 
■ Find out all cliques of size k in a given network 
■ Construct a clique graph. Two cliques are adjacent if they share 

k-1 nodes 
■ Each connected component in the clique graph forms a 

community 

 

[Palla et al. 2005] 
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CPM Example 

Cliques of size 3: 
{1, 2, 3}, {1, 3, 4}, {4, 5, 6}, 
{5, 6, 7}, {5, 6, 8}, {5, 7, 8},  
{6, 7, 8} 

Communities:  
{1, 2, 3, 4} 

{4, 5, 6, 7, 8} 
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Network-Centric Community Detection 
■ Network-centric criterion needs to consider the 

connections within a network globally 
■ Goal: partition nodes of a network into disjoint sets 
■ Approaches: 

■ Clustering based on vertex similarity[Zhou et al. 2009] 
■ Latent space models [Raftery et al. 2002] 
■ Block model approximation [Karrer & Newman 2011] 
■ Spectral clustering [Ma & Gao 2011] 
■ Modularity maximization [Newman 2006] 

 

[Tang & Liu 2010] 
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Agglomerative Hierarchical Clustering 
■ Initialize each node as a community 
■ Merge communities successively into larger 

communities following a certain criterion 
■ E.g., based on modularity increase 

[Clauset et al. 2004] 
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Divisive Hierarchical Clustering 
■ Divisive clustering 

■ Partition nodes into several sets 
■ Each set is further divided into smaller ones 
■ Network-centric partition can be applied for the 

partition 
■ One particular example: recursively remove the 

“weakest” tie 
■ Find the edge with the least strength 
■ Remove the edge and update the corresponding 

strength of each edge 
■ Recursively apply the above two steps until a 

network is discomposed into desired number of 
connected components. 

■ Each component forms a community  

[Girvan & Newman 2002] 
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Combining Structure and Attributes 
■ Data sources 

■Structural variables (ties, links) 
■Compositional variables 

■Actor attributes 
■Represented as attribute vectors 

■Edge attributes 
■Each edge has an assigned label 
■Multiplex graphs 
 Multiple edges (labels) between nodes 
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Communities/Edge-Attributed Graphs 
■ Clustering edge-attributed graphs 

■Reduce/flatten to weighted graph 
[Bothorel et al. 2015] 

■ Derive weights according to number of graphs where nodes are 
directly connected [Berlingerio et al. 2011] 

■ Standard graph clustering approaches can then be directly applied 

■  Frequent-itemset based [Berlingerio et al. 2013] 

■Subspace-oriented [Boden et al. 2012] 
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Node-Attributed Graphs 
■ Non-uniform terminology 

■ Social-attribute network 
■ Attribute augmented graph 
■ Feature-vector graph, vertex-labeled graph 
■ Attributed graph 
■ … 

■ Different representations 

54 
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Community Detection – Attribute Extensions 

■ Utilize structural + attribute information 
■ Different roles of a description 

■Methods aiding community detection using 
attribute information 
■"Dense structures" - connectivity 
■But no "perfect" attribute homogeneity (purity) 

■Methods generating explicit descriptions, i.e., 
descriptive community patterns 
■"Dense structures" – connectivity 
■Concrete descriptions, e.g., conjunctive logical 

formula 
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Attributes for Aiding Community Detection 

■ Weight modification (edges) according to nodal 
attributes [Ge et al. 2008, Dang & Viennet 2012, Ruan 
et al. 2013, Zhou et al. 2009, Steinhaeuser & Chawla 2008] 
■ Abstraction into similarities between nodes 
 Edge weights 
 Apply standard community detection algorithm, 

■ Specifically, distance-based community detection 
methods 

■ Entropy-oriented methods [Psorakis et al. 2011, 
Smith et al. 2014, Cruz et al. 2011] 

■ Model-based approaches [Xu et al. 2012, Yang et al. 
2013, Akoglu et al. 2012] 
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Weight modification 
■ Use attribute-based distance measure 

 
 
 
 
 
 
 
 

■ Community detection: Group nodes according to 
threshold t, i.e., given t ∊ (0, 1) place any pair of 
nodes whose edge weight exceeds the threshold 
into the same community 

■ Evaluate final partitioning using Modularity 
57 
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Entropy Minimization 
■ For a partition, optimize entropy using 

Monte-Carlo 
■ Integrate 

entropy step 
into Modularity 
optimization 
algorithm 
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[Cruz et al. 2011] 

[Blondel et al. 2008] 



Model-based/MDL 
■ In general: Model edge & attribute values 

using mixtures of probability distributions 
■ Use MDL to select clusters w.r.t. attribute 

value similarity & connectivity similarity 
■Data compression of connectivity 

& attribute matrices (PICS algorithm) 
■Lossless compression  MDL cost-function 
■Resulting node groups 

■Homogeneous both in node & attribute matrix 
■Nodes - similar connectivity & high attribute coherence 
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Descriptive Community Patterns 
■Community mining scenario 

■Discover "densely connected groups of nodes" 
■Communities should have explicit description 
■Community (evaluation) space: network/graph 

■Goal: 
■Often: Discover top-k communities 
■Maximize some community 

quality function 
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Examples: Community Patterns 

■ Social tagging system: 
■{work, flickr, delicious} 
■{business, production, sales} 
■{php, web, internet}, 

{innovation, business, 
forschung} 

■{work, flickr, delicious}, 
{library, android, emulation}, 
{php, web, internet} 
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Finding Explicit Descriptions 
■ Cluster transformed node-attribute similarity 

graph & extract pure clusters 
■ Mine frequent itemsets (binary attributes) 

& analyze communities 
■ Combine dense subgraph mining + subspace 

clustering 
■ Apply correlated pattern mining 
■ Interleave community detection 

& redescription mining 
■ Adapt subgroup discovery (for pattern mining) 

for community detection 
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[Moser et al. 2009,Günnemann et al. 2013] 

[Atzmueller & Mitzlaff 2011, Atzmueller et al. 2015] 

[Silva et al. 2012] 

[Pool et al. 2014] 



Subspace-Clustering & Dense Subgraphs 
■ Twofold cluster O: Combine subspace-clustering & 

dense subgraph mining (GAMer algorithm) 
■ O fulfills subspace property (maximal distance threshold 

w.r.t. node attribute values in O) with minimal number 
of dimensions 

■ O fulfills quasi-clique property, according to nodal-
degree and threshold γ 

■ Induced subgraph of O is connected, and fulfills minimal 
size threshold 

■ Quality function: Density ∙ Size ∙ #Dimensions 
■ Pruning using subspace & quasi-clique properties 
■ Includes Redundancy-optimization step (Overlapping 

communities) 
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Correlated Pattern Mining 
■ Structural correlation pattern mining (SCPM) 

■ Correlation between node attribute set and dense 
subgraph, induced by the attribute set 

■ Quality measure: Comparison against null model 
■Size of the pattern 
■Cohesion of the pattern (density of quasi-clique) 

■ Compare against expected structural correlation of 
attribute set (in random graph) 
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■ Thresholds: min. support (size), structural 
correlation, expected structural correlation 
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Description-driven Community Detection 
■ Find communities with concise descriptions 

(e.g., given by tags) 
■ Focus: Overlapping, diverse, descriptive 

communities 
■ Language: Disjunctions of conjunctive 

expressions 
■ Two-stage approach 

■ Greedy hill-climbing step: Generate candidates 
for communities 

■ Redescription generation: Induce description 
for each community, and reshape if necessary 

■ Heuristic approach, due to large search 
space 
 
 

[Pool et al. 2014] 
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■ Starts with candidate communities 
■ Domain knowledge 
■ Partial communities 
■ Start with single vertices (later being extended 

using hill-climbing approach) 
■ ReMine algorithm for deriving patterns for 

communities [Zimmermann et al. 2010] 
67 



 

[Pool et al. 2013] 
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Description-Oriented Community Detection 

■ Basic Idea: Pattern Mining for Community 
Characterization 
■ Mine patterns in description space (tags/topics) 
 Subgroups of users described by tags/topics 

■ Optimize quality measure in community space 
 Network/graph of users 

■ Improve understandability of communities (explanation) 

[Atzmueller et al., IS, 2015] 
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Direct Descriptive Community Mining 
■ Goal: Identification/description of communities with 

a high quality (exceptional model mining) 
■ Input: Network/Graph + node properties (e.g., tags) 
■ Output: k-best community patterns 

■ Description language: conjunctive expressions 
■ COMODO algorithm: Top-k pattern mining, based on 

SD-Map* algorithm for subgroup discovery 
■ Discover k-best patterns 
■ Search space: Conjunctions/tags 
■ Apply standard community quality functions, e.g.,  

Modularity [Newman 2004] 

70 



Community Detection on Attributed Graphs 

■ Goal: Mine patterns describing such groups 
 
 
 
■Merge networks + descriptive features, e.g., 

characteristics of users 
■Target both 

■Community structure (some evaluation function) & 
■Community description (logical formula, e.g., 

conjunction of features, see above) 
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Transformation & Mining (I) 
■ Sources: 

■ Database DB: Users described by attributes (e.g. used 
topics) 

■ Graph G: Links between users (e.g. friend graph) 
■ Goal: 

■ Discover k best communities as subgroups of DB 
■ Maximizing community evaluation function  on G 

■ Need to merge both data sources 
 
 

User 1: {work, flickr, delicious} 
User 2: {business, production, sales} 
User 3: {php, web, internet}, 
    {innovation, business, forschung} 
User 4: {work, flickr, delicious},  
     {library, android, emulation},  
      {php, web, internet} 
… 
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Transformation & Mining (II) 
■ Dataset of edges connecting two nodes 

■ Described by intersection of labels of the two nodes 
■ Additionally: Store nodes, and respective degrees 

■ Apply top-k method w/ optimistic-estimate pruning 
(COMODO) 
 

Web Mining, 
Computer, Java 

Web Mining, 
Computer, 
JavaScript 

Web Mining, 
Computer 
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■ Algorithm utilizes special tree-structure & 
optimistic estimates for efficient processing 
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Optimistic Estimates 
■ Problem: Exponential Search Space 
■ Optimistic Estimate: Upper bound for the 

quality of a pattern and all its specializations 
Top-K Pruning 
 
 

 

Delicious friend graph Last.fm friend graph 75 



Optimistic Estimate Pruning 

 

[Atzmueller et al. 2015] 
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Applications 
■ Derive interestingness profiles, e.g., 

for explaining recommendations 
 Conferator: Acquaint-O-Matic 

■ recommender & analysis 
■mining & ubiquitous & social 
■ java AND android AND nfc 

■ Tool: 
■ VIKAMINE: http://www.vikamine.org 

(R-Package: rsubgroup.org) 
■ Subgroup discovery & analytics 
■ Plugin for description-oriented 

community detection 
■ Works also on big data (Map/Reduce) 

 78 

http://www.vikamine.org/�


Tool: VIKAMINE 
■ Visual, Interactive and Knowledge-intensive 

Analysis and semantic MINing Environment 
■Data mining 
■Visual analytics 
■Knowledge refinement 
■Semantic knowledge capture 

■ Option: Include background knowledge, 
semantic annotation, ontologies 
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[ Atzmueller et al. 2005a, 
  Atzmueller et al. 2005b, 
  Atzmueller & Puppe 2008, 
  Atzmueller et al. 2009, 
  Puppe et al. 2008, 
  Atzmueller  & Lemmerich 2013] 
 



VIKAMINE Features 
■ Efficient automatic discovery algorithms 

■Subgroup discovery 
■Community detection 

■ Seamless integration of  visualization 
methods 

■ Effective visualizations for ad-hoc analysis 
■ Ad-hoc formalization, utilization, and 

extension of background knowledge 
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Workbench 
 

www.vikamine.org 
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Spammer Description 
■ Context: BibSonomy 
■ Social Bookmarking – Spam huge problem! 
■ 15 features from Bibsonomy data 

(non-semantic socio-demographic features) 
■Profile features (account creation etc.), e.g., 

namelen, maillen, maildigit, … 
■Location-based features (location, domain), e.g., 

tld, domaincount, tldcount 
■Activity-based features (interaction with 

system), e.g., datediff, tasperpost, tascount 
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BibSonomy/Nonspammer 

 
Characterization 

Discrimination 

Profile/ 
Demographic 

Activity 

Location 
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Descriptive Community Detection 
■ Example: Patterns from last.fm 

■Recommendation 
■Browsing 
■… 
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Conferator 
■ Interest profiles – 

Recommending conference 
participants 
   BibSonomy: User profiles 

■java AND android AND nfc 

 Conferator: Acquaint-O-Matic 
■recommender & analysis 
■mining & ubiquitous & social 
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Further Examples 
■ Behavioral social targeting 

■Apply domain knowledge 
■Use (explicit) descriptions 

■ Recommendations 
■Popular items in community 
■Deal with cold-start problems 

■ Exploratory analytics 
■First insights into data 
■Characterization of exceptional subgroups 
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Agenda 

■ Motivation 
■ Basics: Graphs & Attributes 
■ Subgroup Discovery & Analytics 
■ Cohesive Subgroups & Communities  
■ Community Detection on Attributed Graphs 
■ Applications & Tools 
■ Summary & Outlook 
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Summary 
■ Subgroup discovery & community detection 

enable the identification of subgroups at 
different levels & dimensions 
■Compositional 
■Structural + compositional 
■Providing explicit descriptions 

■ Both can be combined for obtaining 
descriptive community patterns according 
to standard community quality functions 

■ Efficient tools for detection & analysis 
88 



Outlook 
■ Challenges using ubiquitous & social data 

■Heterogeneous data & complex networks 
■ Integration of multiplex networks & temporal 

information 
■Support for integration & analysis 
■Necessary: Efficient methods and tools for the 

mining of such data 

■ Extensions: Effective exploratory methods 
for analytics. Integrated assessment, mining 
& inspection 
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