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Abstract. In the context of Industry 4.0 and smart production, indus-
trial large-scale enterprise data is applied for enabling data-driven analy-
sis and modeling methods. However, the majority of the currently applied
approaches consider the data in isolated fashion such that data from dif-
ferent sources, e. g., from large data warehouses are only considered inde-
pendently. Furthermore, connections and relations between those data,
i. e., relating to semantic dependencies are typically not considered, while
these would open up integrated semantic approaches for e↵ective data
mining methods. This paper tackles these issues and demonstrates ap-
proaches and experiences in the context of a real-world case study in
the industrial logistics domain: We propose knowledge-based data anal-
ysis applying subgroup discovery for identifying exceptional patterns in
a semantic approach using appropriately constructed knowledge graphs.

1 Introduction

In the industrial world of today, the amounts of data are increasing at a rapid
pace, enabling large-scale business intelligence and data-driven decision support.
Then, exploratory data mining provides a viable tool for obtaining relevant in-
sights. Here, in particular methods for local pattern mining, e. g., subgroup dis-
covery and exceptional model mining enable powerful approaches for detecting
interesting, i. e., unexpected, anomalous and exceptional patterns with a broad
range of applications for industrial data analytics.
Problem. However, so far the applied approaches consider the data in isolated
fashion such that di↵erent data types ranging from unstructured to structured
data, e. g., tabular and graph-data, are only considered independently. This re-
quires an e�cient and e↵ective integrated approach for semantic modeling and
data mining, which, however, has not been established at large-scale yet.
Objectives. In this paper, we exemplify an approach tackling these issues: We
apply subgroup discovery for identifying exceptional patterns in the context of
finding inventory di↵erences. For that, a knowledge-based approach is presented,
integrating large-scale data into a knowledge graph representation. We discuss
experiences in the context of Industry 4.0 and smart production.
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In particular, we present results of a real-world case study in a productive lo-
gistic environment of a large scale industrial plant. One major goal for the client
was to identify specific logistic processes that possibly lead to erroneous finan-
cial assessments, so-called inventory di↵erences. The whole process was strongly
assisted by domain experts, so another goal was to deliver reasonable explana-
tions and transparency to them. One major issue was to represent the particular
domain dependencies in an integrated knowledge graph and the construction of
appropriate features to enable the synchronization between the experts domain
understanding and the knowledge graph representation.
Contributions. Our contributions are summarized as follows:
1. We describe an integrated approach for large-scale industrial data analytics

implemented by knowledge-based data mining utilizing knowledge graphs.
2. We demonstrate the application of local pattern mining in that context,

focusing on subgroup discovery implemented in an intelligent system.
3. We present an anonymized real-world case study in the context of Industry

4.0 and smart production. Furthermore, we discuss insights and experiences
in the application domain of production logistics.
The rest of the paper is structured as follows: Section 2 describes the indus-

trial problem setting in more detail, before Section 3 provides related work on
knowledge-based approaches and local pattern mining. Next, Section 4 summa-
rizes the formal background on subgroup discovery. After that, Section 5 presents
the applied approaches for knowledge graph construction and pattern mining in
the industrial context, and discusses experiences in the context of a real-world
industrial case study. Finally, Section 6 concludes with a summary and presents
interesting directions for future work.

2 Industrial Problem Setting

In the field of logistics in industrial production, Industry 4.0 and smart pro-
duction are important directions for implementing cost-e↵ective measures. Since
data is captured continuously during all the relevant processes, powerful data
mining methods are required. The standard automation pyramid cf. [14, 15] on
industrial processes depicts di↵erent systems corresponding to di↵erent levels of
analysis. Data analytics is mainly performed on the upper levels – corresponding
to the operations control level and the enterprise level. Here, one prominent case
for data analytics is given by uncovering inventory di↵erences. Basically, inven-
tory di↵erences cause deviations in the financial rating of the plants’ current
assets. In the past these di↵erences where detected once a year and could reach
deviations in the region of about EUR 100 million in our application domain,
which corresponds to about one percent of the yearly turnover of a large plant.
As a consequence a team of analysts from di↵erent departments permanently in-
vestigate these di↵erences which decreases the deviations by a factor of 10. This
leads to a trade-o↵ between cost of human resources and the inventory di↵er-
ence because the desired state is to resolve as much as possible deviations using
automated analysis, i. e., with a minimum commitment of human resources.
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3 Related Work

Related work concerns both knowledge-intensive approaches as well as methods
for local pattern mining. Domain knowledge is a natural resource for knowledge-
intensive data mining methods, e. g., [8, 23, 20], for example in the context of
prototype-based approaches [12] or knowledge graphs [21, 24]. However, in data
mining, semantic knowledge is scarcely exploited so far. First approaches for in-
tegrating knowledge graphs, i. e., based on ontologies and a set of instance data
has been proposed in the area of semantic data mining [23, 20]. [9] presents a
mixed-initiative approach, for semantic feature engineering using a knowledge
graph. In a semi-automatic process, the knowledge graph is engineered and re-
fined. Finally, the engineered features are provided for data mining. A similar
approach is applied in [5]. Here, data from heterogeneous data sources is inte-
grated into a knowledge graph, which then provides the basis for data mining.

For data analytics, local pattern mining is a broadly applicable and powerful
set of methods for exploratory data mining [7, 4, 3]. Common methods include
those for association rule mining [1], subgroup discovery, e. g., [25, 3] and ex-
ceptional model mining [19, 3, 13]. Essentially, subgroup discovery is a flexible
method for detecting relations between dependent (characterizing) variables and
a dependent target concept, e. g., comparing the share or the mean of a nomi-
nal/numeric target variable in the subgroup vs. the share or mean in the total
population, respectively [25, 3, 18]. The interestingness of a pattern can then be
flexibly defined, e. g., by a significant deviation from a model that is derived from
the total population. In the simplest case, (see the example above) a binary tar-
get variable is considered, where the share in a subgroup can be compared to
the share in the dataset in order to detect (exceptional) deviations.

In contrast to the approaches discussed above, we focus on an integrated
approach, exploiting knowledge-based semantic structures, i. e., sets of knowl-
edge components connected to a local pattern mining method. Then, also the
knowledge graph can be incrementally refined during the mining process.

4 Background: Subgroup discovery

Formally, a database DB = (I, A) is given by a set of individuals I and a set of
attributes A. For each attribute a 2 A, a range dom(a) of values is defined. An
attribute/value assignment a = v, where a 2 A, v 2 dom(a), is called a feature.
We define the feature space V to be the (universal) set of all features. Intuitively,
a pattern describes a subgroup, i. e., the subgroup consists of instances that are
covered by the respective pattern. A subgroup pattern P is then defined as a
conjunction P = s1 ^ s2 ^ . . .^ sn of (extended) features sl ✓ V , which are then
called selection expressions, where each sl selects a subset of the range dom(a) of
an attribute a 2 A. A subgroup (extension) IP := ext(P) := {i 2 I|P(i) = true}
is the set of all individuals which are covered by pattern P . The set of all possible
subgroup descriptions, and thus the possible search space is then given by 2⌃,
i. e., all combinations of the patterns contained in ⌃ denoting the set of all possi-
ble selection expressions. A quality function q: 2⌃ ! R maps every pattern in the
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search space to a real number that reflects the interestingness of a pattern (or the
pattern cover, respectively). The result of a subgroup discovery task is the set
of k subgroup descriptions P1, . . . , Pk with the highest interestingness according
to the selected quality function. For subgroup models there exist various quality
functions, cf. e. g., [3] for a detailed discussion. A simple example compares the
share p of a binary target in the subgroup pattern P to its share in the database
p0, weighted by the size of the subgroup n, i. e., q(P) = (p� p0) ·n. For numeric
targets, this can easily be adapted replacing the shares by the respective means.
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Fig. 1. Overview on the dependencies between systems and processes in our industrial
context domain. The blue databases contain raw data accessible for data analytics.

5 Case Study

This section summarizes results of a real-world case study in industrial logistics.
For the task of detecting inventory di↵erences, the domain experts provided
background knowledge, including exemplary cases leading to inventory di↵er-
ences in the past, relevant data sources for their analysis and how they detect
the causes of those di↵erences. A first step for data analysis was then given
by business and data understanding, relating to the CRISP-DM model [11]. As
a result, it was possible to identify the most relevant data sources contribut-
ing to the inventory di↵erence problem. Figure 1 shows the resulting complex
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structures. Here, di↵erent databases and processes were identified for data pre-
processing and integration. This structure then was one of the main outcomes
in order to transform the data into a knowledge graph. For data transformation,
we implemented a generic framework to load and transform the given data, cf.
Figure 2 for a schematic view, utilizing the VIKAMINE [6] system for sub-
group discovery. For the knowledge transformation and modeling we applied
Gephi [10] and GraphstreamLib [17]. Here, we distinguish between the structure
data graph representing information and dependencies taken from the bills of
materials, and the accounting data graph capturing material flow information
within the production processes which are discussed in more detail below.
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Fig. 2. Schematic view on the data pipeline. The top shows the CRISP steps, the
bottom the utilized infrastructure. Gray depicts the present data sources (relates to
blue in Figure 1). Red depicts implementation done for the project where the structure
and accounting data boxes essentially depict the knowledge graph components.

5.1 Knowledge Graph Construction

As outlined above, two logistic data sources emerged in our case study holding
essential information for data analytics. The first related to information on lo-
gistic bill of material (BOM). This data is stored in several distributed relational
databases, and describes the composition of basic parts up into an end-product in
a hierarchical way. Utilizing those assembly dependencies we developed a parser
for constructing a graph structure using the GraphStream framework [17], result-
ing in the structure data graph. An (anonymized) visualization of the (complete)
generated graph is shown in Figure 3. Each dependency is represented by a di-
rected edge from the basic material to the (complex) processed material, the
node size corresponds to its degree.
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Fig. 3. Visualization of the bill of material (structure data graph). Each node with a
size according to its degree represents a material. The node color indicates the nodes
price where inexpensive (basic) materials are green and more expensive material go
over yellow to red (normally end-products are most expensive).

We improved the graph step by step from subgroup discovery in cooperation
with the domain knowledge of the experts by additional data sources (e. g.,
using material prices), in order to represent the relevant dependencies and parts-
information according to the experts’ judgment, cf. Section 5.3. For that, we
formulated di↵erent dependencies/expectations as target concepts for subgroup
discovery and automatically investigated specific patterns that either occurred
very rarely or dominated the observed dependencies in the data, applying the
quality function described above.

For a better assessment of potentially problematic dependencies indicated by
the patterns, we also implemented a visual explorer for the structure data graph,
see Figure 4: This screenshot shows top-level materials (final products), where
each material is represented by one node. The user is able to search specific
materials (or groups) and to drill down on dependencies via a right-click.
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Fig. 4. Screenshot of the interactive BOM explorer. It allows experts to identifi prob-
lematic parts and their assembly dependencies in an intuitive and exploratory way.
The graph is layouted by a dynamic force layout available from the utilized libary [17]
and shows only end-products (end/root nodes in the structure data graph).

Regarding the inventory di↵erences it also became apparent that additional
data sources with information about the logistic material movements were essen-
tial to the experts’ analysis. We identified a special system that collected booking
information from several systems and created daily summaries, e. g., regarding
essential attributes of a booking record like sender, material, amount, time, re-
ceiver and booking reason. That information basically describes a material flow
network (for more information on logistics and logistic material flow networks
we refer to, e. g., [22]). Therefore, analogously to the structure data graph, we
built the accounting data graph corresponding to material flow information (see
Figure 2). Both graphs exhibit very significant dependencies which is used in
pattern analysis by experts when investigating inventory di↵erences.

5.2 Investigating Expected Relations using Local Pattern Mining

An essential problem to the experts was to check the relevant bookings of a
material and all its dependent materials. Because of the complexity and large
amounts of the data such manual analysis is always only performed partially, also
there are lots of domain specific cases to consider. Therefore, we modeled a key
performance indicator (KPI) as a feature for data analytics for each material-
node in the structure data graph, called the relbook feature.
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The relbook KPI operates on the two associated graphs that represent the
bill of material (structure of parts) and the material flow described by bookings
(movement of parts). The feature was designed with the experts expectation of
correct interpretation of bookings and set as a target concept for subgroup dis-
covery: relbook is essentially given by a calculation rule that outputs a real num-
ber between -1 and 1. The calculation is done on both the structure data graph
and the accounting data graph and utilizes domain specific knowledge. The KPI
basically traces the construction dependencies in the structure data graph from a
basic material (a screw, an amount of aluminum etc.) up to all final products (a
gearing or an exhaust system) containing that basic material. For each visited
material-node the particular information from the accounting data graph and
the corresponding e↵ective booking amounts are determined.

Basically, the experts expected, that if the calculation rule (and the data) is
correct, the respective amounts included from concepts of the graphs will add
up and there are no deviations (yielding a relbook KPI around 0). Thus, if the
KPI diverges from zero this indicates a potential problem in the data.

Overall, we discovered two major reasons for deviations from the experts’
expectations. The first is indicated by a positive relbook KPI generated by an
accumulation in storage of specific materials, i. e., those that find no longer or
not yet application in active products. On the other hand a negative deviation
from the KPI was mainly observed in small groups of bookings. The reasons
here where mainly special cost centers and storages with exotic processes e. g.,
temporary outsourcing of material for extern handling or a special type of (final)
waste-booking of old material without actual use in production.

5.3 Identifying Anomalous Subgroup Patterns

Further interesting findings often showed significant deviations from the experts
expectations. For detecting anomalous patterns, for example, we examined sub-
group targets for the di↵erent working-shifts and found descriptions which iden-
tify that there are strong associations between specific types of logistic bookings
and the current working shift. As an example, Table 1 shows two significant
patterns found using the target variable that identifies bookings done in the
normal shift (SchichtKz=01 ). The dataset properties (defined individuals) show
that there are about 8.18 million bookings in the population, also nearly 45% of
all bookings are done in the normal shift. The descriptor #2 BstArt=NIK states
that the normal shift produces 82% of all waste-bookings which was interesting
to the experts because they expected a homogeneous distribution over all four
shifts. As a result it was uncovered that only particular personal is allowed to
perform return or waste bookings – only available in specific shifts. Furthermore
it was uncovered that the shifts handling in the booking system is di↵erent to
the real shifts execution. Therefore the missing 18% of waste-bookings where
found in the following system shift which still falls in the normal execution shift.

All results were discovered evaluating patterns from tables like Table 1, where
often interesting patterns occured that lead to further investigation such as fur-
ther expert interviews, individual data inspection, or further drill-down on the
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Table 1. Population properties and two exemplary subgroup patterns for bookings
done in the normal shift. Pattern #2 uncovers the strong dependence between this
shift and waste bookings.

Target (nominal) SchichtKz=01

population properties

defined individuals undefined individuals target share in population

8175938 0 44.9%

subgroup descriptors (mid-size groups)

# quality group size target share TP rate coverage

1

EmpfKz=V AND ZwAnkTag ]�1; 44, 5[

AND AnzBwgTag ]�1; 26, 5[

238.15 1506843 64,3% 26,4% 18,4%

2
BstArt=NIK

214.75 334828 82% 7,5% 4,1%

patterns. Using di↵erent targets, for example, concerning the kind of material
application and the fluctuation of material-prices we discovered technical prob-
lems in an import process for data. In Figure 1, this process would be represented
by a blue arrow between a relevant system (green) and a database (blue). The
problem was noticed because there were patterns that described bookings with
empty storage groups, which was against the experts’ expectation. Subgroup de-
scriptions discovered for the target “component price fluctuation” also revealed
fragmentary price data for a larger group of parts. In later iterations another
systematic problem was uncovered where cost center IDs of physically the same
cost center where not equal in di↵erent but dependent logistic systems.

6 Conclusions

In this paper, we presented approaches for knowledge-based mining of excep-
tional patterns in logistics data and discussed experiences in the context of a
real-world case study. In particular, we focused on modeling background knowl-
edge in the form of knowledge graphs, and we applied subgroup discovery for
identifying exceptional patterns. Overall, the process and the results were very
well accepted by the domain experts, which especially favored explainability
and transparency of the mined patterns. During iterative sessions, interesting
and useful patterns were identified for enabling the automatic monitoring of
inventory di↵erences. For future work, we aim to explore network patterns for
refinement of knowledge graphs, extending feature engineering methods, e. g., [9].
Here, multiplex approaches, e. g., [2, 16] and pattern-based anomaly detection are
further interesting directions.
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