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ABSTRACT
This paper proposes a mixed-initiative feature engineering ap-
proach using explicit knowledge captured in a knowledge graph
complemented by a novel interactive visualization method. Us-
ing the explicitly captured relations and dependencies between
concepts and their properties, feature engineering is enabled in
a semi-automatic way. Furthermore, the results (and decisions)
obtained throughout the process can be utilized for re�ning the
features and the knowledge graph. Analytical requirements can
then be conveniently captured for feature engineering – enabling
integrated semantics-driven data analysis and machine learning.

CCS CONCEPTS
• Human-centered computing → Visualization; • Comput-
ingmethodologies→Knowledge representation and reason-
ing; Machine learning;
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1 INTRODUCTION
For many areas of machine learning and data analysis such as
predictive modeling, anomaly detection, or pattern mining, the
majority of the applied methods still considers the data in isolated
fashion. In contrast, an e�ective integrated approach is given by
constructing a knowledge graph cf. e. g., [7, 13]: Here, the data
is integrated in a comprehensive knowledge structure capturing
the relations between concepts and their properties in an explicit
way. Then, this structure can be exploited in order to facilitate
machine learning and data analysis. However, the knowledge graph
mainly focuses on the structuring of the concepts and their relations,
while speci�c modeling tasks, as well as data characteristics (e. g.,
distributions, correlations) are typically not captured. This second
step is the main focus of this paper.
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Objectives. This paper adresses this issue by proposing an ap-
proach for mixed-initiative feature engineering using the explic-
itly represented kowledge in a knowledge graph. In particular, we
present an according process model including a novel interactive vi-
sualization method for feature engineering, i. e., supporting feature
construction and selection. In addition, the obtained feature engi-
neering results can be also applied for re�ning the knowledge graph,
e. g., by extending the graph or modifying its construction process.
In this way, we provide both a knowledge-based and data-driven
way for integrated data analysis and knowledge capture.

Contribution. Our contribution is summarized as follows: We
present a mixed-initiative feature engineering approach using ex-
plicit knowledge captured in a knowledge graph. For that, we pro-
pose a process model integrating a novel interactive visualization
method, for semi-automatic feature engineering. We discuss the
di�erent steps of the process and describe the visualization method
in detail. Furthermore, we summarize �rst results in an industrial
real-world context given by an (anonymized) case study.

The rest of the paper is organized as follows: Section 2 discusses
related work. After that, Section 3 describes the proposed approach
for mixed-initiative feature engineering using knowledge graphs.
Next, Section 4 summarizes an anonymized case study applying the
proposed approach. Finally, Section 5 concludes with a summary
and interesting directions for future work.

2 RELATEDWORK
Existing works utilizing semantic structures in data mining [10,
14, 16, 19] focuses on applying ontologies in the data mining step.
However, so far the approaches only apply a “shallow” coupling.
Here, advanced knowledge-rich representations like knowledge
graphs [4, 17, 20] are a prominent research direction, e. g., [7, 13].
In contrast to existing approaches for feature engineering, e. g.,
[1–3, 20], this work proposes to use knowledge graphs for feature
engineering in a mixed-initiative approach: Utilizing the formalized
relations, a semi-automatic visualization method enables advanced
feature engineering, knowledge capture, and re�nement.

For visualization and browsing graphs and network structures [12],
there are a variety of techniques, including visualizations for show-
ing densely connected subgroups (as sets of nodes) [11], special
cluster visualizations [8], and interactive techniques for analyzing
connected graph structures [9]. In contrast, this paper focuses on
feature engineering using knowledge graphs, visualizing feature
dependencies to support feature selection and construction.

For feature engineering also explanation-awareness plays an im-
portant role. In particular, if explanations for the complete models,
or parts thereof can be provided, then the acceptance can often be
signi�cantly improved, e. g., [6]. In the proposed approach, this is
enabled by inspecting the underlying data and formalized relations
at the relevant representational level and dimensions.
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Figure 1: Overview on the proposed framework for mixed-initiative feature engineering using knowledge graphs.

3 METHOD
Below,we �rst outline and summarize themixed-initiative approach
for feature engineering using knowledge graphs. After that, we
describe the novel visualization method in detail.

3.1 Overview
The proposed mixed-initiative process is depicted in Figure 1. We
start with heterogeneous complex datasets that are integrated into
a knowledge graph structure. After that, this knowledge structure
can be applied for machine learning and data analysis. We do not
describe the initial construction of the knowledge graph in detail.
Instead, we focus on the subsequent feature engineering step, e. g.,
enabling feature selection and feature construction.

In this paper, we propose a mixed-initiative approach, such that
�rst a set of relevant (initial) features is compiled (feature genera-
tion) using the concepts and relations modeled in the knowledge
graph. This can happen, e. g., by selecting concepts of speci�c types,
such as parts of speci�c machinery in industrial applications, and
attributes describing their properties, as encoded by relations in the
knowledge graph. Then, a semi-automatic process is initiated (i. e.,
for feature engineering), guided by interactive visualization as de-
scribed below (interactive analysis). Finally, the engineered features
are provided for data analysis and machine learning (analysis and
mining). In addition, decisions taken during the feature engineering
step and/or the analysis and mining step can be utilized for re�ne-
ment: They can, for example, be (re-)integrated into the knowledge
graph, such as formalizing/adding/extending annotations of fea-
tures (represented by concepts) or re�ning the respective relations,
e. g., based on the information that one feature is strongly correlated
with another one. Furthermore, the knowledge graph structure it-
self, as well as the set of generated and/or selected features can be
iteratively adapted based on the obtained insights.

We provide examples of such actions in the real-world case study
sketched below. Finally, then also the knowledge graph itself can be
applied for providing additional context regarding the results of the
analysis and mining step, as well as during the feature engineering
step, e. g., to provide explanations [6, 18]. This is facilitated by the
links to the originating concepts and the covered data records, re-
spectively, which can then be exploited, e. g., by exploring a node’s
neighborhood in the knowledge graph, or by browsing and/or in-
specting the respective sets of objects [5].

3.2 Visualization
For inspecting and assessing the generated features, their charac-
teristics and dependencies, we propose a visualization called the
feature matrix plot, see Figure 2: It consists of several (sub-)plots, for
each pair of features denoted by the corresponding row and column
labels. As an example, we consider the feature pair A1/A3 (indicated
by the red rectangle). The yellow subplot at (1,1) provides infor-
mation about the domain of A1 via a histogram, accordingly the
subplot at (3,3) for A3. The gray subplot at (1,3) shows a heat map,
while the subplot at (3,1) provides information about missing values
and the (Spearman) correlation between A1 and A3. A detailed view
on two exemplary heat map subplots for the feature pairs A2/A4
and A2/A5 is given to the right of Figure 2: Each subplot shows a
di�erent grid, derived from nominal (or appropriately discretized
intervals) of the two feature domains; the vertical partition comes
from the “row” feature (here A2) and the horizontal partition from
the “column” feature (here A4 resp. A5). Therefore, all partitionings
of a subplot represent all possible value realizations for the given
feature pair. The hotter the color, the larger the number of individ-
uals in that partition. Each heat map is normalized so the highest
occurrence is red and the lowest blue, the color gradient shows all
possible pixel colors. The heat map can also be understood as an
2D Histogram (from above) in which the bins are represented by
the single grid elements; the pixel color represents their height. For
numeric features, we basically focus on the other subplots (below).

The subplots shown in gray depict three di�erent types of in-
formation. First the background indicates the proportion between
individuals used for generating the subplots and the individuals
that have least one missing value for one of the paired features
(indicated in yellow) – for data quality assessment and cross-checks.
The colored oval in the center of the subplot displays the correlation
between the paired features whereby the extent on the x-axis shows
the correlation between the discretized intervals; the extent on the
y-axis shows the correlation between the original (undiscretized) do-
mains. Furthermore the oval’s color provides information about the
direction of a possible correlation (green=positive, red=negative);
the color inside stands for the direction of the discretized intervals.
The outer ovals’ color shows the direction of the original domain.
A gray color indicates that at least one of the paired features is
nominal, whereas numerical and ordinal features provide richer vi-
sualizations. Overall, the idea here is to provide a fast visual method
to detect, e. g., data quality and discretization problems via strongly
skewed ovals and strongly correlated features by big circles.
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Figure 2: Schematic breakdown of the feature matrix plot for �ve attributes. The feature matrix plot is made up of three
individual subplot types that provide valuable information, e. g., for feature engineering, knowledge graph optimization, dis-
cretization and spotting datasource problems.

4 CASE STUDY
The introduced semi-automatic approach utilizing the matrix plots
for interactive analysis has been applied in an (anonymized) in-
dustrial case study, where data analysis was applied to productive
logistic data. One major problem that occured in the iterative work-
�ow was the large amount of concepts/features contained in the
knowledge graph which had then to be “condensed” to a set of
meaningful features that are relevant for the analysis. For that
purpose, we applied the proposed approach including the novel vi-
sualization method. In particular, this allowed us to perform feature
engineering and selection in an iterative process considering knowl-
edge graph construction, feature construction, and re�nement. By
interpreting the visualization the set of features can be optimized,
e. g., by removing strongly correlated attributes and detect/�x prob-
lematic domain discretizations before running costly data analysis
tasks. If it is necessary to resign on features the plot can be utilized
to focus on the most informative and available attributes. In that
way, also the experts could be involved into this interactive visual
process in order to provide feedback on the constructed feature set.

Furthermore, important feedback could be derived from the visu-
alizations regarding the source data that was used for generating the
knowledge graph. For that, basically a complex knowledge graph
data structure was evolved from plain relational logistic data. The
structure was a composition from two graphs that, e. g., represent
the material �ows, and composition of di�erent processes and prod-
ucts. As a particularly important case, the 1D histogram was used
to re�ne a central KPI feature, which was used for data analysis
and further machine learning approaches. This KPI feature was
constructed from the graphs’ structure itself capturing the experts’
beliefs. Then, using the visualization the relations, dependencies
and correlations to other concepts from the knowledge graph could
be checked, and expectations of the domain specialists could be
veri�ed. This allowed us to both construct the feature according
to their domain knowledge and exploiting/re�ning the knowledge
graph at the same time, e. g., by adding relations that were missing,
or by removing incorrect relations and dependencies.

Figure 3 shows a feature matrix plot of an already improved
feature set from a knowledge graph where 18 attributes have been
selected. It is easy to see that the domain distributions are quite
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exotic. Here, we also include some information on the “evolution”
of some features. As an example, consider an earlier version of an
important feature denoted by A16. Here, the distributions and cor-
relations were not well expressed according to domain knowledge.
The �nal re�ned version is given by A11; here, we can also note the
absence of noise which directly visualizes the improved mapping
of experts knowledge. A5 shows an discretization problem as it can
be seen in all subplots A5 is involved. Here, all correlation ovals are
extremely stretched on the x-axis, also the corresponding heatmaps
show only a resolution of one “logical” pixel on the y-axis. The
problem was that all individuals fall in only one discretization in-
terval. The �nal feature set was improved by replacing the numeric
A5 by an adapted nominal version (and by removing feature A16,
as discussed above). Alltogether, the proposed approach proved cru-
cial in feature engineering and in also re�ning the knowledge graph
in order to be applicable for data analysis and machine learning.

Figure 3: An example of a feature matrix plot: The plot
has been generated from real-world (anonymized) indus-
trial data in the domain of productive logistics.

5 CONCLUSIONS
This paper proposed an approach for mixed-initiative feature engi-
neering using the explicitly represented kowledge captured by a
knowledge graph. In particular, we presented an according process
model including a novel interactive visualization method. In addi-
tion, the feature engineering results can be also applied for check-
ing data and knowledge characteristics and re�ning the knowledge
graph and feature sets, respectively. This was sketched in the con-
text of an (anonymized) real-world industrial case study in the
domain of productive logistics, where we also summarized �rst
results and experiences. Here, we discussed the di�erent steps of
the process and described the visualization method in detail.

Our results indicate the e�cacy of the proposed approach. The
domain specialists could utilize the proposed approach very well.
Guided by the visualization, they could easily interpret its results.
Working together with the data scientists in the feature engineering
phase, theywere e�ectively supported using the proposed approach,
especially applying the presented visualization method. Further-
more, the knowledge graph was also iteratively adapted and re�ned
according to the outcomes of the modeling and analysis phases.

For future work, we aim to further extend explanation-aware ap-
proaches utilizing the semantic structures formalized in the knowl-
edge graph in order to provide ad-hoc knowledge in context. This
also connects to further visualization approaches for supporting
detailed inspection of knowledge graph components, and its re�ne-
ment [15]. Further interesting directions concern scalable machine
learning and data analysis methods on complex knowledge graphs
targeting predictive as well as descriptive approaches.
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